JPH03240929A - High toughness cermet alloy - Google Patents

High toughness cermet alloy

Info

Publication number
JPH03240929A
JPH03240929A JP2036352A JP3635290A JPH03240929A JP H03240929 A JPH03240929 A JP H03240929A JP 2036352 A JP2036352 A JP 2036352A JP 3635290 A JP3635290 A JP 3635290A JP H03240929 A JPH03240929 A JP H03240929A
Authority
JP
Japan
Prior art keywords
hard phase
phase
alloy
cermet alloy
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2036352A
Other languages
Japanese (ja)
Other versions
JPH0713277B2 (en
Inventor
Takashi Yoshimoto
隆志 吉本
Masao Koshi
正夫 越
Yasushi Hara
恭 原
Taku Matsunaga
卓 松永
Shigenao Okano
岡野 重尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2036352A priority Critical patent/JPH0713277B2/en
Publication of JPH03240929A publication Critical patent/JPH03240929A/en
Publication of JPH0713277B2 publication Critical patent/JPH0713277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a new high toughness cermet alloy having high chipping resistance by constituting the compsn. of the core part of a cermet alloy composed of a B1 type hard phase having a dual core structure and a bonding metallic phase of a low N hard phase and a high N hard phase in a specified ratio. CONSTITUTION:A cermet alloy is prepd. from a B1 type hard phase having a dual core structure and a bonding metallic phase. The bonding metallic phase is composed of one or more kinds among iron-group metals and its weight is regulated to 5 to 30%. The hard phase is composed of a mixture or mutual solid soln. of carbides, nitrides, carbon nitrides or carbon nitrogen oxides obtd. by incorporating Ti and W with one or more kinds among the groups 4a, 5a and 6a in a periodic table and its weight is regulated to 70 to 95%. At this time, as for the hard phase, the compsn. of the core part having a dual core structure is constituted of a primary hard phase of Ti(CxNy)eta (y<=0.3, x+y=1 and 0.5<=eta<=1) with <=30mol% nitrogen content and a secondary hard phase of Ti(CxNyOz)eta (y<=0.7, x+y+z=1, 0.01<=z<=0.2 and 0.5<=eta<=1) with >=70mol% nitrogen content, and the secondary hard phase occupies 5 to 20% to the hard phase.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐熱衝撃性および高温化学安定性に優れ、と
りわけ断続切削が行われるフライスなどの切削用チップ
として極めて高い耐欠損性を有する新規な高靭性サーメ
ット合金およびその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is a novel chip that has excellent thermal shock resistance and high temperature chemical stability, and has extremely high chipping resistance as a cutting chip for cutting tools such as milling cutters that perform interrupted cutting. This article relates to a high-toughness cermet alloy and its manufacturing method.

(従来の技術) 工具用サーメット合金は、当初TiCを硬質相生成分と
したTic系合金から出発した。TiC系サーメットは
超硬合金と比べると鉄との反応性が低く、耐摩耗性、仕
上面粗さ、高速加工性は優れているものの、耐熱衝撃性
、刃先強度、耐塑性変形性などの点で問題が多い。従っ
て耐欠損性が劣ることになり軽切削仕上用に限定されて
いた。
(Prior Art) Cermet alloys for tools initially started from Tic-based alloys containing TiC as a hard phase forming component. TiC-based cermets have lower reactivity with iron than cemented carbide, and although they have excellent wear resistance, surface roughness, and high-speed machinability, they have poor thermal shock resistance, edge strength, and plastic deformation resistance. There are many problems with this. Therefore, it has poor fracture resistance and is limited to light cutting finishing.

かかる欠点である耐欠損性の不足はTiNの添加により
改善されることが発見され、その後各社でTiN添加サ
ーすフトがつくられてきたが、硬質相中のTiN%を3
0%以上高くすると焼結時に脱窒現象が起き、ボアが発
生し、却って脆くなるため、質相が用いられてきた。従
って耐欠損性の改善はら荒加工およびフライス加工にま
で適用可能な比が登場してきた(例えば特開昭49−7
8609参照)。
It was discovered that the lack of fracture resistance, which is a drawback, could be improved by adding TiN, and since then various companies have produced TiN-added surfactants.
If it is increased by more than 0%, denitrification occurs during sintering, creating bores and becoming brittle, so a solid phase has been used. Therefore, ratios that can be applied to rough machining and milling with improved fracture resistance have appeared (for example, Japanese Patent Application Laid-Open No. 49-7
8609).

