JPH03238128A - Heat exchanger and its manufacture - Google Patents
Heat exchanger and its manufactureInfo
- Publication number
- JPH03238128A JPH03238128A JP2034957A JP3495790A JPH03238128A JP H03238128 A JPH03238128 A JP H03238128A JP 2034957 A JP2034957 A JP 2034957A JP 3495790 A JP3495790 A JP 3495790A JP H03238128 A JPH03238128 A JP H03238128A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- fin
- diameter
- heat exchanger
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052802 copper Inorganic materials 0.000 claims abstract description 25
- 239000010949 copper Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 22
- 229910052719 titanium Inorganic materials 0.000 claims description 21
- 239000010936 titanium Substances 0.000 claims description 21
- 229910052782 aluminium Inorganic materials 0.000 claims description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 19
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 7
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 claims description 7
- 239000003507 refrigerant Substances 0.000 claims description 7
- 238000005260 corrosion Methods 0.000 claims description 6
- 230000007797 corrosion Effects 0.000 claims description 6
- 238000003466 welding Methods 0.000 claims description 6
- 238000005253 cladding Methods 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000005304 joining Methods 0.000 claims 1
- 238000010622 cold drawing Methods 0.000 abstract description 2
- 239000013535 sea water Substances 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
- F28D7/106—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
- F28D7/14—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、内部を通過する流体の圧力損失が低く、しか
も効率の良い、主として液体等を冷却する場合に使用す
る熱交換器及びその製造方法に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a heat exchanger that has a low pressure loss of fluid passing through the interior and is highly efficient, and is used mainly for cooling liquids, etc., and its manufacture. Regarding the method.
第6図に海水を冷却する用途に使用する熱交換器10の
主要部の断面を示すが、図に示すようにチタン製の内管
11の外側に放射状にフィン板12が内方向に形成され
た銅製の外管13を配置し、内管11に海水を通し、外
管13と内管11との間に冷媒を通して該海水を冷却す
る構造となっていた。FIG. 6 shows a cross section of the main part of the heat exchanger 10 used for cooling seawater. As shown in the figure, fin plates 12 are formed radially inward on the outside of the inner tube 11 made of titanium. The structure was such that an outer tube 13 made of copper was disposed, seawater was passed through the inner tube 11, and a refrigerant was passed between the outer tube 13 and the inner tube 11 to cool the seawater.
上記内方向にフィン板12が放射状に形成された外管1
3は、熱間静水圧押出あるいは熱間鍛造成形によって製
造されていたので、小径管の場合には製造ができても、
大径管の場合には内側に放射状に突出するフィン板の高
さを充分に有して製造することは困難であった。Outer tube 1 in which fin plates 12 are formed radially inward
3 was manufactured by hot isostatic extrusion or hot forging, so even if small diameter pipes could be manufactured,
In the case of large-diameter pipes, it is difficult to manufacture them with sufficient height for the fin plates that project radially inward.
勿論、大径管であってもフィン板の高さが低ければ製造
可能であるが、この場合には冷媒の通る断面積が減少す
る為、圧力損失が大きくなるという問題点があった。Of course, even large-diameter pipes can be manufactured as long as the height of the fin plate is low, but in this case, the cross-sectional area through which the refrigerant passes is reduced, resulting in an increased pressure loss.
そこで、本発明者は鋭意研究の結果、上記フィン板を内
方向に備えたフィン管をアルミ(アルミ合金も含む)に
よって製造すれば、高さの高いフィン板を形成すること
が可能であることが分かった。Therefore, as a result of intensive research, the inventor of the present invention found that it is possible to form a fin plate with a high height by manufacturing the fin tube with the fin plate inward from aluminum (including aluminum alloy). I understand.
ところが、フィン管をアルミによって構成するとフレオ
ンガス等の冷媒には強いが外側から海水等がかかった場
合、含まれている塩分等で外側が腐食し易く、また、端
部の部分でアルミと異種金属との溶接が困難となるとい
う問題点があった。However, when the fin tube is made of aluminum, it is resistant to refrigerants such as Freon gas, but if it is exposed to seawater from the outside, the outside is likely to corrode due to the salt contained therein. There was a problem in that it was difficult to weld with.
