JPH03236698A - Picture generating device for both eye stereoscopic view - Google Patents

Picture generating device for both eye stereoscopic view

Info

Publication number
JPH03236698A
JPH03236698A JP2033069A JP3306990A JPH03236698A JP H03236698 A JPH03236698 A JP H03236698A JP 2033069 A JP2033069 A JP 2033069A JP 3306990 A JP3306990 A JP 3306990A JP H03236698 A JPH03236698 A JP H03236698A
Authority
JP
Japan
Prior art keywords
distance
viewpoint
interval
visual point
cameras
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2033069A
Other languages
Japanese (ja)
Inventor
Takashi Kawakami
隆 川上
Yoshinori Masuya
桝屋 善則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2033069A priority Critical patent/JPH03236698A/en
Publication of JPH03236698A publication Critical patent/JPH03236698A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To observe an easy to see picture at all times by a both-eye stereoscopic view even when the distance from the visual point of left/right eye camera to an object is fluctuated by devising the device such that an interval between left/right visual points is always an optimum value in response to the distance from the visual point of left/right eye camera to an object. CONSTITUTION:A distance calculation means 13 receives an object data and a visual point position of a left/right eye camera from an object data transmission means 11 and a visual point position input means 12 respectively to calculate a distance V between the visual point of the camera and an object. Then the distance V obtained by the calculation is fed to a visual point interval calculation means 14, which calculates left/right visual point interval of the left/right eye camera in response to the distance V. When the interval between the left and right visual points is calculated, a picture of an object based on the interval between the left and right visual points is displayed stereoscopically on a display means 15. Thus, a prescribed parallax is ensured and the both eye stereoscopic view of an object picture is always brought into easy to see state.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、2台の左右眼用ステレオカメラ(以下、単
にカメラという)によって物体を立体的画像として提示
して、立体感を認識させるための画像生成装置に関する
[Detailed Description of the Invention] (Industrial Application Field) This invention presents an object as a three-dimensional image using two stereo cameras for left and right eyes (hereinafter simply referred to as cameras), so that a three-dimensional effect can be recognized. The present invention relates to an image generation device.

(従来の技術〉 従来の画像生成装置としては、例えば第6図に示すよう
なものがある。すなわち、第6図(a)は2台のカメラ
la、lbで物体Pを撮影するときの状態を示したもの
であり、また、第6図(b)はカメラla、lbで撮影
された立体画像SR。
(Prior art) For example, there is a conventional image generation device as shown in FIG. 6. In other words, FIG. 6(a) shows the state when an object P is photographed with two cameras la and lb. 6(b) is a stereoscopic image SR taken by cameras la and lb.

SLを観察者3が観察するときの状態をモデル的に示し
たものである。
This is a model representation of the state when the observer 3 observes the SL.

第6図(a)において、左眼用カメラ1aと右眼用カメ
ラ1bは、人間の両眼間隔と対応する一定の左右視点間
隔Iに相互離間させ、仮想スクリーン2の上に両カメラ
la、lbの光軸が交差するように設置される。この状
態で物体Pをカメラla、lbで撮影し、これにより両
眼用の立体画像を得る。なお、この方式による画像生成
は、コンピュータ・グラフィックス(CG)によって画
像を生成する場合にも同様に適用される。
In FIG. 6(a), the left-eye camera 1a and the right-eye camera 1b are spaced apart from each other by a constant left-right viewpoint interval I corresponding to the distance between human eyes, and both cameras la, They are installed so that the optical axes of the lbs intersect. In this state, the object P is photographed by the cameras la and lb, thereby obtaining a binocular stereoscopic image. Note that image generation using this method is similarly applied to the case where an image is generated using computer graphics (CG).

次に、このようにして得られた両眼用の画像を、第6図
(b)に示すようにスクリーン4−L、に表示し、観察
者3は右眼用の画像SRを右眼だけで、また左眼用の画
像SLを左眼だけで観察することにより、スクリーン4
手前の空間l二に物体Pが立体的画像として再現される
Next, the binocular images obtained in this way are displayed on the screen 4-L as shown in FIG. Then, by observing the image SL for the left eye only with the left eye, the screen 4
The object P is reproduced as a three-dimensional image in the space l2 in the foreground.

