JPH03248057A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH03248057A
JPH03248057A JP2046237A JP4623790A JPH03248057A JP H03248057 A JPH03248057 A JP H03248057A JP 2046237 A JP2046237 A JP 2046237A JP 4623790 A JP4623790 A JP 4623790A JP H03248057 A JPH03248057 A JP H03248057A
Authority
JP
Japan
Prior art keywords
electrode
comb
gas
thin film
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2046237A
Other languages
Japanese (ja)
Other versions
JP2755766B2 (en
Inventor
Sukeyuki Fujii
祐行 藤井
Takanori Fujii
孝則 藤井
Yuji Hamada
祐次 浜田
Kazuhiko Kuroki
黒木 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2046237A priority Critical patent/JP2755766B2/en
Publication of JPH03248057A publication Critical patent/JPH03248057A/en
Application granted granted Critical
Publication of JP2755766B2 publication Critical patent/JP2755766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To selectively detect a specific gas by providing a comb-like exciting electrode and a comb-like receiving electrode on a piezoelectric substrate, and applying a thin film including a host which has the gas to be detected as a quest between the two electrodes. CONSTITUTION:On a piezoelectric substrate 1, there are formed a comb-shaped exciting electrode 2 which excites a surface acoustic wave 3 and, a comb-shaped receiving electrode 4 which receives and converts the surface wave 3 to an electric signal. Moreover, a thin film 5 of gamma-cyclodextrin including a host which has a gas to be detected as a quest is applied to the surface of the substrate 1 between the electrodes 2 and 4. When an impulse voltage is impressed through an input terminal of the electrode 2 in the atmosphere, the surface wave 3 is excited by the electrode 2, spreading on the surface of the substrate 1, and converted to the electric energy by the electrode 4 and taken out as a high frequency output from an output terminal. A feedback amplifier circuit 8 is connected between the electrodes 2 and 4. Therefore, a signal received by the electrode 4 is amplified by the circuit 8 and fed back to the electrode 2. Thus, an oscillating circuit is constituted.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はガスセンサー、更に詳しくは、特定の立体構造
を有する化学種であるゲストと、そのゲストと選択的に
相互作用を行うホストとの間でゲスト−ホスト錯体を形
成する包接現象を応用したガスセンサーに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a gas sensor, and more specifically, to a gas sensor that uses a guest, which is a chemical species having a specific three-dimensional structure, and a host that selectively interacts with the guest. This invention relates to a gas sensor that applies an inclusion phenomenon that forms a guest-host complex between two gases.

(ロ)従来の技術 従来、可燃性ガス漏れ警報器やガス濃度針に用いられる
ガスセンサーとして、金属酸化物焼結体型半導体ガスセ
ンサーや接触燃焼式ガスセンサーが許及している。これ
らのセンサーの検出原理は半導体ガスセンサーでは半導
体表面とガスの吸着現象により、電気抵抗や仕事関数な
どの物性が変化するという性質を利用するものであり、
又、接触燃焼式ガスセンサーはガス検知機能を持つ物質
の表面のガスの接触燃焼による温度変化を電気抵抗変化
として検知することを利用している。
(B) Conventional Technology Conventionally, metal oxide sintered semiconductor gas sensors and catalytic combustion gas sensors have been used as gas sensors for use in flammable gas leak alarms and gas concentration needles. The detection principle of these sensors utilizes the property that in semiconductor gas sensors, physical properties such as electrical resistance and work function change due to the adsorption phenomenon of gas on the semiconductor surface.
Further, a catalytic combustion type gas sensor utilizes the fact that a temperature change due to catalytic combustion of gas on the surface of a substance having a gas detection function is detected as a change in electrical resistance.

(ハ)発明が解決しようとする課題 然し乍ら、上記従来のガスセンサーでは、ガスの吸着現
象や燃焼現象などを利用していたため、被検ガス中の各
種ガスに対して反応してしまい、特定ガスのみ選択的に
検知することが困難であった。
(c) Problems to be solved by the invention However, since the conventional gas sensor described above uses gas adsorption phenomena and combustion phenomena, it reacts with various gases in the gas to be detected, resulting in It was difficult to selectively detect only

又、これ等のガスセンサーの作動温度が一般に200〜
500℃と高温を必要とするため素子の劣化が起こりや
すいという問題点があった。
In addition, the operating temperature of these gas sensors is generally 200~200℃.
Since it requires a high temperature of 500° C., there is a problem in that the device is likely to deteriorate.

(ニ)課題を解決するための手段 本発明によるガスセンサーは、圧電基板上に櫛型励振t
L極と櫛型受信電極とを設け、これ等の両電極間位置に
被検出ガスをゲストとするホストを含む薄膜を被着して
いる。
(d) Means for Solving the Problems The gas sensor according to the present invention has a comb-shaped excitation t on a piezoelectric substrate.
An L pole and a comb-shaped receiving electrode are provided, and a thin film containing a host with the gas to be detected as a guest is deposited between these two electrodes.

(ホ)作用 本発明によれば励振、受信両電極間の被検出ガスをゲス
トとするホストを含む薄膜がそのゲストと相互作用して
質量が増加し、両電極間での弾性表面波の伝播条件が変
化することからその被検出ガスに対して選択的な検知作
用を果たす。
(E) Effect According to the present invention, a thin film containing a host with the gas to be detected as a guest between the excitation and reception electrodes interacts with the guest, increasing its mass, and propagation of surface acoustic waves between the two electrodes. Since the conditions change, a selective detection action is performed on the gas to be detected.

(へ)実施例 以下、本発明の一実施例を図面を用いて詳細に説明する
。第1図は本発明のガスセンサーの概略図を例示したも
のである。(1)はガスセンサーの主要部を成す圧電体
基板で、例えば長さlOm、幅2鰭、厚さ0.1mのL
iNbO5から構成されている。(2)はこの基板(]
)の表面の一側に設けられた弾性表面波(3)を励振す
る櫛型励振電極、(4)はこのay励振電極(2)に対
向して圧電体基板(1)の他側に設けられた櫛型受信電
極で、sN:!励振電極(2)から圧電体基板(1)の
表面を伝播して来る弾性表面波(3)を受信して電気信
号に変換する働きを為す。これ等の櫛型電極(2)(4
)は対!に50対、電極間隔5μm、交差長1■、電極
厚み1000人のアルミニウム蒸着膜にて構成されてい
る。(5)は両櫛型電t4i(2)(4)間の圧電体基
板(1)表面を被覆した被検出ガスをゲストとするホス
トを含む薄膜で、例えば膜厚1100nのγ−シクロデ
キストリンの薄膜が用いられる。この薄膜(5)は真空
度10−’Torr、基板温度25℃の条件下の真空蒸
着法によって形成される。第2図にこのγ−シクロデキ
ストリンの化学構造式を示す。
(F) Example Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 illustrates a schematic diagram of a gas sensor of the present invention. (1) is a piezoelectric substrate that forms the main part of the gas sensor, for example, L with a length of 10m, a width of 2 fins, and a thickness of 0.1m.
It is composed of iNbO5. (2) is this board (]
) is provided on one side of the surface of the piezoelectric substrate (1), and a comb-shaped excitation electrode (4) for exciting the surface acoustic wave (3) is provided on the other side of the piezoelectric substrate (1), facing the ay excitation electrode (2). With the comb-shaped receiving electrode, sN:! It functions to receive surface acoustic waves (3) propagating from the excitation electrode (2) to the surface of the piezoelectric substrate (1) and convert them into electrical signals. These comb-shaped electrodes (2) (4
) vs! It consists of 50 pairs of electrodes, an electrode spacing of 5 μm, a crossing length of 1 μm, and an electrode thickness of 1000 aluminum evaporated films. (5) is a thin film containing a host with the gas to be detected as a guest, which coats the surface of the piezoelectric substrate (1) between both comb-shaped electrodes t4i (2) and (4), for example, a film of γ-cyclodextrin with a film thickness of 1100 nm. A thin film is used. This thin film (5) is formed by a vacuum evaporation method under conditions of a vacuum degree of 10-' Torr and a substrate temperature of 25°C. FIG. 2 shows the chemical structural formula of this γ-cyclodextrin.

次にこのような構成のガスセンサーの動作について説明
する。大気中においてl!ヤ励振電極(2)に連なった
入力端子(6)によりインパルス電圧をf’JJ加する
と、a型励振112)は、圧電効果により隣り合う電極
間に互いに逆位相の歪みが生じ、弾性表面波(3)が励
起される。この弾性表面波(3)は基板(])の表面を
伝播し、櫛型受信電極(4)に到達し電気エネルギーに
変換され、出力端f(7)から高周波出力として取り出
される。
Next, the operation of the gas sensor having such a configuration will be explained. l in the atmosphere! When an impulse voltage f'JJ is applied through the input terminal (6) connected to the Y-type excitation electrode (2), the A-type excitation 112) generates distortion in opposite phases between the adjacent electrodes due to the piezoelectric effect, resulting in a surface acoustic wave. (3) is excited. This surface acoustic wave (3) propagates on the surface of the substrate (]), reaches the comb-shaped receiving electrode (4), is converted into electrical energy, and is extracted as a high-frequency output from the output end f(7).