(発明が解決しようとする課題) しかしながら、上述のサーメットは依然として重切削や
激しい断続切削で機械的衝撃と共に熱衝撃によるサーマ
ルクランク(熱亀裂)が生じやすい。とりわけ高能率(
高送り)フライス切削においては寿命が短く、また刃先
強度の信鯨性に欠けるという欠点が尚残っており、これ
らの点を解決した高靭性サーメット合金の出現に対する
期待が機械工具業界で高まってきている。
(Problems to be Solved by the Invention) However, the above-mentioned cermet is still susceptible to thermal cranking (thermal cracking) due to thermal shock as well as mechanical shock during heavy cutting or severe interrupted cutting. Especially high efficiency (
In high-feed milling, there are still shortcomings such as short service life and lack of reliability in cutting edge strength, and expectations are growing in the machine tool industry for the emergence of high-toughness cermet alloys that solve these problems. There is.

かかる欠点を改善するにはTiNをはじめとする窒化物
の添加量を増大し、硬質相中のN含有率0.3の硬質相
を有するサーメット合金の製造技術が開発され、耐欠損
性がある程度改善された。これにより断続切削や湿式切
削が可能となり仕上かこの場合、N含有率を高めれば耐
熱衝撃性は向上するが、耐摩耗性は低下する。このため
   ≧C+N 0.5の領域では耐摩耗性の低下およびヤング率低下に
よる耐塑性変形性の低下が著しくなるため切削抵抗が増
大し刃先温度の上昇が大となり、耐熱衝撃性の向上を打
消す作用となるため却って耐欠損性が悪化する。従って
従来のように単に窒化物または炭窒化物を添加増量する
ことによる耐欠損性の改善には限界があり、これがサー
メット合金を更に強靭化する上での問題点でありまた新
しい方策が求められていた。
In order to improve this drawback, a manufacturing technology for a cermet alloy having a hard phase with an N content of 0.3 has been developed by increasing the amount of nitrides such as TiN added, and has achieved a certain degree of fracture resistance. Improved. This makes it possible to perform interrupted cutting and wet cutting, resulting in improved finishing.In this case, increasing the N content improves thermal shock resistance, but reduces wear resistance. Therefore, in the region of ≧C+N 0.5, the wear resistance and plastic deformation resistance decrease significantly due to a decrease in Young's modulus, cutting resistance increases, and the temperature at the cutting edge increases significantly, making it difficult to improve thermal shock resistance. Since it acts as an erasing effect, the fracture resistance actually worsens. Therefore, there is a limit to the conventional improvement in fracture resistance simply by adding and increasing the amount of nitride or carbonitride, and this is a problem in making cermet alloys even tougher, and new measures are required. was.

(課題を解決するための手段) 本発明は、かかる従来品の耐欠損性の限界を越えるべく
鋭意研究を行なった結果、第1図(El) 、 (A)
に示す如〈従来とは全く異なる合金構成相を得たことに
より解決の方策を見出した。
(Means for Solving the Problems) The present invention was developed as a result of intensive research to overcome the limits of fracture resistance of conventional products.
As shown in the figure, we found a solution by obtaining an alloy constituent phase that is completely different from the conventional one.

即ち低N系の炭窒化物からなる第1の硬質相と高N系の
炭窒酸化物からなる第2の硬質相をある一定の量比で混
在せしめ、あるいは結合金属相中にAjFまたはSiの
耐熱性化合物を均一分散せしめれば耐欠損性が著しく向
上するという知見を得たのである。
That is, a first hard phase consisting of a low-N carbonitride and a second hard phase consisting of a high-N carbonitride are mixed in a certain quantitative ratio, or AjF or Si is mixed in the binding metal phase. They found that fracture resistance can be significantly improved by uniformly dispersing heat-resistant compounds.

まず硬質相については第2図に示すように硬質ていくと
耐熱衝撃性は一様に向上するが、耐逃げ面摩耗性、ヤン
グ率はN含有率が50%までは徐々に低下するが、それ
以上では急激に低下する。
First, regarding the hard phase, as shown in Figure 2, as the hardness increases, thermal shock resistance uniformly improves, but flank wear resistance and Young's modulus gradually decrease until the N content reaches 50%. Above that, it drops rapidly.

このためにこれらの特性の総合性能として現われる耐欠
損性はN含有率50%までは徐々に向上するが、50%
を越えると低下傾向となるわけである。この低下を防止
して更に向上させる手段として、耐熱衝撃性を維持した
ままで耐逃げ面摩耗性の急激な低下を抑制することを企
図した。このためN含有率の異なる2種類の硬質相を用
いた。
For this reason, the fracture resistance, which appears as the overall performance of these properties, gradually improves up to 50% N content, but at 50%
If it exceeds this, there will be a downward trend. As a means to prevent this decrease and further improve it, we have attempted to suppress the rapid decrease in flank wear resistance while maintaining thermal shock resistance. For this reason, two types of hard phases with different N contents were used.

即ち二重有芯構造を有するB、型硬質相の芯部組成にお
いて、N含有率を30−01%以下の低N系のTi (
CN)からなる第1の硬質相を用いることで耐逃げ面摩
耗性、ヤング率の向上を図る。然るに低N系の硬質相が
存在することで耐熱衝撃性がN含有率50%組成の合金
より低下することとなるので、この点を次のような高N
系の第2の硬質相を設定することで補償した。
That is, in the core composition of the B type hard phase, which has a double cored structure, the N content is 30-01% or less.
By using the first hard phase consisting of CN), flank wear resistance and Young's modulus are improved. However, due to the presence of a low-N hard phase, the thermal shock resistance will be lower than that of an alloy with a 50% N content.
Compensation was made by establishing a second hard phase in the system.

即ち前記芯部組成において、N含有率70mo5%以上
の相を第2の硬質相として一定量含有させることとした
。この場合、少量含有することによりN含有率50mo
1%の一種類の硬質相からできている合金と同等以上の
耐熱特性を有するようにする必要がある。このためTi
 (CN)としてではなく 、Tic、 TiNに相互
固溶性を有しA l taxに匹敵する高温化学安定性
のあるTiOを1〜20%固溶したTi (CNO)を
芯部組成として用いた。これにより耐熱衝撃性は従来合
金のピーク値を維持すると共に化学安定性の向上を達成
した。
That is, in the core composition, a certain amount of a phase having an N content of 70mo5% or more is contained as the second hard phase. In this case, by containing a small amount, the N content can be increased to 50 mo.
It is necessary to have heat resistance properties equal to or higher than that of an alloy made of 1% of one type of hard phase. For this reason, Ti
Instead of using Ti (CN) as a core composition, Ti (CNO) in which 1 to 20% of TiO, which has mutual solid solubility in Tic and TiN and has high temperature chemical stability comparable to Al tax, was dissolved in solid solution was used. As a result, thermal shock resistance maintained the peak value of conventional alloys, and chemical stability was improved.

以上のようにして低N系のTi (CN)からなる第1
の硬質相と高N系のTi (CNO)からなる第2の硬
質相を一定量比で含有させることにより第2図に示すよ
うに耐欠損性が従来合金よりも著しく高い合金が得られ
るという驚くべき事実が判明した。
As described above, the first film made of low N-based Ti (CN)
By containing a hard phase consisting of a hard phase and a second hard phase consisting of high N-based Ti (CNO) in a fixed ratio, an alloy with significantly higher fracture resistance than conventional alloys can be obtained, as shown in Figure 2. A surprising fact has been revealed.

また第3図に示すように第2の硬質相の含有率に適正値
が存在し、全硬質相中に占める重量比で5〜20%の時
に効果かあることがわかった。
Further, as shown in FIG. 3, it was found that there is an appropriate value for the content of the second hard phase, and that it is effective when the content of the second hard phase is 5 to 20% by weight in the total hard phase.

更に耐欠損性の一段の向上を図るために結合相の強化を
企図した。従来、サーメット合金においてはAlまたは
Siの化合物は欠陥として作用し、脆化要因と考えられ
ており、添加元素としては除外されていた。然るに反応
焼結によりTiとの中間化合物として結合金属相中に一
定量分散せしめると、高温下での耐熱亀裂性の向上に著
しく寄与する知見が得られた。即ちAlまたはSiを結
合金属相中に占める重量比で0.5〜20%添加するこ
とにより、これらのAlまたはSiが前記ri(cxN
y) yまたはTi (C,N、0□)、の不定比原子
分率(1−η)に相当する過剰なTiと反応して生じた
耐熱性中間化合物、例えばTiA l :ll TiA
 l 、 Ti3A l + TiSi3゜TiSi、
 TizSi等が結合金属相中に均一に分散して存在す
ることになり、サーマルクランクの進展を阻止し従って
耐欠損性が向上すると推察できる。
Furthermore, in order to further improve fracture resistance, we attempted to strengthen the binder phase. Conventionally, Al or Si compounds have been considered to act as defects and cause embrittlement in cermet alloys, and have been excluded as additive elements. However, it has been found that when a certain amount of Ti is dispersed in the bonded metal phase as an intermediate compound with Ti by reactive sintering, it significantly contributes to improving the heat cracking resistance at high temperatures. That is, by adding 0.5 to 20% by weight of Al or Si to the bonded metal phase, these Al or Si can be added to the ri(cxN
y) A heat-resistant intermediate compound produced by reaction with an excess of Ti corresponding to the non-stoichiometric atomic fraction (1-η) of y or Ti (C, N, 0□), e.g. TiA l :ll TiA
l, Ti3A l + TiSi3°TiSi,
It can be inferred that TizSi and the like are uniformly dispersed and present in the bonded metal phase, thereby inhibiting the development of thermal crank and thus improving fracture resistance.

次に、本発明のサーメット合金において前記の如く成分
範囲を限定した理由について述べる。
Next, the reason for limiting the range of ingredients in the cermet alloy of the present invention as described above will be described.

結合金属相について 結合金属相は焼結中に液相となり、硬質相粒子を保持す
る作用をすると共に合金に靭性を付与する。この相成分
の含有量が50%未満では焼結不充分となると同時に合
金が靭性不足となる。一方、30%を越えると硬さ低下
が著しく耐摩耗性が悪くなるため5〜30%と限定した
Regarding the binder metal phase, the binder metal phase becomes a liquid phase during sintering and acts to retain the hard phase particles and imparts toughness to the alloy. If the content of this phase component is less than 50%, sintering will be insufficient and at the same time the alloy will lack toughness. On the other hand, if it exceeds 30%, the hardness decreases significantly and wear resistance deteriorates, so it is limited to 5 to 30%.

第1の硬質相−ri(cxNy)、について本硬質相は
耐摩耗性、耐塑性変形性を合金に付与し、更に焼結性の
改善を図るために設定した相である。従ってこれらの特
性が急激に悪化しない限界としてN含有率を3011O
1%以下と規定した。
Regarding the first hard phase -ri (cxNy), this hard phase is a phase set to impart wear resistance and plastic deformation resistance to the alloy and further improve sinterability. Therefore, the N content is set at 3011O as the limit at which these properties do not deteriorate rapidly.
It was defined as 1% or less.

また不定比モル分率ηについてはあまり小さいと過剰な
Ti原子が生じ合金の脆化要因となるので0.5≦η≦
1とした。
In addition, if the non-stoichiometric molar fraction η is too small, excessive Ti atoms will be generated and cause embrittlement of the alloy, so 0.5≦η≦
It was set to 1.

第2の硬質相−Ti (C,N、0−) yについて本
硬質相は耐熱衝撃性、従って耐熱亀裂性および高温化学
安定性を合金に付与するために設定した相である。本硬
質相が全硬質相中に占める重量比で5%未満の場合は、
これらの特性に対して効果がなく、また20%を越える
と耐摩耗性、焼結性が悪化するので、その含有量を全硬
質相中に占める重量比で5〜20%とした。
Regarding the second hard phase - Ti (C, N, 0-) y, this hard phase is a phase designed to impart thermal shock resistance, therefore thermal cracking resistance and high temperature chemical stability to the alloy. If the main hard phase accounts for less than 5% by weight of the total hard phase,
It has no effect on these properties, and if it exceeds 20%, wear resistance and sinterability deteriorate, so its content was set at 5 to 20% by weight in the total hard phase.

次にTiNは耐熱衝撃性に効果があるが、その含有率が
701Io1%に達しないと所定の効果が得られないの
で、N含有率を70mol!%以上とした。
Next, TiN has an effect on thermal shock resistance, but the desired effect cannot be obtained unless its content reaches 701Io1%, so the N content should be 70 mol! % or more.

またTiOは高温での化学安定性に効果があるが、その
含有量が1%未満では効果がなく、20%を越えると脆
化要因となるのでその含有量を0.01≦z≦0.2と
した。
Furthermore, TiO is effective for chemical stability at high temperatures, but it has no effect if its content is less than 1%, and if it exceeds 20% it causes embrittlement, so the content should be adjusted to 0.01≦z≦0. It was set as 2.

AlまたはSiについて これらの成分は前記Ti(CxNy)v−またはTi(
CxNyOg) yの相対的に過剰なTiと反応して耐
熱性の中間化合物を形成し、結合金属相中に均一に分散
することにより熱亀裂の進展を阻止する作用を有し、高
温下での結合相の強化に効果がある。これらの含有量が
結合金属相中に占める重量比で0.5%未満では効果が
なく20%を越えると合金を劣化させるので、その含有
量を前記重量比で0.5〜20%とした。
For Al or Si, these components are the Ti(CxNy)v- or Ti(
CxNyOg) reacts with relatively excess Ti in y to form a heat-resistant intermediate compound, which has the effect of inhibiting the propagation of thermal cracks by uniformly dispersing it in the bonded metal phase, and is Effective in strengthening the bonded phase. If the content of these components is less than 0.5% by weight in the binder metal phase, there is no effect, and if it exceeds 20%, the alloy deteriorates, so the content was set to 0.5 to 20% by weight. .

(実施例) ■ 市販の平均粒度1〜3μmの各種原料を用いて第1
表に示す本発明合金a % i 、比較合金1〜5の配
合で、有機溶媒としてアセトンを用いてボールミルにて
湿式混合し、更にパラフィンを2%添加して乾燥粉末と
した後、プレスにて成型した。これらの成型体を真空焼
結炉で1450℃。
(Example) ■ Using various commercially available raw materials with an average particle size of 1 to 3 μm, the first
The invention alloy a % i shown in the table and comparative alloys 1 to 5 were mixed wet in a ball mill using acetone as an organic solvent, and then 2% paraffin was added to form a dry powder, which was then pressed in a press. Molded. These molded bodies were heated to 1450°C in a vacuum sintering furnace.

l torr、  1 hの条件で焼結し、第1表に示
す各種合金を作成した。
Sintering was carried out under conditions of 1 torr and 1 h to produce various alloys shown in Table 1.

これらの焼結体をダイヤモンド砥石で研削し、5PGN
120308 TNのチップ形状に仕上げた。これらの
チップについて下記の条件でフライス切削テストを実施
し、欠損率を比較した。その結果本発明合金は比較合金
に比して2倍以上の耐欠損性を有する結果を得た。
These sintered bodies are ground with a diamond grindstone to form 5PGN.
Finished in a 120308 TN chip shape. A milling test was conducted on these chips under the following conditions, and the defect rates were compared. As a result, the alloy of the present invention had more than twice the fracture resistance as compared to the comparative alloy.

切削条件 v  :  1 5 0  m/5inf : 0.4
  w/rev、刃 d:2日 カッタ径=150m チップ形状: 5PGN120308 TN切削材: 
SNCM439 (100xllOx200 )■ 寿命判定:10バス/コーナにて ■ 実施例1と同様にして第2表に示す本発明合金j−
iと比較合金6〜8のチップを作成した。
Cutting conditions v: 150 m/5inf: 0.4
w/rev, blade d: 2 days Cutter diameter = 150m Chip shape: 5PGN120308 TN cutting material:
SNCM439 (100xllOx200)■ Lifespan judgment: at 10 baths/corner■ The present invention alloy j- shown in Table 2 was prepared in the same manner as in Example 1.
Chips of i and comparative alloys 6 to 8 were prepared.

これらのチップについて下記の条件で断続旋削テストを
実施し、欠損寿命を比較したところ第4図に示すような
結果を得た0本発明合金は比較合金に比べて低送り域で
は2倍以上、高送り域では1.2倍以上の欠損寿命を示
した。
Intermittent turning tests were conducted on these chips under the following conditions, and the chipping life was compared, and the results shown in Figure 4 were obtained.0 The alloy of the present invention has more than twice the cutting life in the low feed range compared to the comparative alloy. In the high feed range, the chipping life was more than 1.2 times longer.

切削条件 切削材: 545C(HB 188〜195)チップ形
状: SNMG433 切削速度:300g+/鵬in。
Cutting conditions Cutting material: 545C (HB 188-195) Chip shape: SNMG433 Cutting speed: 300g+/Pengin.

送り:  0.315  鶴/rev。Delivery: 0.315 Tsuru/rev.

切込み度:4.0鶴 ホルダー: PSDNN2525Depth of cut: 4.0 Tsuru Holder: PSDNN2525

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサーメット合金の構成相図であり、(イ)は従
来合金、([+)は本発明の実施例、(ハ)は他の実施
例を示し、第2図は本発明品と従来品のN含有率と特性
の関係図、第3図はTi (CNO)含有量と耐欠損性
の関係図、第4図は断続旋削テスト比較図である。
Figure 1 is a structural phase diagram of a cermet alloy, in which (a) shows a conventional alloy, ([+) shows an embodiment of the present invention, (c) shows another embodiment, and Fig. 2 shows a product of the present invention. Figure 3 is a diagram showing the relationship between N content and properties of conventional products, Figure 3 is a diagram showing the relationship between Ti (CNO) content and fracture resistance, and Figure 4 is a comparison diagram of interrupted turning tests.

Claims (3)

【特許請求の範囲】[Claims] (1)二重有芯構造を有するB_1型硬質相と結合金属
相とからなり、結合金属相として鉄族金属の1種または
2種以上を5〜30重量%を含有し、硬質相としてTi
とW、及びこれに周期律表第4a、5a、6a族遷移金
属の1種または2種以上を含有した炭化物、窒化物、炭
窒化物または炭窒酸化物の混合物もしくは相互固溶体化
合物を70〜95重量%含有するサーメット合金におい
て、該硬質相は、二重有芯構造の芯部組成において窒素
含有率が30mol%以下のTi(C_xN_y)_η
(但しy≦0.3、x+y=1、0.5≦η≦1)から
なる第1の硬質相と窒素含有率70mol%以上のTi
(C_xN_yO_z)_η(但しy≧0.7、x+y
+z=1、0.01≦z≦0.2、0.5≦η≦1)か
らなる第2の硬質相の2種類からなり、該第2の硬質相
が硬質相中に占める重量比で5〜20%であることを特
徴とする高靭性サーメット合金。
(1) Consisting of a B_1 type hard phase having a double cored structure and a binding metal phase, the binding metal phase contains 5 to 30% by weight of one or more iron group metals, and the hard phase contains Ti
and W, and a mixture or mutual solid solution compound of carbides, nitrides, carbonitrides, or carbonitrides containing one or more transition metals of groups 4a, 5a, and 6a of the periodic table. In the cermet alloy containing 95% by weight, the hard phase is Ti(C_xN_y)_η with a nitrogen content of 30 mol% or less in the core composition of the double cored structure.
(However, y≦0.3, x+y=1, 0.5≦η≦1) and Ti with a nitrogen content of 70 mol% or more.
(C_xN_yO_z)_η (y≧0.7, x+y
+z=1, 0.01≦z≦0.2, 0.5≦η≦1), and the weight ratio of the second hard phase in the hard phase is A high toughness cermet alloy characterized in that the toughness is 5 to 20%.
(2)前記結合金属相は、AlまたはSiを結合金属相
中に占める重量比で0.5%以上20%以下含有し、更
にこれらのAlまたはSiが前記Ti(C_xN_y)
_ηまたはTi(C_xN_yO_z)_ηの不定比原
子分率(1−η)に相当する過剰なTiと反応して生じ
た中間化合物として分散して存在している請求項1記載 の高靭性サーメット合金。
(2) The binding metal phase contains Al or Si in a weight ratio of 0.5% or more and 20% or less in the binding metal phase, and furthermore, these Al or Si contains the Ti(C_xN_y).
The high-toughness cermet alloy according to claim 1, wherein the cermet alloy is dispersed as an intermediate compound produced by reacting with excess Ti corresponding to the non-stoichiometric atomic fraction (1-η) of Ti(C_xN_yO_z)_η or Ti(C_xN_yO_z)_η.
(3)前記第1および第2の硬質層に、更に第3の硬質
相としてWC、TaC、HfC、NbCの中の1種また
は2種以上が合金中に存在する請求項1又は2記載の高
靭性サーメット合金。
(3) The first and second hard layers further include one or more of WC, TaC, HfC, and NbC as a third hard phase in the alloy. High toughness cermet alloy.
JP2036352A 1990-02-19 1990-02-19 High toughness cermet alloy Expired - Fee Related JPH0713277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2036352A JPH0713277B2 (en) 1990-02-19 1990-02-19 High toughness cermet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2036352A JPH0713277B2 (en) 1990-02-19 1990-02-19 High toughness cermet alloy

Publications (2)

Publication Number Publication Date
JPH03240929A true JPH03240929A (en) 1991-10-28
JPH0713277B2 JPH0713277B2 (en) 1995-02-15

Family

ID=12467448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2036352A Expired - Fee Related JPH0713277B2 (en) 1990-02-19 1990-02-19 High toughness cermet alloy

Country Status (1)

Country Link
JP (1) JPH0713277B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485994B1 (en) * 2002-07-23 2005-05-03 한국야금 주식회사 Ti(CN)-based cermets containing high nitrogen and manufacturing method thereof
JP2005213599A (en) * 2004-01-29 2005-08-11 Kyocera Corp TiCN-BASED CERMET AND ITS MANUFACTURING METHOD
JP2007231421A (en) * 2007-02-23 2007-09-13 Kyocera Corp TiCN-BASED CERMET
JP2009019276A (en) * 2008-08-25 2009-01-29 Kyocera Corp TiCN-BASED CERMET
JP2011038174A (en) * 2009-08-17 2011-02-24 Sumitomo Electric Ind Ltd Composite sintered compact

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485994B1 (en) * 2002-07-23 2005-05-03 한국야금 주식회사 Ti(CN)-based cermets containing high nitrogen and manufacturing method thereof
JP2005213599A (en) * 2004-01-29 2005-08-11 Kyocera Corp TiCN-BASED CERMET AND ITS MANUFACTURING METHOD
JP2007231421A (en) * 2007-02-23 2007-09-13 Kyocera Corp TiCN-BASED CERMET
JP2009019276A (en) * 2008-08-25 2009-01-29 Kyocera Corp TiCN-BASED CERMET
JP2011038174A (en) * 2009-08-17 2011-02-24 Sumitomo Electric Ind Ltd Composite sintered compact

Also Published As

Publication number Publication date
JPH0713277B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
EP0864661B1 (en) Nitrogen-containing sintered hard alloy
Tsuda History of development of cemented carbides and cermet
WO2010104094A1 (en) Cermet and coated cermet
JPS601390B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPH03240929A (en) High toughness cermet alloy
WO2006100939A1 (en) TiCN BASE CERMET AND CUTTING TOOL AND METHOD FOR MANUFACTURING CUT ARTICLE USING THE SAME
JP2009102709A (en) Cemented carbide with laminated structure, method for producing the same, and tool formed from the cemented carbide
JPH1121651A (en) Cutting tool made of surface coated cemented carbide, excellent in thermal shock resistance
JPH04231467A (en) Coated tic-base cermet
JP2004223666A (en) Cutting tool for rough machining
JPH06198504A (en) Cutting tool for high hardness sintered body
WO2023188871A1 (en) Sintered body and cutting tool
JPH0271906A (en) Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance
JPS5917176B2 (en) Sintered hard alloy with hardened surface layer
WO2012036037A1 (en) Surface coating insert made of wc-based cemented carbide
JPS644989B2 (en)
JP2982359B2 (en) Cemented carbide with excellent wear and fracture resistance
JP2668977B2 (en) Cutting tool made of tungsten carbide based cemented carbide with excellent fracture resistance
WO2023188875A1 (en) Sintered body and cutting tool
JPS6242988B2 (en)
JPH04231466A (en) Coated ticn-base cermet
JP4484500B2 (en) Surface coated cutting tool
JPH01115873A (en) Sintered form containing boron nitride of cubic system
JPH075384B2 (en) Cubic boron nitride based sintered body
JPS6245290B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees