JPH03242385A - Bond structure of substrate of aluminum nitride and metallic plate - Google Patents

Bond structure of substrate of aluminum nitride and metallic plate

Info

Publication number
JPH03242385A
JPH03242385A JP3710790A JP3710790A JPH03242385A JP H03242385 A JPH03242385 A JP H03242385A JP 3710790 A JP3710790 A JP 3710790A JP 3710790 A JP3710790 A JP 3710790A JP H03242385 A JPH03242385 A JP H03242385A
Authority
JP
Japan
Prior art keywords
substrate
aqn
plate
aluminum nitride
brazing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3710790A
Other languages
Japanese (ja)
Inventor
Yutaka Takeshima
裕 竹島
Yukio Sakabe
行雄 坂部
Yasunobu Yoneda
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3710790A priority Critical patent/JPH03242385A/en
Publication of JPH03242385A publication Critical patent/JPH03242385A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain bond structure having high reliability while preventing cracks of AlN substrate during heat treating and cooling in bonding an AlN substrate to a metal plate by brazing, by using titanium plates as intermediate layers of bonding. CONSTITUTION:Titanium plates 3 are brazed through brazing materials 2 of first layers to an AlN substrate 1. Copper plates 5 for heating are brazed through brazing materials 4 of second layers to the titanium plates 3 to bond the AIN substrate to the metal plates.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、放熱性の良好な窒化アルミニウム(AQN)
基板と金属板を接合させた構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses aluminum nitride (AQN), which has good heat dissipation properties.
It relates to a structure in which a substrate and a metal plate are joined.

具体的にいえば、本発明は、例えばICパッケージやパ
ワーダイオード等を搭載するための基板材料として用い
られるAQN基板と金属板の接合体の構造に関する。
Specifically, the present invention relates to the structure of a bonded body of an AQN substrate and a metal plate, which is used as a substrate material for mounting, for example, an IC package, a power diode, or the like.

[背景技術] 半導体デバイスの高密度化、高速化及び高出力化に伴う
発熱量の増大に対応させるため、その基板材料としては
、放熱性に優れたものが要求されてきている。放熱性の
良好な基板材料としては、従来より常用されていたAQ
 203に代り、AQNが注目されている。しかしなが
ら、実装基板として、より高い放熱性が要求される用途
では、放熱性をより良好にするため、ヒートシンクとし
て数100側の厚みの金属板をAQN基板に接合させる
必要がある。
[Background Art] In order to cope with the increase in heat generation due to higher density, higher speed, and higher output of semiconductor devices, substrate materials with excellent heat dissipation are required. AQ, which has been commonly used as a substrate material with good heat dissipation,
Instead of 203, AQN is attracting attention. However, in applications where higher heat dissipation is required as a mounting board, it is necessary to bond a metal plate with a thickness of several hundreds of nanometers to the AQN board as a heat sink in order to improve the heat dissipation.

このため従来にあっては、第2図に示すように、チタン
(Ti)を添加したロウ材23を用いてAQN基板21
と銅(Cu)板22を接合させ、基板材料として用いて
いる。すなわち、AQN基板21と銅板22の間に、C
u−Ag−Ti系のロウ材23を挟んだ後、真空中で熱
処理を施し、ロウ材23を融着させてAQN基板21と
銅板22を接合させている。この銅板22は、ヒートシ
ンクとして顛N基板21の放熱性をより良好にし、また
必要に応じて配線パターンとしても使用される。
For this reason, in the past, as shown in FIG.
and a copper (Cu) plate 22 are bonded together and used as a substrate material. That is, there is a C between the AQN board 21 and the copper plate 22.
After sandwiching the u-Ag-Ti based brazing material 23, heat treatment is performed in a vacuum to fuse the brazing material 23 and join the AQN substrate 21 and the copper plate 22. This copper plate 22 serves as a heat sink to improve the heat dissipation of the fabric substrate 21, and is also used as a wiring pattern if necessary.