斯る構成のセンサーの櫛型励振電極(2)と@型受信電
極(4)との間に第3図に示すように帰還増幅回路(8
)を接続し、櫛型受信電極(4)で受信した信号をこの
帰還増幅回路(8)で増幅して再び櫛型励振電極(2)
に帰還することによって発振回路を構成している。
A feedback amplifier circuit (8) is connected between the comb-shaped excitation electrode (2) and the @-shaped receiving electrode (4) of the sensor having such a configuration, as shown in FIG.
) is connected, and the signal received by the comb-shaped receiving electrode (4) is amplified by this feedback amplifier circuit (8) and then sent back to the comb-shaped excitation electrode (2).
An oscillation circuit is constructed by feeding back the

このように動作しているセンサーを第4図に示すように
ガスセル(10)内に固定し、このガスセル(10)内
に四塩化炭素蒸気を導入すると、センサーと帰還増幅回
路(8)とのよる発振周波数は低下し始め、その低下I
l!象は5分後にはその低下した周波数で安定した状態
となった。
When the sensor operating in this manner is fixed in a gas cell (10) as shown in Fig. 4 and carbon tetrachloride vapor is introduced into the gas cell (10), the sensor and the feedback amplifier circuit (8) are connected. The oscillation frequency starts to decrease, and the decrease I
l! The elephant stabilized at its reduced frequency after 5 minutes.

この現象は、γ−シクロデキストリンの薄膜(5)の分
子内部の空洞内に四塩化炭素分子が填まり込んでホスト
−ゲスト錯体を形成し、このγ−シクロデキストリンの
薄膜(5)の質量が増加することによって櫛型励振型t
4i(2)がち圧電体基板口)の表面を18!’l受信
電極(4)へ伝播して米る弾性表面波(3)の伝播条件
が変化することが原因と(えられている。また−旦周波
数が低下した状態からガスセル(10)内に窒素ガスを
導入することによって、γ−シクロデキストリンの薄膜
(5)の分子内部の空洞から四塩化炭素分子が排出され
、ホスト−ゲスト錯体が崩壊するので発振回路の発振周
波数は元の鎖まで回復した。
This phenomenon occurs because carbon tetrachloride molecules fill the cavities inside the molecules of the γ-cyclodextrin thin film (5), forming a host-guest complex, and the mass of the γ-cyclodextrin thin film (5) increases. By increasing the comb-shaped excitation type t
4i (2) (piezoelectric substrate opening) surface 18! It is believed that the cause is a change in the propagation conditions of the surface acoustic wave (3) that propagates to the receiving electrode (4). By introducing nitrogen gas, carbon tetrachloride molecules are expelled from the cavities inside the molecules of the γ-cyclodextrin thin film (5), and the host-guest complex collapses, so the oscillation frequency of the oscillation circuit is restored to the original chain. did.

同様の条件で四塩化炭素の代わりにクロロホルム蒸気を
用いた場合は、発振周波数の変化は僅がであった。構造
が類似したハロゲン化炭化水素である四塩化炭素と、ク
ロロホルムとでこのような違いが見られるのは、γ−シ
クロデキストリンの薄膜(5)の分子内部の空洞径が四
塩化炭素分子の大きさとほぼ等しいためこの四塩化炭素
分子はr−シクロデキストリンとホスト−ゲスト錯体を
形成するのに対し、クロロホルム分子は四塩化炭素分子
−より小さいため、その分子がγ−シクロデキストリン
の薄膜(5)の分子内部の空洞に填まり込んでも直ちに
離脱してしまい、ホスト−ゲスト錯体を形成することが
できないためであろう。
When chloroform vapor was used instead of carbon tetrachloride under similar conditions, the oscillation frequency changed only slightly. The reason for this difference between carbon tetrachloride, a halogenated hydrocarbon with a similar structure, and chloroform is that the diameter of the cavity inside the molecule of the γ-cyclodextrin thin film (5) is larger than that of the carbon tetrachloride molecule. This carbon tetrachloride molecule forms a host-guest complex with r-cyclodextrin because it is almost equal to the carbon tetrachloride molecule, whereas the chloroform molecule is smaller than the carbon tetrachloride molecule, so the molecule forms a thin film of γ-cyclodextrin (5). This is probably because even if it fills the cavity inside the molecule, it immediately separates, making it impossible to form a host-guest complex.