本発明はこのような事情に鑑みてなされたもので、圧力
損失が低く、大型径の物も安価に製造できる、しかも従
来の熱交換器より更に効率を向上させた熱交換器及びそ
の製造方法を提供することを目的とする。The present invention has been made in view of these circumstances, and provides a heat exchanger that has low pressure loss, can be manufactured at low cost even in large diameters, and has further improved efficiency than conventional heat exchangers, and a method for manufacturing the same. The purpose is to provide
〔課題を解決するための手段]
上記目的に沿う請求の範囲第1項記載の熱交換器は、入
口部と出口部を有するチタン製の内管と、該チタン製の
内管の外側にその先端部が当接する多数のフィン板を断
面放射状に内方向に突出させたアルミ製のフィン管と、
該フィン管の外側に密着して配置されその両端には冷媒
あるいは熱媒の入口部と出口部とが夫々設けられる耐蝕
性及び溶接性の良い金属からなる外管とを有し、しかも
上記フィン板は表面に凹凸が形成され、半径方向に圧縮
されて上記内管に押し付けられて構成されている。[Means for Solving the Problems] The heat exchanger according to claim 1, which meets the above object, includes an inner tube made of titanium having an inlet portion and an outlet portion, and a titanium inner tube provided on the outside of the inner tube made of titanium. An aluminum fin tube with a number of fin plates whose tips abut and which protrude inward in a radial cross-section;
It has an outer tube made of a metal with good corrosion resistance and weldability, which is disposed in close contact with the outside of the fin tube, and has an inlet and an outlet for a refrigerant or heating medium at both ends thereof, and is made of a metal with good corrosion resistance and weldability. The plate has an uneven surface and is compressed in the radial direction and pressed against the inner tube.
また、請求の範囲第2項記載の熱交換器は、請求の範囲
第1項記載の熱交換器において、外管は鋼管であって、
該外管の両端には銅製の継手を接続し、該継手とチタン
からなる内管のシール部には、中間にチタン銅クラッド
を使用し、全体を溶接にて密着接合して構成されている
。Further, the heat exchanger according to claim 2 is the heat exchanger according to claim 1, wherein the outer tube is a steel tube,
A copper joint is connected to both ends of the outer tube, and a titanium-copper cladding is used in the middle to seal the joint and the inner tube made of titanium, and the whole is closely welded together. .
そして、請求の範囲第3項記載の熱交換器の製造方法は
、予め所定径のチタン製の内管、内部に放射状にフィン
板が形成されたアル藁製のフィン管及び銅あるいは銅合
金製の外管を製作し、まず外管の内部にフィン管を装入
しダイスに通して縮径し、次にこの縮径されたフィン管
の内部に隙間を有して上記内管を装入し、全体をダイス
に通して更に縮径し、然る後、両端に所定の継手を接合
するようにして構成されている。The method for manufacturing a heat exchanger according to claim 3 includes an inner tube made of titanium having a predetermined diameter, a finned tube made of aluminum straw having radially formed fin plates inside, and a finned tube made of copper or copper alloy. First, a finned tube is inserted into the outer tube and passed through a die to reduce its diameter.Then, the inner tube is inserted into the reduced diameter finned tube with a gap left inside. Then, the whole is passed through a die to further reduce the diameter, and then predetermined joints are joined to both ends.
また、請求の範囲第4項記載の熱交換器の製造方法は、
予め所定径のチタン製の内管、内部に放射状にフィン板
が形成されたアルミ製のフィン管及び銅あるいは銅合金
製の外管を製作し、まずフィン管に内管を装入しダイス
に通して縮径して上記フィン板を内管に押付け、次にこ
の縮径されたフィン管を外管に装入し、ダイスに通して
外管をフィン管に押圧し、然る後両端に継手を接合する
ようにして構成されている。Furthermore, the method for manufacturing a heat exchanger according to claim 4 includes:
A titanium inner tube with a predetermined diameter, an aluminum fin tube with radially formed fin plates inside, and a copper or copper alloy outer tube are manufactured in advance, and the inner tube is first inserted into the fin tube and placed in a die. The diameter is reduced through the fin plate and the fin plate is pressed against the inner tube.Then, this reduced diameter fin tube is inserted into the outer tube, and the outer tube is pressed against the fin tube through a die. It is configured to join the joints.
ここで、アルミとは純アルミ及びアルミ合金を含み、銅
には銅及び銅合金を含むものである。Here, aluminum includes pure aluminum and aluminum alloys, and copper includes copper and copper alloys.
請求の範囲第1項記載の熱交換器においては、フィン管
にアルミを使用しているので、半径方向高さが高くて表
面に凹凸を形成したフィン板を備えたフィン管を容易に
製造でき、これによって圧力損失の低下と、熱交換効率
とが向上する。In the heat exchanger according to claim 1, since aluminum is used for the fin tube, it is possible to easily manufacture a fin tube having a fin plate having a high height in the radial direction and having an uneven surface. , thereby reducing pressure loss and improving heat exchange efficiency.
そして、該フィン板は半径方向に圧縮されて内管に当接
しているので、熱伝達効率を向上することができ、更に
は該フィン管の外側には耐蝕性及び溶接性の良い金属管
からなる外管が密着して配置されているので、これによ
ってアルミ製のフィン管を保護し、防蝕性を確保する。Since the fin plate is compressed in the radial direction and is in contact with the inner tube, heat transfer efficiency can be improved, and the outer side of the fin tube is made of a metal tube with good corrosion resistance and weldability. Since the outer tubes are placed in close contact with each other, this protects the aluminum fin tube and ensures corrosion resistance.
次に、請求の範囲第2項記載の熱交換器においては、更
に外管を鋼管とし、端部に銅製の継手を接続し、該継手
と内管との接合はチタン銅クラッドを使用しているので
、外管と継手を溶接接合し、継手とチタン銅クラッドの
銅部分を溶接し、チタン銅クラッドのチタン部分と内管
とを溶接することによって外管と内管との間のシールが
完全になされる。Next, in the heat exchanger according to claim 2, the outer tube is made of a steel tube, a copper joint is connected to the end, and the joint and the inner tube are joined using a titanium-copper cladding. Therefore, by welding the outer tube and the fitting, welding the fitting and the copper part of the titanium-copper cladding, and welding the titanium part of the titanium-copper cladding to the inner tube, a seal between the outer tube and the inner tube can be created. Completely done.
請求の範囲第3項記載の熱交換器の製造方法においては
、予め内管、フィン管及び外管を製造し、まず外管にフ
ィン管を装入して、全体を縮径し、次に縮径されたフィ
ン管の内部に内管を入れて更に縮径しているので、フィ
ン板を内管に押圧状態で当接させることができ、これに
よって熱交換効率が向上する。また、フィン管にアルミ
を使用しているので、押出成形を行うことによってフィ
ン板の長いフィン管を容易に製造でき、大型の熱交換器
の製造が容易となる。In the method for manufacturing a heat exchanger according to claim 3, an inner tube, a finned tube, and an outer tube are manufactured in advance, and the finned tube is first inserted into the outer tube to reduce the diameter of the whole. Since the inner tube is placed inside the diameter-reduced fin tube to further reduce the diameter, the fin plate can be brought into contact with the inner tube in a pressed state, thereby improving heat exchange efficiency. Further, since aluminum is used for the fin tube, a fin tube with a long fin plate can be easily manufactured by extrusion molding, and a large heat exchanger can be easily manufactured.
請求の範囲第4項記載の熱交換器の製造方法においては
、フィン板が内管に押圧された状態で製造され、更にそ
の外側を外管で押圧しているので、熱交換効率が向上し
、アルミの成形が容易であるので大型の熱交換器を製造
することが可能となる。In the method for manufacturing a heat exchanger according to claim 4, the fin plate is manufactured in a state where it is pressed against the inner tube, and the outer side of the fin plate is further pressed by the outer tube, so that the heat exchange efficiency is improved. Since aluminum can be easily formed, it is possible to manufacture large heat exchangers.
〔実施例]
続いて、添付した図面を参照しつつ、本発明を具体化し
た実施例につき説明し、本発明の理解に供する。[Examples] Next, examples embodying the present invention will be described with reference to the attached drawings to provide an understanding of the present invention.
ここに、第1図は本発明の一実施例に係る熱交換器の主
要部の断面図、第2図は同熱交換器の平面図、第3図は
同熱交換器の側面図、第4図は同熱交換器の部分断面図
、第5図は同熱交換器の製造工程を示すフロー図である
。Here, FIG. 1 is a sectional view of the main parts of a heat exchanger according to an embodiment of the present invention, FIG. 2 is a plan view of the heat exchanger, FIG. 3 is a side view of the heat exchanger, and FIG. FIG. 4 is a partial sectional view of the heat exchanger, and FIG. 5 is a flow chart showing the manufacturing process of the heat exchanger.
第1図に示すように本発明の一実施例に係る熱交換器1
5は、チタン製の内管16の外側にアルミ製のフィン管
17が配置され、その外側に銅あるいは銅合金(例えば
lO%Ni90%Cu)製の外管18が配置されている
。As shown in FIG. 1, a heat exchanger 1 according to an embodiment of the present invention
5, an aluminum fin tube 17 is disposed outside an inner tube 16 made of titanium, and an outer tube 18 made of copper or a copper alloy (for example, 1O%Ni90%Cu) is disposed outside the fin tube 17.
上記フィン管17は放射状に配置され、表面には凹凸が
形成された多数のフィン板21と、該フィン板21を外
側から支持する支持管22とを有し、しかも上記フィン
板21は内管16に押圧状態で取付けられるようになっ
ている。The fin tubes 17 are arranged radially and have a large number of fin plates 21 each having an uneven surface, and a support tube 22 that supports the fin plates 21 from the outside. 16 in a pressed state.
この熱交換器15の製造方法を第5図を参照しながら説
明すると、予め所定径の外管18、内管16及び引抜き
製法にてアルご製のフィン管17を製造する。ここで、
上記フィン管17の内側のフィン板21の側面には第1
図に示すように引抜き方向に線状の凹凸が形成されてい
るものとするそして、まずフィン管17の外側に銅製の
外管18を装着する。この場合、フィン管17の外径に
対し外管18の内径を1〜2mm程度大きく製造してお
く。A method for manufacturing the heat exchanger 15 will be described with reference to FIG. 5. An outer tube 18 and an inner tube 16 having predetermined diameters and a fin tube 17 made of aluminum are manufactured in advance by a drawing method. here,
The side surface of the fin plate 21 inside the fin tube 17 has a first
Assume that linear unevenness is formed in the drawing direction as shown in the figure. First, an outer tube 18 made of copper is attached to the outside of the fin tube 17. In this case, the inner diameter of the outer tube 18 is made larger than the outer diameter of the fin tube 17 by about 1 to 2 mm.
次に、これらをこれらをダイスに通して例えば、外管の
外径が60mmである場合にはその直径を5問程度縮径
する。これによってフィン管17に外管18が密着する
。Next, these are passed through a die to reduce the diameter by about 5 mm if the outer diameter of the outer tube is 60 mm. This brings the outer tube 18 into close contact with the fin tube 17.
そして、該フィン管17の内側に内管16を挿入するが
、この場合の内管16の外径とフィン板21の内径との
間に1〜2mm程度の隙間を設けるように、その寸法を
選定する。Then, the inner tube 16 is inserted inside the fin tube 17, but its dimensions are adjusted so that there is a gap of about 1 to 2 mm between the outer diameter of the inner tube 16 and the inner diameter of the fin plate 21. Select.
この後、該内管16が挿入された状態で再度ダイスにか
けて冷間引抜きを行い全体を約51程度縮径する。これ
によってフィン板21が圧縮状態で内管16に当接する
ので、フィン板21と内管16との接触が良くなり、熱
伝導性が向上することになる。Thereafter, with the inner tube 16 inserted, it is again passed through a die and subjected to cold drawing to reduce the diameter of the entire tube by about 51 degrees. This brings the fin plate 21 into contact with the inner tube 16 in a compressed state, thereby improving the contact between the fin plate 21 and the inner tube 16 and improving thermal conductivity.
次に、該熱交換器15の端部構造を第4図を参照しなが
ら説明すると、外管18の端部に装着できる径を有する
銅または調合金製のT継手23を用意し、一端24の部
分で外管18に溶接取付けし、他端25には銅または調
合金製のレデューサ−26の一端を装着して溶接接合す
る。Next, the end structure of the heat exchanger 15 will be explained with reference to FIG. It is attached to the outer tube 18 by welding at a portion 25, and one end of a reducer 26 made of copper or a prepared alloy is attached to the other end 25 and welded to the other end 25.
そして、該レデューサ−26の他端部にはリング27を
装着すると共に、該リング27の内側に内管16が通る
ようにする。このリング27は、内側がチタン管28、
外側が銅管29となったチタン銅クラッドからなって、
内側のチタン製の内管16と溶接接合する部分30は完
全に銅が除去され、チタン同士及び銅同士が溶接できて
、完全に密封接合できるようになっている。A ring 27 is attached to the other end of the reducer 26, and the inner tube 16 is passed through the ring 27. This ring 27 has a titanium tube 28 inside,
Made of titanium copper clad with copper tube 29 on the outside,
Copper is completely removed from the part 30 to be welded to the titanium inner tube 16 on the inside, allowing titanium to titanium and copper to copper to be welded to achieve a completely hermetically sealed joint.
この熱交換器15を使用する場合には、内管16の内部
に海水等を通し、外側のフィン管17内にT継手23か
ら冷媒(例えば、フレオンガス)を流す。この場合、フ
ィン板21には凹凸が形成された表面積が増加している
ので、伝熱効率が向上すると共に、該フィン板21及び
設けられている凹凸は冷媒の進行方向に平行に形成され
ているので、流体抵抗を減少することができる。When using this heat exchanger 15, seawater or the like is passed through the inner tube 16, and a refrigerant (for example, Freon gas) is caused to flow into the outer finned tube 17 from the T-joint 23. In this case, since the surface area of the fin plate 21 with the unevenness is increased, the heat transfer efficiency is improved, and the fin plate 21 and the provided unevenness are formed parallel to the traveling direction of the refrigerant. Therefore, fluid resistance can be reduced.
また、端部にはチタン銅クラッドのリングを介して銅(
または銅合金)とチタンの溶接が行われているので、全
体を完全にシールすることができ、長期の寿命を得るこ
とができる。In addition, the end is made of copper (
or copper alloy) and titanium, the entire structure is completely sealed and has a long service life.
1
なお、上記製造方法においては、まずフィン管を外管に
入れて縮径し、次に内管を縮径されたフィン管に入れて
更に縮径したが、まずフィン管に内管を入れて縮径し、
次に外管に縮径されたフィン管を入れて更に縮径して熱
交換器を製造することもできる。1 In addition, in the above manufacturing method, first the fin tube was placed in the outer tube to reduce the diameter, and then the inner tube was placed in the reduced diameter fin tube to further reduce the diameter. to reduce the diameter,
Next, it is also possible to manufacture a heat exchanger by inserting a fin tube with a reduced diameter into the outer tube and further reducing the diameter.
請求の範囲第1項記載の熱交換器は、以上の説明からも
明らかなように、内管の外側に配置されているフィン板
に凹凸が形成され、しかも抑圧状態で内管に接している
ので、熱交換効率が向上する。As is clear from the above description, in the heat exchanger according to claim 1, unevenness is formed on the fin plate disposed on the outside of the inner tube, and the fin plate is in contact with the inner tube in a suppressed state. Therefore, heat exchange efficiency is improved.
また、上記フィン板が設けられているフィン管をアルミ
によって構成しているので、押出成形が容易となり、大
径の熱交換器であっても、フィン板の長さを充分に確保
し、しかもその表面に凹凸を設けて製造できる。In addition, since the fin tube in which the fin plate is provided is made of aluminum, extrusion molding is easy, and even in a large-diameter heat exchanger, a sufficient length of the fin plate can be ensured. It can be manufactured by providing irregularities on its surface.
そして、アル竜で製造したフィン管の外側には耐蝕性及
び溶接性の良い金属からなる外管を密着配置しているの
で、内側のアルミからなるフィン2
管の保護を図ることができると共に、その端部に継手を
容易に溶接接合することができる。In addition, since the outer tube made of a metal with good corrosion resistance and weldability is closely placed on the outside of the finned tube manufactured by Aruryu, it is possible to protect the inner finned tube made of aluminum. A joint can be easily welded to the end.
請求の範囲第2項記載の熱交換器においては、外管を銅
及び端部の継手を銅によって構威し、チタンからなる内
管との接合は中間にチタン銅クランドを使用しているの
で、チタン同士及び銅同士を溶接することによってシー
ルができるので、製造が安価となり、更にはシールを完
全に行うことが可能となった。In the heat exchanger according to claim 2, the outer tube is made of copper and the joints at the ends are made of copper, and the titanium-copper crund is used in the middle to connect it to the inner tube made of titanium. Since sealing can be achieved by welding titanium to titanium and copper to copper, manufacturing is inexpensive and furthermore, it has become possible to achieve complete sealing.
また、請求の範囲第3項及び第4項記載の熱交換器の製
造方法においては、フィン管がアルミ製であるので、長
いフィン板を有するフィン管を容易に製造でき、更には
これらを組み合わせてダイスに通すことで、内管に体す
るフィン板の押圧力が増加し、伝熱効率が向上すると共
に、縮径された外管の押圧力がフィン管に伝わり、フィ
ン管が薄い場合であっても、確実にフィン板を外管の押
圧力でチタン製の内管に押し付けることができる第1図
は本発明の一実施例に係る熱交換器の主要部の断面図、
第2図は同熱交換器の平面図、第3図は同熱交換器の側
面図、第4図は同熱交換器の部分断面図、第5図は同熱
交換器の製造工程を示すフロー図、第6図は従来例に係
る熱交換器の主要部断面図である。Further, in the method for manufacturing a heat exchanger according to claims 3 and 4, since the fin tube is made of aluminum, it is possible to easily manufacture a fin tube having long fin plates, and furthermore, it is possible to easily manufacture a fin tube having long fin plates. By passing it through the die, the pressing force of the fin plate attached to the inner tube increases, improving heat transfer efficiency, and the pressing force of the reduced diameter outer tube is transmitted to the fin tube. Figure 1 is a sectional view of the main part of a heat exchanger according to an embodiment of the present invention.
Figure 2 is a plan view of the heat exchanger, Figure 3 is a side view of the heat exchanger, Figure 4 is a partial sectional view of the heat exchanger, and Figure 5 shows the manufacturing process of the heat exchanger. The flowchart and FIG. 6 are sectional views of main parts of a conventional heat exchanger.
Claims (4)
タン製の内管の外側にその先端部が当接する多数のフィ
ン板を断面放射状に内方向に突出させたアルミ製のフィ
ン管と、該フィン管の外側に密着して配置されその両端
には冷媒の入口部と出口部とが夫々設けられる耐蝕性及
び溶接性の良い金属からなる外管とを有し、しかも上記
フィン板は表面に凹凸が形成され、半径方向に圧縮され
て上記内管に押し付けられていることを特徴とする熱交
換器。(1) Aluminum fins with a titanium inner tube having an inlet and an outlet, and a number of fin plates whose tips abut against the outside of the titanium inner tube, projecting inward in a radial cross-section. a tube, and an outer tube made of a metal with good corrosion resistance and weldability, which is disposed in close contact with the outside of the finned tube and has an inlet and an outlet for the refrigerant at both ends, respectively. A heat exchanger characterized in that the plate has irregularities formed on its surface and is compressed in the radial direction and pressed against the inner tube.
手を接続し、該継手とチタンからなる内管のシール部に
は、中間にチタン銅クラッドを使用し、全体を溶接にて
密着接合している請求の範囲第1項記載の熱交換器。(2) The outer tube is a copper tube, and copper fittings are connected to both ends of the outer tube, and a titanium-copper cladding is used in the middle to seal the fitting and the inner tube made of titanium. 2. The heat exchanger according to claim 1, wherein the heat exchanger is closely joined by welding.
ィン板が形成されたアルミ製のフィン管及び銅あるいは
銅合金製の外管を製作し、まず外管の内部にフィン管を
装入しダイスに通して縮径し、次にこの縮径されたフィ
ン管の内部に隙間を有して上記内管を装入し、全体をダ
イスに通して更に縮径し、然る後、両端に所定の継手を
接合することを特徴とする熱交換器の製造方法。(3) Prepare in advance a titanium inner tube with a predetermined diameter, an aluminum fin tube with radially formed fin plates inside, and a copper or copper alloy outer tube, and first place the fin tube inside the outer tube. The tube is charged and passed through a die to reduce its diameter, and then the inner tube is inserted into the reduced diameter fin tube with a gap left inside, and the entire tube is passed through a die to further reduce its diameter. , a method for manufacturing a heat exchanger, characterized by joining predetermined joints to both ends.
ィン板が形成されたアルミ製のフィン管及び銅あるいは
銅合金製の外管を製作し、まずフィン管に内管を装入し
ダイスに通して縮径して上記フィン板を内管に押付け、
次にこの縮径されたフィン管を外管に装入し、ダイスに
通して外管をフィン管に押圧し、然る後両端に継手を接
合することを特徴とする熱交換器の製造方法。(4) Prepare a titanium inner tube with a predetermined diameter, an aluminum fin tube with radially formed fin plates inside, and a copper or copper alloy outer tube, and first insert the inner tube into the fin tube. The diameter of the fin plate is reduced by passing it through a die, and the fin plate is pressed against the inner tube.
Next, this reduced diameter finned tube is charged into an outer tube, passed through a die to press the outer tube against the finned tube, and after that, joints are joined to both ends of the heat exchanger manufacturing method. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2034957A JPH03238128A (en) | 1990-02-14 | 1990-02-14 | Heat exchanger and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2034957A JPH03238128A (en) | 1990-02-14 | 1990-02-14 | Heat exchanger and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03238128A true JPH03238128A (en) | 1991-10-23 |
JPH0474099B2 JPH0474099B2 (en) | 1992-11-25 |
Family
ID=12428635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2034957A Granted JPH03238128A (en) | 1990-02-14 | 1990-02-14 | Heat exchanger and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03238128A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05244690A (en) * | 1992-02-29 | 1993-09-21 | Nippon Dempa Kogyo Co Ltd | Ultrasonic probe |
JPH05244693A (en) * | 1992-02-29 | 1993-09-21 | Nippon Dempa Kogyo Co Ltd | Ultrasonic probe |
KR20010085019A (en) * | 2001-07-19 | 2001-09-07 | 민영경 | Air-cooled of water-cooied a muftipie furit utilization heat exchanger |
JP2010503817A (en) * | 2006-09-19 | 2010-02-04 | ベール ゲーエムベーハー ウント コー カーゲー | Heat exchanger for internal combustion engines |
JP2011027396A (en) * | 2009-06-30 | 2011-02-10 | Showa Denko Kk | Double-wall-tube heat exchanger |
JP2012149798A (en) * | 2011-01-18 | 2012-08-09 | Tokyo Gas Co Ltd | Heat exchanger with combustor for heating fluid |
WO2015033542A1 (en) * | 2013-09-04 | 2015-03-12 | パナソニックIpマネジメント株式会社 | Heat exchanger and cooling device using same |
US20160348988A1 (en) * | 2015-05-28 | 2016-12-01 | Dometic Sweden Ab | Corrosion Resistant Coaxial Heat Exchanger Assembly |
EP3336474A1 (en) * | 2016-12-16 | 2018-06-20 | HS Marston Aerospace Limited | Heat exchanger |
WO2018138906A1 (en) * | 2017-01-30 | 2018-08-02 | 三菱電機株式会社 | Heat exchanger and heat pump water heater |
-
1990
- 1990-02-14 JP JP2034957A patent/JPH03238128A/en active Granted
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05244693A (en) * | 1992-02-29 | 1993-09-21 | Nippon Dempa Kogyo Co Ltd | Ultrasonic probe |
JPH05244690A (en) * | 1992-02-29 | 1993-09-21 | Nippon Dempa Kogyo Co Ltd | Ultrasonic probe |
KR20010085019A (en) * | 2001-07-19 | 2001-09-07 | 민영경 | Air-cooled of water-cooied a muftipie furit utilization heat exchanger |
JP2010503817A (en) * | 2006-09-19 | 2010-02-04 | ベール ゲーエムベーハー ウント コー カーゲー | Heat exchanger for internal combustion engines |
JP2011027396A (en) * | 2009-06-30 | 2011-02-10 | Showa Denko Kk | Double-wall-tube heat exchanger |
JP2012149798A (en) * | 2011-01-18 | 2012-08-09 | Tokyo Gas Co Ltd | Heat exchanger with combustor for heating fluid |
JPWO2015033542A1 (en) * | 2013-09-04 | 2017-03-02 | パナソニックIpマネジメント株式会社 | Heat exchanger and cooling device using the same |
WO2015033542A1 (en) * | 2013-09-04 | 2015-03-12 | パナソニックIpマネジメント株式会社 | Heat exchanger and cooling device using same |
CN104956175A (en) * | 2013-09-04 | 2015-09-30 | 松下知识产权经营株式会社 | Heat exchanger and cooling device using same |
CN104956175B (en) * | 2013-09-04 | 2017-12-22 | 松下知识产权经营株式会社 | Heat exchanger and use its cooling device |
US20160348988A1 (en) * | 2015-05-28 | 2016-12-01 | Dometic Sweden Ab | Corrosion Resistant Coaxial Heat Exchanger Assembly |
WO2016189520A3 (en) * | 2015-05-28 | 2017-03-02 | Dometic Sweden Ab | Corrosion resistant coaxial heat exchanger assembly |
US10508867B2 (en) | 2015-05-28 | 2019-12-17 | Dometic Sweden Ab | Corrosion resistant coaxial heat exchanger assembly |
EP4321828A3 (en) * | 2015-05-28 | 2024-04-17 | Dometic Sweden AB | Corrosion resistant coaxial heat exchanger assembly |
EP3336474A1 (en) * | 2016-12-16 | 2018-06-20 | HS Marston Aerospace Limited | Heat exchanger |
WO2018138906A1 (en) * | 2017-01-30 | 2018-08-02 | 三菱電機株式会社 | Heat exchanger and heat pump water heater |
Also Published As
Publication number | Publication date |
---|---|
JPH0474099B2 (en) | 1992-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11415381B2 (en) | Heat exchanger with aluminum tubes rolled into an aluminum tube support | |
JPS62207572A (en) | Production of heat exchanger | |
US20100044023A1 (en) | Heat exchanger systems & fabrication methods | |
CN110553533A (en) | Connecting structure of porous flat tube and tube plate of aluminum air cooler | |
GB2591972A (en) | Ribbed tubeless heat exchanger for fluid heating systems including a rib component and methods of manufacture thereof | |
JPH03238128A (en) | Heat exchanger and its manufacture | |
JP2001523577A (en) | How to assemble a heat exchanger | |
EP0561514B1 (en) | Method of making a pipe connection | |
JPH03251686A (en) | Heat exchanger | |
CN111121506A (en) | Novel spiral plate type heat exchanger | |
US4381033A (en) | Header construction | |
JP2590250Y2 (en) | Heat exchanger | |
JPH0316590B2 (en) | ||
US20050155748A1 (en) | Concentric tube heat exchanger end seal therefor | |
CN106225523A (en) | Alternating flow heat exchanger | |
US20050279488A1 (en) | Multiple-channel conduit with separate wall elements | |
CN210833213U (en) | Connecting structure of porous flat tube and tube plate of aluminum air cooler | |
JP2002162177A (en) | Heat exchanger element | |
JP7203097B2 (en) | tube joint | |
CA2439023C (en) | Concentric tube heat exchanger and end seal therefor | |
CN216523335U (en) | Copper alloy micro-channel tube of air-conditioning refrigeration heat exchanger | |
KR20060086921A (en) | Heat exchanger header pipe | |
JP2590249Y2 (en) | Heat exchanger | |
CN211503327U (en) | Micro-channel pipeline heat exchanger | |
CN222364461U (en) | A small diameter composite aluminum tube |