[発明が解決しようとする課題] しかしながら、上記のようにロウ材層を介して直接にA
DH基板と銅板を接合させる方法では、AQN基板と銅
板の熱膨張率の差が大きいため、接合される銅板の厚み
が大きくなってくると、熱処理冷却時にAQN基板と銅
板の間に大きな残留熱応力が発生し、AQN基板にクラ
ックが発生したり、また残留熱応力の影響により製品と
しての信頼性が低くなっていた。
[Problem to be solved by the invention] However, as mentioned above, A
In the method of bonding a DH board and a copper plate, since there is a large difference in the coefficient of thermal expansion between the AQN board and the copper plate, as the thickness of the copper plate to be bonded increases, a large amount of residual heat is generated between the AQN board and the copper plate during heat treatment and cooling. Stress was generated, cracks were generated in the AQN substrate, and the reliability of the product was lowered due to the influence of residual thermal stress.

本発明は、叙上の従来例の欠点に鑑みてなされたもので
あり、その目的とするところは、熱処理冷却時における
AQN基板のクラックの発生を防止し、信頼性の高い接
合体の構造を提供することにある。
The present invention was made in view of the drawbacks of the conventional examples described above, and its purpose is to prevent the occurrence of cracks in AQN substrates during heat treatment and cooling, and to create a highly reliable bonded structure. It is about providing.

[課題を解決するための手段] このため、本発明の窒化アルミニウム基板と金属板の接
合構造は、窒化アルミニウム基板の上に第一層のロウ材
を介してチタン板がロウ付けされ、このチタン板の上に
第二層のロウ材を介して放熱用の金属板がロウ付けされ
たことを特徴としている。
[Means for Solving the Problems] Therefore, in the bonding structure of an aluminum nitride substrate and a metal plate of the present invention, a titanium plate is brazed onto the aluminum nitride substrate via a first layer of brazing material, and this titanium It is characterized by a metal plate for heat dissipation being brazed onto the plate via a second layer of brazing material.

なお、前記ロウ材としては、銀および銅を含んだロウ材
が好ましい。
Note that the brazing material is preferably a brazing material containing silver and copper.

[作用コ 本発明にあっては、AQN基板と金属板の接合の中間層
として、ヤング率が比較的低く、延性の高いチタン板を
用いたので、ロウ付は冷却時には、熱応力のためチタン
板が塑性変形する。この結果、チタン板が熱応力を吸収
し、AQN基板と金属板の間の残留熱応力を低減させる
ので、At2N基板にクラック等が発生せず、信頼性の
高い基板材料を得ることができる。
[Function] In the present invention, a titanium plate with a relatively low Young's modulus and high ductility is used as the intermediate layer for bonding the AQN substrate and the metal plate. The plate undergoes plastic deformation. As a result, the titanium plate absorbs thermal stress and reduces the residual thermal stress between the AQN substrate and the metal plate, so that cracks and the like do not occur in the At2N substrate, making it possible to obtain a highly reliable substrate material.

[実施例] 以下、本発明の一実施例を添付図に基づいて詳述する。[Example] Hereinafter, one embodiment of the present invention will be described in detail based on the accompanying drawings.

第1図は、本発明の接合方法によって製造された接合体
Aの概略図であり、AQN基板基板上にロウ材2の層を
介してチタン板3がロウ付けされており、チタン板3の
上にロウ材4の層を介して銅板5がロウ付けされている
FIG. 1 is a schematic diagram of a bonded body A manufactured by the bonding method of the present invention, in which a titanium plate 3 is brazed onto an AQN substrate through a layer of brazing material 2. A copper plate 5 is brazed thereon with a layer of brazing material 4 interposed therebetween.