ここで本発明ガスセンサーの動作を具体的な数値を挙げ
て説明しておく。第3図に示した発振回路で大気中にお
いて90MHzの発振を行わしめていた状態から、その
発振回路を第4図のガスセル(10)内に置いて四塩化
炭業ガス(9)を導入すると、その発振周波数は5分後
に500Hz低下した。また対比例としてクロロホルム
の場合は10Hzの周波数変化であった。
Here, the operation of the gas sensor of the present invention will be explained using specific numerical values. When the oscillation circuit shown in Fig. 3 is oscillating at 90 MHz in the atmosphere, when the oscillation circuit is placed in the gas cell (10) shown in Fig. 4 and tetrachloride coal industry gas (9) is introduced, The oscillation frequency decreased by 500 Hz after 5 minutes. Further, as a comparative example, in the case of chloroform, the frequency change was 10 Hz.

(ト)発明の効果 本発明は以上の説明から明らかなように、圧電体基板上
に櫛型励振電極と櫛型受信電極とを設け、これらの画電
極同位置に被検出ガスをゲストとするホストを含む薄膜
を被着しているので、この薄膜の特定ガスに対する選択
的なホスト−ゲスト錯体形成によって生じる薄膜の重量
変化を周波数変化として検知している。従って接触燃焼
式又は半導体式ガスセンサーなどの従来のセンサーでは
不IJr a’である特定ガスに対する選択検知が可能
となると同時に、検知作動は室温雰囲気で行えるので素
f・の劣化は少なく長寿命化が図れる。
(G) Effects of the Invention As is clear from the above description, the present invention provides a method in which a comb-shaped excitation electrode and a comb-shaped reception electrode are provided on a piezoelectric substrate, and a gas to be detected is placed as a guest at the same position of these picture electrodes. Since a thin film containing a host is deposited, changes in the weight of the thin film caused by selective host-guest complex formation with respect to a specific gas in this thin film are detected as changes in frequency. Therefore, it is possible to selectively detect specific gases that cannot be detected using conventional sensors such as catalytic combustion type or semiconductor type gas sensors.At the same time, since the detection operation can be performed in a room temperature atmosphere, there is less deterioration of elemental gas and the lifespan is extended. can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明ガスセンサーの素子の斜視図、第2図は
本発明に用いられるγ−シクロデキストリンの化学構造
式、第3図はガスセンサーの構成を示す斜視図、第4図
はガス検知状態を示す断面図である。 (+)・・・圧電体基板、 (2)・・・s1!:!励振電極、 (3)・・・表面弾性波、 (4)・・・ls型受信電極、 (5)・・・γ−シクロデキストリン薄膜、(8)・・
・帰還増幅回路、 (9)・・・ガス、 (10)・・・ガスセル。
Fig. 1 is a perspective view of the element of the gas sensor of the present invention, Fig. 2 is the chemical structural formula of γ-cyclodextrin used in the invention, Fig. 3 is a perspective view showing the configuration of the gas sensor, and Fig. 4 is a perspective view of the gas sensor element of the present invention. It is a sectional view showing a detection state. (+)...Piezoelectric substrate, (2)...s1! :! Excitation electrode, (3)...Surface acoustic wave, (4)...ls type receiving electrode, (5)...γ-cyclodextrin thin film, (8)...
・Feedback amplifier circuit, (9)...Gas, (10)...Gas cell.

Claims (3)

【特許請求の範囲】[Claims] (1)弾性表面波を伝播させる圧電体基板上に、弾性表
面波を励振する櫛型励振電極とその電極から上記圧電体
基板表面を伝播して来る弾性表面波を受信する櫛型受信
電極とを設けると共に、これ等両電極間の上記圧電体基
板表面の少なくとも一部に被検出ガスをゲストとするホ
ストを含む薄膜を被着してなるガスセンサー。
(1) A comb-shaped excitation electrode that excites surface acoustic waves on a piezoelectric substrate that propagates surface acoustic waves, and a comb-shaped receiving electrode that receives surface acoustic waves propagating from the electrode on the surface of the piezoelectric substrate. and a thin film containing a host with a gas to be detected as a guest is deposited on at least a part of the surface of the piezoelectric substrate between the two electrodes.
(2)上記薄膜は、γ−シクロデキストリンから構成さ
れ、四塩化炭素ガスを検出することを特徴とした請求項
(1)記載のガスセンサー。
(2) The gas sensor according to claim (1), wherein the thin film is made of γ-cyclodextrin and detects carbon tetrachloride gas.
(3)上記櫛型励振電極と櫛型受信電極との間に帰還増
幅回路を接続して発振回路を構成させて成る請求項(1
)又は(2)記載のガスセンサー。
(3) Claim (1) wherein an oscillation circuit is constructed by connecting a feedback amplifier circuit between the comb-shaped excitation electrode and the comb-shaped reception electrode.
) or the gas sensor described in (2).
JP2046237A 1990-02-27 1990-02-27 Gas sensor Expired - Fee Related JP2755766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2046237A JP2755766B2 (en) 1990-02-27 1990-02-27 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2046237A JP2755766B2 (en) 1990-02-27 1990-02-27 Gas sensor

Publications (2)

Publication Number Publication Date
JPH03248057A true JPH03248057A (en) 1991-11-06
JP2755766B2 JP2755766B2 (en) 1998-05-25

Family

ID=12741519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2046237A Expired - Fee Related JP2755766B2 (en) 1990-02-27 1990-02-27 Gas sensor

Country Status (1)

Country Link
JP (1) JP2755766B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323636A (en) * 1993-06-11 1994-06-28 The United States Of America As Represented By The Secretary Of The Army Dual-channel flexural acoustic wave chemical sensor
US6582583B1 (en) 1998-11-30 2003-06-24 The United States Of America As Represented By The Department Of Health And Human Services Amperometric biomimetic enzyme sensors based on modified cyclodextrin as electrocatalysts
WO2006006587A1 (en) * 2004-07-12 2006-01-19 Niigata University Gas detection method and gas sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6442997B1 (en) * 2001-10-01 2002-09-03 Lockheed Martin Corporation Ram-air sample collection device for a chemical warfare agent sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190905A (en) * 1986-02-18 1987-08-21 Matsushita Electric Ind Co Ltd Surface acoustic wave device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190905A (en) * 1986-02-18 1987-08-21 Matsushita Electric Ind Co Ltd Surface acoustic wave device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323636A (en) * 1993-06-11 1994-06-28 The United States Of America As Represented By The Secretary Of The Army Dual-channel flexural acoustic wave chemical sensor
US6582583B1 (en) 1998-11-30 2003-06-24 The United States Of America As Represented By The Department Of Health And Human Services Amperometric biomimetic enzyme sensors based on modified cyclodextrin as electrocatalysts
WO2006006587A1 (en) * 2004-07-12 2006-01-19 Niigata University Gas detection method and gas sensor

Also Published As

Publication number Publication date
JP2755766B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
Wu et al. A high sensitivity nanomaterial based SAW humidity sensor
Wohltjen Mechanism of operation and design considerations for surface acoustic wave device vapour sensors
Cheeke et al. Acoustic wave gas sensors
US7482732B2 (en) Layered surface acoustic wave sensor
Benetti et al. Microbalance chemical sensor based on thin-film bulk acoustic wave resonators
JPH08500431A (en) High sensitivity sensor
Nomura et al. Measurement of acoustic properties of liquid using liquid flow SH-SAW sensor system
JPH11514579A (en) Mechanical signal processor with loss compensation means
CN108872063B (en) Trace substance detection device and method based on parameter excitation and synchronous resonance
Lee et al. Ultrasensitive mass balance based on a bulk acoustic mode single-crystal silicon resonator
Ferrari et al. Development and application of mass sensors based on flexural resonances in alumina beams
Lee et al. Highly sensitive detection of DMMP using a CMUT-based chemical sensor
Cismaru et al. Carbon nanotube-based electromagnetic band gap resonator for CH4 gas detection
Nguyen et al. Design and performance of CMOS micromechanical resonator oscillators
Khlebarov et al. Surface acoustic wave gas sensors
JPH03248057A (en) Gas sensor
Sappati et al. Printed acoustic sensor for low concentration volatile organic compound monitoring
JP2006220508A (en) Gas sensor
Pang et al. A humidity sensor based on AlN Lamb wave resonator coated with graphene oxide of different concentrations
Kadam et al. Use of thermally induced higher order modes of a microcantilever for mercury vapor detection
Jin et al. Electrostatic resonator with second superharmonic resonance
Sappati et al. Temperature compensated differential acoustic sensor for CO2 sensing
Dorojkine et al. Thin-film piezoelectric acoustic sensors. Application to the detection of hydrocarbons
Zipser et al. Acoustic gas sensors using airborne sound properties
Wen et al. A novel dual track SAW gas sensor using three-IDT and two-MSC

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees