JPH03248469A - Mos type semiconductor device - Google Patents

Mos type semiconductor device

Info

Publication number
JPH03248469A
JPH03248469A JP2046099A JP4609990A JPH03248469A JP H03248469 A JPH03248469 A JP H03248469A JP 2046099 A JP2046099 A JP 2046099A JP 4609990 A JP4609990 A JP 4609990A JP H03248469 A JPH03248469 A JP H03248469A
Authority
JP
Japan
Prior art keywords
film
gate electrode
gate
melting point
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2046099A
Other languages
Japanese (ja)
Inventor
Kimiko Nakamura
公子 中村
Isayoshi Sakai
勲美 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2046099A priority Critical patent/JPH03248469A/en
Publication of JPH03248469A publication Critical patent/JPH03248469A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid contamination of a gate insulated film and to get rid of fluctuation in a transistor characteristic for improving heat resistance by providing a barrier metal between the gate insulated film and a high melting point metal or high melting point silicide to become a gate electrode. CONSTITUTION:After forming a field oxide film 102 on an n-type silicon board 101, a gate oxide film 103 is formed by using a thermal oxidation method. Next, spattering of a TiN film 104 is performed on the entire surface and W-silicide films 105 to become a gate electrode are deposited on the entire surface. Then, after applying a resist on the whole surface, reactive ion etching is performed with a patterned resist 106 as a mask to form a gate electrode. In this state, the gate electrode 105' is connected to a gate oxide film 103' having a barrier metal film 104' thereunder. Next, high-concentration boron ions are implanted on the whole surface to form a p<+> diffusion layer region 107, continuously an interlayer insulated film 108 and an aluminum wiring 10 are provided.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、MOS型半導体装置に関し、特に高融点金属
又は高融点金属のシリサイドからなるゲート電極を有す
るものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a MOS type semiconductor device, and particularly to one having a gate electrode made of a refractory metal or a silicide of a refractory metal.

[従来の技術] MOS型半導体装置のゲート電極はポリシリコン電極が
主流であるが、そのシート抵抗が高いので、VLSIの
ように素子が微細化しチップサイズが大きくなるにつれ
、その配線容量による遅延時間が問題になり、高融点金
属または高融点金属シリサイドのゲート電極および配線
を用いる。このとき、従来、ゲート電極はゲート絶縁膜
上に直接形成されていた。
[Prior art] Polysilicon electrodes are the mainstream for the gate electrodes of MOS semiconductor devices, but because of their high sheet resistance, as elements become finer and the chip size increases, as in VLSI, the delay time due to the wiring capacitance increases. is a problem, and gate electrodes and wiring made of high-melting point metal or high-melting point metal silicide are used. At this time, conventionally, the gate electrode was formed directly on the gate insulating film.

〔発明が解決しようとする課題1 上記のMOS型半導体装置では、スパッタ法により直接
ゲート絶縁膜に電極膜を被着してゲート電極を形成する
ので、ゲート絶縁膜との間は不安定であり、ゲート電極
からの不純物イオンが絶縁膜に入り、トランジスタ特性
が変動するという欠点がある。また、熱処理工程で、ゲ
ート絶縁膜との反応が生じないようにゲート電極材料の
選択に制約が生ずる欠点がある。
[Problem to be Solved by the Invention 1] In the above MOS semiconductor device, since the gate electrode is formed by depositing the electrode film directly on the gate insulating film by sputtering, the relationship between the electrode film and the gate insulating film is unstable. However, impurity ions from the gate electrode enter the insulating film, resulting in fluctuations in transistor characteristics. Another disadvantage is that there are restrictions on the selection of gate electrode materials in order to prevent reactions with the gate insulating film during the heat treatment process.

本発明の目的は、上記の欠点を除去し、低抵抗の高融点
金属または高融点金属シリサイドのゲート電極で、安定
な特性を有するMOS型半導体装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a MOS type semiconductor device having stable characteristics using a gate electrode made of a low-resistance refractory metal or refractory metal silicide.

[課題を解決するための手段] 本発明のMOS型半導体装置は、ゲート絶縁膜とゲート
電極となる高融点金属または高融点金属のシリサイドと
の間にバリアメタル層を設けたもので、バリアメタル層
としてはTiN層またはTiW層が用いられる。本発明
の高融点金属または高融点金属のシリサイドからなるゲ
ート電極を有するMOS型半導体装置は、ゲート絶縁膜
と前記ゲート電極との間にバリアメタル膜を設けるよう
にしたもので、バリアメタル膜の材質はTiNまたはT
iWとしている。
[Means for Solving the Problems] The MOS semiconductor device of the present invention has a barrier metal layer provided between a gate insulating film and a high melting point metal or a silicide of a high melting point metal serving as a gate electrode. A TiN layer or a TiW layer is used as the layer. A MOS type semiconductor device having a gate electrode made of a refractory metal or a silicide of a refractory metal according to the present invention is such that a barrier metal film is provided between a gate insulating film and the gate electrode. Material is TiN or T
It is called iW.

〔作  用  1 バリアメタル膜は、材質上極めて安定で、ゲート酸化膜
およびゲート電極の高融点金属または高融点金属シリサ
イドと反応せず、したがってゲート絶縁膜は汚染されず
トランジスタ特性の変動がなくなる。また耐熱性を向上
させる。
[Function 1] The barrier metal film is extremely stable in terms of material and does not react with the high melting point metal or high melting point metal silicide of the gate oxide film and the gate electrode, so the gate insulating film is not contaminated and the transistor characteristics do not fluctuate. It also improves heat resistance.

〔実施例] 以下、本発明の一実施例について図面を参照して説明す
る。第1図は実施例の製造工程を示す縦断面図である。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing the manufacturing process of the embodiment.

この例は、ゲート電極にWシリサイドを用いたp型MO
Sトランジスタの場合である。第1図fal に示すよ
うにn型シリコン基板101にフィールド酸化膜102
を形成した後、熱酸化法を用いてゲート酸化膜103を
形成する0次に全面にTiのリアクティブスパッタ法に
より、1000人程度のTiN膜104のスパッタを行
なう。次に全面にゲート電極となるWシリサイドffl
 105を例えば1000〜20001程度堆積する。
This example is a p-type MO using W silicide for the gate electrode.
This is the case of an S transistor. As shown in FIG. 1, a field oxide film 102 is formed on an n-type silicon substrate 101.
After forming a gate oxide film 103 using a thermal oxidation method, a TiN film 104 is sputtered by about 1000 layers on the entire surface of the first order by a reactive sputtering method of Ti. Next, the W silicide ffl becomes the gate electrode on the entire surface.
105, for example, about 1000 to 20001.

そしてレジストを全面に塗布した後、パタニングしたレ
ジスト106をマスクとして、第1図tbl に示すよ
うに反応性イオンエツチングを行ない、ゲート電極を形
成する。この状態でゲート電極105′はその下にバリ
アメタル膜104′を介してゲート酸化膜103′ と
接する。
After applying a resist to the entire surface, using the patterned resist 106 as a mask, reactive ion etching is performed as shown in FIG. 1 tbl to form a gate electrode. In this state, the gate electrode 105' is in contact with the gate oxide film 103' via the barrier metal film 104' underneath.

次に第1図(cl に示すように全面に高濃度、例えば
注入量10”〜lOI610l6程度のボロンイオンの
注入を行ない、p+拡散層領域107を形成し、つづい
て層間絶縁膜108を形成し、アルミニウム配線109
を設ければ、バリアメタル膜としてのTiN膜を有する
Wシリサイドゲートからなるp型MOSl−ランジスタ
を形成することができる。
Next, as shown in FIG. 1 (cl), boron ions are implanted at a high concentration over the entire surface, for example, at an implantation amount of about 10'' to 1OI61016 to form a p+ diffusion layer region 107, and then an interlayer insulating film 108 is formed. , aluminum wiring 109
By providing , it is possible to form a p-type MOS l-transistor consisting of a W silicide gate having a TiN film as a barrier metal film.

〔発明の効果] 以上説明したように本発明は、ゲート絶縁膜と高融点金
属又は高融点金属のシワサイドからなるゲート電極との
間にバリアメタル膜をはさむことにより、ゲート電極か
らの不純物イオンの拡散によるトランジスタのVア(ス
レシホールド電圧)の変動が従来0.2V程度あったも
のに対し、0.1V程度におさえることができる。さら
に、ゲート酸化膜との反応に対する耐熱性を向上させ、
ゲートの歩留りを70%から90%程度に改善すること
ができる。また、信頼性も向上する。さらに、耐熱性の
向上は、ゲート電極材料の選択の巾を広げ、ポリシリコ
ンゲートプロセスとの整合性をよくする効果がある。
[Effects of the Invention] As explained above, the present invention suppresses impurity ions from the gate electrode by sandwiching a barrier metal film between the gate insulating film and the gate electrode made of a high melting point metal or a wrinkled side of a high melting point metal. The variation in Va (threshold voltage) of the transistor due to diffusion, which conventionally was about 0.2V, can be suppressed to about 0.1V. Furthermore, it improves heat resistance against reactions with the gate oxide film,
The gate yield can be improved from about 70% to about 90%. Also, reliability is improved. Furthermore, improved heat resistance has the effect of widening the selection range of gate electrode materials and improving compatibility with polysilicon gate processes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を製造する工程の縦断面図で
ある。 lロト・−n型シリコン基板、 103、103’・・・ゲート酸化膜、104・・・ 
TiN膜、 ■04′ ・・・バリアメタル膜、 105−・−Wシリサイド膜、 105’  ・・・ゲート電極、 107・・−p十数散層領域、 108・・・層間絶縁膜、 109・・−アルミニウム配線。 特 許 出 願 人 日本電気株式会社
FIG. 1 is a longitudinal cross-sectional view of a process for manufacturing an embodiment of the present invention. lroto-n type silicon substrate, 103, 103'... gate oxide film, 104...
TiN film, ■04'...Barrier metal film, 105--W silicide film, 105'...Gate electrode, 107...-P dozen-odd scattered layer region, 108...Interlayer insulating film, 109-・-Aluminum wiring. Patent applicant NEC Corporation

Claims (1)

【特許請求の範囲】 1、ゲート電極が高融点金属または高融点金属のシリサ
イドからなるMOS型半導体装置において、ゲート絶縁
膜と前記ゲート電極との間にバリアメタル膜を設けたこ
とを特徴とするMOS型半導体装置。 2、前記バリアメタル膜の材質が、TiNまたはTiW
である特許請求の範囲の請求項1記載のMOS型半導体
装置。
[Claims] 1. A MOS type semiconductor device in which the gate electrode is made of a high melting point metal or a silicide of a high melting point metal, characterized in that a barrier metal film is provided between the gate insulating film and the gate electrode. MOS type semiconductor device. 2. The material of the barrier metal film is TiN or TiW.
A MOS type semiconductor device according to claim 1.
JP2046099A 1990-02-26 1990-02-26 Mos type semiconductor device Pending JPH03248469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2046099A JPH03248469A (en) 1990-02-26 1990-02-26 Mos type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2046099A JPH03248469A (en) 1990-02-26 1990-02-26 Mos type semiconductor device

Publications (1)

Publication Number Publication Date
JPH03248469A true JPH03248469A (en) 1991-11-06

Family

ID=12737548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2046099A Pending JPH03248469A (en) 1990-02-26 1990-02-26 Mos type semiconductor device

Country Status (1)

Country Link
JP (1) JPH03248469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790749B2 (en) 1992-10-09 2004-09-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP2011181893A (en) * 2009-12-10 2011-09-15 Internatl Rectifier Corp Group iii nitride transistor including highly-conductive source/drain contact, and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790749B2 (en) 1992-10-09 2004-09-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7109108B2 (en) 1992-10-09 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device having metal silicide
US7602020B2 (en) 1992-10-09 2009-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US7723788B2 (en) 1992-10-09 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US8017506B2 (en) 1992-10-09 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
JP2011181893A (en) * 2009-12-10 2011-09-15 Internatl Rectifier Corp Group iii nitride transistor including highly-conductive source/drain contact, and method of manufacturing the same
US9378965B2 (en) 2009-12-10 2016-06-28 Infineon Technologies Americas Corp. Highly conductive source/drain contacts in III-nitride transistors

Similar Documents

Publication Publication Date Title
US6512296B1 (en) Semiconductor structure having heterogenous silicide regions having titanium and molybdenum
US5773339A (en) Method of making diffused layer resistors for semiconductor devices
JPH01264257A (en) Semiconductor device
KR0161380B1 (en) Transistor of semiconductor device and their manufacturing method
JPS60123060A (en) Semiconductor device
JPH03248469A (en) Mos type semiconductor device
JPS6213075A (en) Semiconductor device
JPS62111466A (en) Semiconductor device
JPS6358943A (en) Structure of electrode and wiring film
JPS6165470A (en) Semiconductor ic device
JPH0763060B2 (en) Method for manufacturing semiconductor device
JP3196241B2 (en) Method for manufacturing semiconductor device
JPS6254960A (en) Mis field effect transistor
JPH0252463A (en) Semiconductor integrated circuit device
JPS59112641A (en) Semiconductor device and manufacture thereof
JPH02203565A (en) Semiconductor device and its manufacture
JPH0917996A (en) Mos semiconductor device and manufacturing method thereof
JPH02237073A (en) Manufacture of semiconductor device
JPS61225838A (en) Forming method for electrode wirings
JP2654805B2 (en) Semiconductor device
KR960002065B1 (en) Fabricating method of semiconductor device
JPS6130076A (en) Manufacture of mos type semiconductor device
JPS6182479A (en) Manufacture of semiconductor device
JPH07107926B2 (en) Method for manufacturing semiconductor capacitive element
JPH0482220A (en) Manufacture of semiconductor device