この接合体Aの製造方法の一例を製造順序に従って説明
する。まず、厚さが635−で寸法が2インチ角のAQ
N基板1を用意し、このAQN基板1の上にスクリーン
印刷法によりCu−Ag−T i系のロウ材2の層を厚
さ5訓に形成した。更に、その上に厚さ100uylの
チタン板3を重ね、チタン板3の上にロウ材2の層と同
様にロウ材4の層を形成した。ついで、その上に厚さ3
00訓の銅板5を重ねた。こうしてロウ材2,4を介し
てAQN基板1とチタン板3と銅板5を積層した状態で
、真空中(く1×10−’Torr)において、850
°Cで1分間熱処理を施した。この結果、熱処理によっ
て、AQN基板1とチタン板3がロウ付けされ、チタン
板3と銅板5もロウ付けされ、第1図に示したような接
合体が得られた。
An example of a method for manufacturing this joined body A will be described in accordance with the manufacturing order. First, AQ with a thickness of 635 mm and dimensions of 2 inches square.
An N substrate 1 was prepared, and a layer of Cu-Ag-Ti based brazing material 2 was formed to a thickness of 5 cm on this AQN substrate 1 by screen printing. Further, a titanium plate 3 having a thickness of 100 uyl was placed thereon, and a layer of brazing material 4 was formed on the titanium plate 3 in the same manner as the layer of brazing material 2. Then, on top of that, add a thickness of 3
Copper plate 5 of 00 lessons was stacked. With the AQN substrate 1, titanium plate 3, and copper plate 5 stacked together with the brazing materials 2 and 4 interposed in between, the
Heat treatment was performed at °C for 1 minute. As a result, the AQN substrate 1 and the titanium plate 3 were brazed together, and the titanium plate 3 and the copper plate 5 were also brazed by heat treatment, so that a joined body as shown in FIG. 1 was obtained.

上記方法により製作された接合体は、放熱性の良好なA
QN基板にさらに放熱性の良い銅板を接合しているので
、銅板がヒートシンクの働ぎをして一層放熱性が良好と
なる。このため、放熱性に優れた基板材料として用いる
ことができ、ICやパワーダイオード等の半導体デバイ
スのパッケージとして用いて半導体デバイスの温度上昇
を抑制することができる。しかも、真空中で熱処理して
いるため、酸化物等の熱伝導阻害物質が生成することが
なく、金属板からの放熱性を低下させることもない。
The bonded body manufactured by the above method has a good heat dissipation property.
Since a copper plate with good heat dissipation properties is bonded to the QN board, the copper plate functions as a heat sink, resulting in even better heat dissipation properties. Therefore, it can be used as a substrate material with excellent heat dissipation properties, and can be used as a package for semiconductor devices such as ICs and power diodes to suppress temperature increases in semiconductor devices. Moreover, since the heat treatment is performed in a vacuum, there is no generation of thermal conduction inhibiting substances such as oxides, and there is no reduction in heat dissipation from the metal plate.

さらに、AQN基板と銅板の間にヤング率が低く、延性
の高いチタン板が挟まれているので、チタン板の塑性変
形によってロウ付は冷却時の熱応力を緩和でき、AQN
基板にクラックが発生したりすることがなく、従来例の
ように延性の低いロウ材層しか持たない場合と比較する
と、極めて信頼性の高い接合体が得られる。
Furthermore, since a titanium plate with a low Young's modulus and high ductility is sandwiched between the AQN substrate and the copper plate, the plastic deformation of the titanium plate can alleviate thermal stress during cooling, and the AQN
Cracks do not occur in the substrate, and a bonded body with extremely high reliability can be obtained compared to the case where only a brazing material layer with low ductility is provided as in the conventional example.

(試験結果)上記実施例の製造方法及び数値例に従って
本発明実施例の接合体を製作した。この結果、接合強度
の強固な接合体が得られ、AQN基板にはクラックが発
生しなかった。
(Test Results) A joined body according to an example of the present invention was manufactured according to the manufacturing method and numerical example of the above example. As a result, a bonded body with strong bonding strength was obtained, and no cracks occurred in the AQN substrate.

一方、比較例として、チタン板の代わりに同じ厚さのC
u−Ag−T i系ロウ板をAQN基板と銅板の間に挟
み、実施例と同一条件で熱処理を行なった。この結果、
比較例では、ロウ付は冷却後、AQN基板にクラックが
発生した。
On the other hand, as a comparative example, instead of a titanium plate, C of the same thickness was used.
A u-Ag-Ti based brazing plate was sandwiched between an AQN substrate and a copper plate, and heat treatment was performed under the same conditions as in the example. As a result,
In the comparative example, cracks occurred in the AQN substrate after cooling after brazing.

[発明の効果] 本発明によれば、中間のチタン板によってロウ材は冷却
時の熱応力を吸収させることができるので、AQN基板
と金属板の間の残留熱応力を軽減し、AQN基板のクラ
ックを防止し、信頼性の高い基板材料を得ることができ
る。
[Effects of the Invention] According to the present invention, the intermediate titanium plate allows the brazing material to absorb thermal stress during cooling, thereby reducing residual thermal stress between the AQN substrate and the metal plate and preventing cracks in the AQN substrate. can be prevented and a highly reliable substrate material can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略図、第2図は従来
例を示す概略図である。 1・・・窒化アルミニウム(AQN)基板2.4・・・
ロウ材 3・・・チタン板 5・・・銅板
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and FIG. 2 is a schematic diagram showing a conventional example. 1... Aluminum nitride (AQN) substrate 2.4...
Brazing material 3...Titanium plate 5...Copper plate

Claims (1)

【特許請求の範囲】[Claims] (1)窒化アルミニウム基板の上に第一層のロウ材を介
してチタン板がロウ付けされ、このチタン板の上に第二
層のロウ材を介して放熱用の金属板がロウ付けされたこ
とを特徴とする窒化アルミニウム基板と金属板の接合構
造。
(1) A titanium plate was brazed onto the aluminum nitride substrate through a first layer of brazing material, and a metal plate for heat dissipation was brazed onto this titanium plate through a second layer of brazing material. A bonding structure between an aluminum nitride substrate and a metal plate.
JP3710790A 1990-02-16 1990-02-16 Bond structure of substrate of aluminum nitride and metallic plate Pending JPH03242385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3710790A JPH03242385A (en) 1990-02-16 1990-02-16 Bond structure of substrate of aluminum nitride and metallic plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3710790A JPH03242385A (en) 1990-02-16 1990-02-16 Bond structure of substrate of aluminum nitride and metallic plate

Publications (1)

Publication Number Publication Date
JPH03242385A true JPH03242385A (en) 1991-10-29

Family

ID=12488376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3710790A Pending JPH03242385A (en) 1990-02-16 1990-02-16 Bond structure of substrate of aluminum nitride and metallic plate

Country Status (1)

Country Link
JP (1) JPH03242385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067324A1 (en) * 2001-02-22 2002-08-29 Ngk Insulators, Ltd. Member for electronic circuit, method for manufacturing the member, and electronic part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067324A1 (en) * 2001-02-22 2002-08-29 Ngk Insulators, Ltd. Member for electronic circuit, method for manufacturing the member, and electronic part
US6911728B2 (en) 2001-02-22 2005-06-28 Ngk Insulators, Ltd. Member for electronic circuit, method for manufacturing the member, and electronic part

Similar Documents

Publication Publication Date Title
US5490627A (en) Direct bonding of copper composites to ceramics
JP2004507073A (en) High rigidity, multi-layer semiconductor package and manufacturing method thereof
JPH09312361A (en) Composite material for electronic component and its manufacture
JP2005011922A (en) Double-sided copper clad substrate equipped with heat sink, and semiconductor device using it
JP2003347354A (en) Manufacturing method of semiconductor device and semiconductor device, and semiconductor device unit
JPH05218229A (en) Ceramic circuit board
JP2002343911A (en) Substrate
JP2735912B2 (en) Inverter device
JPH03242385A (en) Bond structure of substrate of aluminum nitride and metallic plate
JPH04295065A (en) Manufacture of ceramic-metal joined body
JPH0496355A (en) Manufacture of semiconductor device
JP2003007939A (en) Ceramic circuit board with heat sink and manufacturing method therefor
JPH1117081A (en) Semiconductor module for power
JP3044952B2 (en) Semiconductor chip mounting structure
JP2003258153A (en) Package structure of semiconductor package
JP2521624Y2 (en) Semiconductor device
JPH03218031A (en) Semiconductor integrated circuit device and preform bonding material used in the same
JP2004343035A (en) Heat radiating component, circuit board, and semiconductor device
JPH0585849A (en) Method for joining aluminum nitride substrate and metallic plate
JPH01165147A (en) Ceramic substrate
JP2619155B2 (en) Hybrid integrated circuit device
JP3070176B2 (en) Joining method of aluminum nitride substrate and copper plate
JPH04365362A (en) Ceramic-metal based junction
JPH03261672A (en) Bonded product structure comprising aluminum nitride and metal material
JPH01118435A (en) Composite material of aluminum and molybdenum and manufacture thereof