(発明が解決しようとする課題) しかしながら、このような従来の画像生成装置にあって
は、物体Pの位置にかかわらずカメラ1aと1b間の間
隔、すなわち左右視点間隔Iは常に一定値に固定されて
いたため、物体Pとカメラla、lb間の距離Vが変化
したとき、例えば物体Pがカメラla、lbの視点側に
近付いた場合、生成画像SRとSL間の距離である視差
eが増大する。その結果、観察者3による両眼立体視が
困難となるとともに、眼の疲労感も著しく増大する。
(Problem to be Solved by the Invention) However, in such a conventional image generation device, the distance between the cameras 1a and 1b, that is, the left and right viewpoint distance I, is always fixed to a constant value regardless of the position of the object P. Therefore, when the distance V between the object P and the cameras la and lb changes, for example when the object P approaches the viewpoint side of the cameras la and lb, the parallax e, which is the distance between the generated images SR and SL, increases. do. As a result, binocular stereoscopic viewing becomes difficult for the observer 3, and the feeling of eye fatigue increases significantly.

ちなみに、立体視可能な視差eの限界は、一般に画角θ
に対して1度程度である。
By the way, the limit of the parallax e that can be viewed stereoscopically is generally determined by the angle of view θ
It is about 1 degree.

ところで、上記した立体視の応用は近年特に盛んとなり
、かかる状況下において、視差eの増加に伴う眼の疲労
は大きな問題となりつつある。この視差eの変化は物体
Pの動きが激しい娯楽用の立体視などにおいて大きく、
このため通常の立体映画では上映時間を15分〜20分
以内に抑制することで、過度の眼の疲労を避けているの
が実情である。
Incidentally, applications of the above-mentioned stereoscopic vision have become particularly popular in recent years, and under such circumstances, eye fatigue due to an increase in parallax e is becoming a major problem. This change in parallax e is large in entertainment stereoscopic viewing where the object P moves rapidly,
For this reason, the reality is that the running time of typical stereoscopic movies is limited to 15 to 20 minutes to avoid excessive eye fatigue.

また、立体視をCADデータの表示に用いた場合は、通
常、立体視の観察が長時間に及ぶばかりではなく、左右
眼用カメラの視点も物体に近付ける拡大表示などの千法
が頻繁に行われるため、眼の疲労が重大な問題となって
いる。
Furthermore, when stereoscopic vision is used to display CAD data, not only does stereoscopic observation usually take a long time, but many methods such as enlarging and displaying the viewpoints of the left and right cameras closer to the object are frequently performed. eye fatigue is a serious problem.

この発明は、このような従来の問題点に着目してなされ
たもので、その目的は、視点と物体との距#(V)に応
じて左右視点間隔(1)を変化させることにより、立体
視による画像を見やすくして眼の疲労を低減できる、両
眼立体視の画像生成装置を提供することにある。
This invention was made by focusing on such conventional problems, and its purpose is to change the distance between left and right viewpoints (1) according to the distance #(V) between the viewpoint and the object. An object of the present invention is to provide a binocular stereoscopic image generation device that can make images easier to see and reduce eye fatigue.

(課題を解決するための手段) この発明は、」−記のようなU的を達成するため、表示
する物体のデータを送出する物体データ送出手段と、−
に記物体に対する一対の左右眼用カメラの視点位置を入
力する視点位置入力手段と、上記視点位置に基づいてL
記カメラの視点と物体間の距離を演算する距離演算手段
と、上記距離に応じた一対のカメラの左右視点間隔を演
算する視点間隔演算手段と、この左右視点間隔に基づい
て物体データを表示する表示手段と、を備えることを特
徴とする。
(Means for Solving the Problems) In order to achieve the U objective as described above, the present invention provides an object data transmitting means for transmitting data of an object to be displayed;
a viewpoint position input means for inputting the viewpoint positions of the pair of left and right cameras with respect to the object;
distance calculation means for calculating the distance between the viewpoint of the camera and the object; viewpoint interval calculation means for calculating the distance between the left and right viewpoints of the pair of cameras according to the distance; and displaying object data based on the distance between the left and right viewpoints. It is characterized by comprising a display means.

(作用) この発明の作用を、第1図のクレーム対応図で説明する
と、距離演算手段13には物体データ送出手段11.視
点位置入力手段12よりそれぞれ物体データ、左右眼用
カメラの視点付置が入力され、該カメラの視点と物体間
の距離Vが演算される。次いで、この演算により得られ
た距離Vは視点間隔演算手段14に送られ、距離Vに応
じた左右眼用カメラの左右視点間隔Iが演算される。そ
の後、左右視点間隔Iが演算されると、表示手段15に
おいて、この左右視点間隔■に基づいた物体の画像が立
体的に表示される。
(Operation) The operation of the present invention will be explained with reference to the claim correspondence diagram in FIG. Object data and the viewpoint placement of the left and right cameras are respectively input from the viewpoint position input means 12, and the distance V between the viewpoint of the camera and the object is calculated. Next, the distance V obtained by this calculation is sent to the viewpoint distance calculation means 14, and the left and right viewpoint distance I of the left and right cameras is calculated according to the distance V. Thereafter, when the left and right viewpoint distance I is calculated, an image of the object based on this left and right viewpoint distance I is displayed three-dimensionally on the display means 15.

したがって、いまに記カメラから物体までの距離Vが変
化すると、それに応じて左右視点間隔■が変化し、1−
記距離Vと左右視点間隔■との化生は一定の餡に保たれ
る。すなわち、L記視点と物体との離間距離Vに応じて
、カメラの左右視点間隔Iが変化することにより、視差
eの量は常に一定となるようにW4繁される。これによ
り、カメラと物体との相対信置の変化に伴い、上記距離
Vがある値よりも石くなっても、一定の視差eが確保さ
れるため、観察者による物体画像の両眼立体視が常に見
やすいものとなり、眼の疲労感が低減する。
Therefore, when the distance V from the camera to the object changes, the left and right viewpoint distance ■ changes accordingly, and 1-
The variation between the recording distance V and the left and right viewpoint distance ■ is kept constant. That is, by changing the distance I between the left and right viewpoints of the camera in accordance with the distance V between the L viewpoint and the object, the amount of parallax e is adjusted so that it is always constant. As a result, even if the distance V becomes smaller than a certain value due to a change in the relative trust between the camera and the object, a constant parallax e is ensured, so that the observer can see the object image in binocular stereoscopic view. is always easy to see, reducing eye fatigue.

(実施例) 以下、この発明の一実施例を図面に基づいて説明すると
、第1図は、この実施例を示す青赤メガネ方式立体視画
像生成装置のブロック図である。
(Embodiment) Hereinafter, an embodiment of the present invention will be described based on the drawings. FIG. 1 is a block diagram of a blue-red glasses type stereoscopic image generation device showing this embodiment.

この図において、11は表示する物体のデータを送出す
る物体データ送出手段で、ここでは物体のデータは路面
や壁等を含む「車」のデータである。12は物体に対す
る一対の左右眼用カメラの視点位置を入力設定する視点
(%″1.式入力乎段で、表示物体としての車を、例え
ば前方5mのところMlから見る、側方12mのところ
M2から見る、−に方7mのところM3から見る、等の
視点位式入力が行われるものである(第3B図参照)。
In this figure, reference numeral 11 denotes object data sending means for sending out data on objects to be displayed, and here the object data is data on a "car" including road surfaces, walls, etc. 12 is a viewpoint for inputting and setting the viewpoint position of the pair of left and right cameras with respect to the object (%"1. In the formula input step, the car as a display object is, for example, 5 m in front when viewed from M1, and 12 m to the side. Viewpoint positions such as viewing from M2, viewing from M3 at 7 meters in the negative direction, etc. are entered (see Figure 3B).

ただし、この場合の視点位置入力方式は、例えば「7m
」等の数字がデジタル的に入力されるのではなく、「前
方スイッチ」を抑し続けることによって、3 m −”
 4 m −5mとアナログ的に変化するように入力さ
れるものである。
However, the viewpoint position input method in this case is, for example, "7m
” etc. are not entered digitally, but by holding down the “front switch”, 3 m −”
It is input so that it changes analogously from 4 m to 5 m.

16は、距離演算手段13と視点間隔演算手段14が内
蔵された制御装置としてのコンピュータで、距離演算手
段13はL記視点ず1″/、首に基づいて、第3A図に
示される左右眼用カメラla、lb間の中点M、すなわ
ち視点と物体10間の距離Vを演算するものである。ま
た、視点間隔演算手段14は、演算して得られた上記距
1llVに基づいて左右視点間隔■を演算するものであ
る。このコンピュータ16には、CRT等の表示手段1
5が接続され、左右視点間隔■に基づいた物体1oのブ
タ表示が可能になっている。
Reference numeral 16 denotes a computer as a control device in which a distance calculation means 13 and a viewpoint interval calculation means 14 are built in, and the distance calculation means 13 calculates the left and right eyes as shown in FIG. This is to calculate the midpoint M between the cameras la and lb, that is, the distance V between the viewpoint and the object 10.The viewpoint interval calculation means 14 also calculates the distance between the left and right viewpoints based on the distance 1llV obtained by the calculation. This computer 16 has a display means 1 such as a CRT.
5 is connected, and it is possible to display the object 1o as a pig based on the left and right viewpoint distance ■.

第2図は、本例に係る青赤メガネ方式による画像生成装
置を示すハードウェアの斜視図で、コンピユータ16内
部で計算した結果は、左眼用図形6a、右眼用図形6b
としてそれぞれ青色、赤色で表示1段15−1−に表示
できるようになされている。これら両図形6a、6bは
、観察者3が観察用の青赤メガネ7を通して見ることに
よって、相互分離して観察できるようになっている。
FIG. 2 is a perspective view of the hardware showing the image generation device using the blue-red glasses method according to the present example.
They can be displayed in blue and red respectively on one display stage 15-1-. These figures 6a and 6b can be observed separately from each other by the observer 3 looking through blue-red viewing glasses 7.

次に、この実施例の作用を、第3A図を参照しながら説
明する。
Next, the operation of this embodiment will be explained with reference to FIG. 3A.

3次元グラフィックス技法において、コンピュータ16
で立体図形を表示するには、通常、計算機内部にワール
ド庫標と呼ばれる3次元XYz系直交塵標を設定し、そ
の任意の座標付置に、物体10、カメラ1a、1bの視
点9a、  9b、および投影面8a、8bなどを配改
する。そして、物体10の谷構成点が2次元の投影面8
a、8bLにどのように投影されるかを、視点9a、9
bと物体10との位茄関係から計算し、その計算結果を
表示す段15に表示する。この場合、両眼で立体視を行
うのに必要な左眼、右眼用図形6a、6bを得るために
は、一対のカメラla、lbの各視点9a、9bから物
体10を見た状態を青色。
In three-dimensional graphics techniques, computers16
To display a three-dimensional figure, a three-dimensional XYZ orthogonal figure called a world reference is usually set inside the computer, and the viewpoints 9a, 9b of the object 10, cameras 1a, 1b, And the projection surfaces 8a, 8b, etc. are rearranged. Then, the valley constituent points of the object 10 are the two-dimensional projection plane 8
Viewpoints 9a, 9 how it is projected onto a, 8bL
It is calculated from the positional relationship between b and the object 10, and the calculation result is displayed on the display stage 15. In this case, in order to obtain the left-eye and right-eye figures 6a and 6b necessary for binocular stereoscopic vision, the object 10 must be viewed from each of the viewpoints 9a and 9b of the pair of cameras la and lb. Blue.

赤色でそれぞれカラー表示すればよい。Each can be displayed in red.

この発明では、釘明な両眼立体視を可能にするため、ま
ず上記両視点9a、9bの中点Mから物体10までの距
離Vを計算し、この値を定数にで割った値を左右視点間
隔■とする。本発明者らの実験結果によれば、常に見や
すい立体像を観察するには、Kの値を30程度に決めれ
ばよい、ということが判明している。したがって、次式
%式% で得られる値を左右視点間隔■とする。このようにして
算出された左右視点間隔■を常に保つように、一対のカ
メラla、lbのf1″1.改が制御される。
In this invention, in order to enable clear binocular stereoscopic vision, first calculate the distance V from the midpoint M of both viewpoints 9a and 9b to the object 10, and divide this value by a constant for the left and right sides. Let the viewpoint interval be ■. According to the experimental results of the present inventors, it has been found that the value of K should be set to about 30 in order to observe a stereoscopic image that is always easy to see. Therefore, the value obtained from the following formula % is defined as the left and right viewpoint interval ■. The f1''1. change of the pair of cameras la and lb is controlled so as to always maintain the left and right viewpoint distance {circle around (2)} calculated in this way.

例えば、物体10とカメラla、lbの視点9a、9b
間の距離Vが小さくなった場合は、それに比例して左右
視点間隔Iが小さくなるように、一対のカメラla、l
bが互いに接近し、逆に上記距離Vが大きくなった場合
は、それに比例して左右視点間隔■が大きくなるように
、一対のカメラla、lbが互いに離反する。
For example, the viewpoints 9a and 9b of the object 10 and cameras la and lb
When the distance V between them decreases, the pair of cameras la and l
When the distances V become closer to each other and the distance V becomes larger, the pair of cameras la and lb move away from each other so that the left and right viewpoint interval (2) becomes larger in proportion to the distance V.

第4図は、上記カメラla、lbの視点9a。FIG. 4 shows the viewpoint 9a of the cameras la and lb.

9bと立体画像の幾何学的関係を示したモデル図で、カ
メラla、lbの左右視点間隔を■、スクリーン4での
画像SLとSRの距離、すなわち視差をe、スクリーン
4から物体10までの距離をd、スクリーン4から視点
9a、9bまでの距離をDとした場合、次の関係式が成
り立つ。
9b is a model diagram showing the geometrical relationship between the three-dimensional image. The distance between the left and right viewpoints of cameras la and lb is ■, the distance between images SL and SR on screen 4, that is, the parallax is e, and the distance from screen 4 to object 10 is When the distance is d and the distance from the screen 4 to the viewpoints 9a and 9b is D, the following relational expression holds true.

d=ed/ (1+e)      (1)この式(1
)からも明らかなように、物体10を視点9a、9b側
に相対的に近付けて、物体10のスクリーン4からの突
き出し量を大きくするためには、視差eを大きくしなけ
ればならず、従来はこれに起因して立体視が見えにくい
ものとなっていた。
d=ed/ (1+e) (1) This formula (1
), in order to bring the object 10 relatively closer to the viewpoints 9a and 9b and increase the amount of protrusion of the object 10 from the screen 4, it is necessary to increase the parallax e. Due to this, stereoscopic vision was difficult to see.

しかし、この発明では−lユ述のように、物体10とカ
メラla、lbのいずれか一方が他方に対して相対的に
接近、離反しても、生成画像に対する視差eが一定に保
たれる。その結果、この発明によれば、常に見やすい状
態で両眼立体視を行うことができる。
However, in this invention, as described in -l, even if the object 10 and either the cameras la or lb approach or move away from the other, the parallax e with respect to the generated image is kept constant. . As a result, according to the present invention, binocular stereoscopic viewing can be performed in a state where it is always easy to see.

第5図のフローチャートは、コンピュータグラフィック
スにより作成した車等の物体を見るときの視点ず1″1
.置を、視点位置入力手段12で少しずつ時々刻々と変
化させることにより、立体アニメーションを製作する場
合における左右視点間隔■の決定手順を示したものであ
る。
The flowchart in Figure 5 shows the viewpoint 1"1 when looking at an object such as a car created using computer graphics.
.. This figure shows a procedure for determining the left and right viewpoint distance (2) when producing a three-dimensional animation by changing the viewpoint position little by little from time to time using the viewpoint position input means 12.

この図において、まず物体に対する一体のカメラの視点
を決定しくステップ1)、この決定された視点位置に基
づいて物体と視点間の距離V、を算出する(ステップ2
)。次に、得られた距離V1を用いて、演算式1+=V
+/100により左右視点間隔■、を算出しくステップ
3)、この算出値に基づいて左右視点の付置調整を決定
する(ステップ4)。
In this figure, first, the viewpoint of the integrated camera with respect to the object is determined (Step 1), and the distance V between the object and the viewpoint is calculated based on the determined viewpoint position (Step 2).
). Next, using the obtained distance V1, the calculation formula 1+=V
+/100 to calculate the left and right viewpoint interval {circle around (2)} (step 3), and based on this calculated value, determine the placement adjustment of the left and right viewpoints (step 4).

その後、視点変化によって−り記物体と視点間の距離が
Vlからv2に変化したときは(ステップ5)、再び演
算式■2=V2/100により左右視点間隔!2を算出
しくステップ6)、この算出値に基づいて左右視点の付
置変化を行う。さらにこの後、視点変化により物体と視
点間の距離がV2からV3に変化したときは、ステップ
5に戻り、上記したステップ6.7の動作を順次繰り返
す。
After that, when the distance between the recorded object and the viewpoint changes from Vl to v2 due to a viewpoint change (step 5), the left and right viewpoint distance is calculated again using the calculation formula 2=V2/100. Step 6), the position of the left and right viewpoints is changed based on this calculated value. Furthermore, after this, when the distance between the object and the viewpoint changes from V2 to V3 due to a viewpoint change, the process returns to step 5 and the operations of step 6.7 described above are repeated in sequence.

このように、左右視点間の距離■を、物体と視点間の距
離Vに対して一定となるように保つことによって、常に
最適な視差を確保できる。したがって、観察者は立体感
を損うことなく、疲労の少ない立体視を観察できるよう
になる。
In this way, by keeping the distance (2) between the left and right viewpoints constant with respect to the distance V between the object and the viewpoint, an optimal parallax can always be ensured. Therefore, the viewer can observe stereoscopic vision with less fatigue without impairing the stereoscopic effect.

なお、両眼立体視においては、本来、原理的には物体の
(X″1.置に応じて視差を増減させる必要があるが、
人間が立体感を感する要因には両眼視差以外にもさまざ
まな要因がある。つまり、必要以1に視差を増加させて
も眼の疲れが増し、やがては立体視が不可能となる。実
際に、本発明者らの実験によれば、視差を大きくしても
物体の立体感や飛び出し餓の増加は、それほど顕著に感
じられないことが確かめられている。この実験事実を重
視すれば、原理面からは多少外れるものの、視差はむし
ろある程度の大きさで固定するのが奸ましい。
In addition, in binocular stereopsis, in principle, it is necessary to increase or decrease the parallax according to the (X''1. position of the object,
There are various factors other than binocular parallax that cause humans to perceive a three-dimensional effect. In other words, even if the parallax is increased more than necessary, eye fatigue will increase, and stereoscopic vision will eventually become impossible. In fact, according to experiments conducted by the present inventors, it has been confirmed that even if the parallax is increased, the three-dimensional effect of objects and the increase in protrusion are not so noticeable. If we emphasize this experimental fact, it would be foolish to fix the parallax at a certain level, although this is somewhat contrary to the principle.

上記視差を固定することによって犠牲にされる立体感は
、コンピュータグラフィックスによるパースペクティブ
やデプスキューなどの立体効果によって、適宜補正すれ
ばよい。
The stereoscopic effect sacrificed by fixing the parallax may be corrected as appropriate using stereoscopic effects such as perspective and depth cue using computer graphics.

また、この発明はハードウェア構成が簡単であるため、
コンピュータを用いて作成する立体映像に容易に応用で
きる。例えば、物体を観客側に頻繁に移動させる立体映
画、あるいは長時間3次元データを拡大、縮小9回転さ
せながら立体画像を詳細に観察するCADデータの立体
表示、さらには3次元的な流れの現象をさまざまな視点
から観察する解析結果データの立体表示などに有効かつ
容易に応用できる。
In addition, since this invention has a simple hardware configuration,
It can be easily applied to stereoscopic images created using a computer. For example, 3D movies in which objects are frequently moved towards the audience, 3D display of CAD data in which 3D images are observed in detail while enlarging and contracting 3D data over a long period of time 9 times, and even 3D flow phenomena. It can be effectively and easily applied to 3D display of analysis result data to observe from various viewpoints.

さらに、この発明は青赤メガネ方式以外にも、ハードウ
ェア構成を変えるだけで、他の方式、例えば偏光フィル
タ方式、あるいはメガネを用いないレンティキュラレン
ズ方式等とすることもできる。現在は、パソコンの代わ
りにワークステーションを用いた偏光フィルタ方式が主
流となっており、既に立体視用ワークステーションとし
ても実用化されている。したがって、実用面の観点から
は偏光フィルタ方式が優れており、この発明を適用する
ことによって、より優れた効果を期待することができる
Furthermore, in addition to the blue-red glasses method, the present invention can also be applied to other methods, such as a polarizing filter method or a lenticular lens method that does not use glasses, by simply changing the hardware configuration. Currently, the mainstream is the polarizing filter method that uses a workstation instead of a personal computer, and it has already been put into practical use as a stereoscopic viewing workstation. Therefore, from a practical point of view, the polarizing filter method is superior, and by applying the present invention, even better effects can be expected.

(発明の効果) 以」−説明してきたように、この発明によれば、左右眼
用カメラの視点から物体までの距離Vに応じて、左右視
点間隔■が常に最適値になるよう構成したため、カメラ
と物体間の距離Vを変えながら両眼立体視で物体を観察
するとき、」−記距1IlvがKa<なっても視差が一
定に保たれ、これにより、両眼立体視による画像を常に
見やすい状態で観察することができ、眼の疲労感を横力
低減させることができるという効果がある。
(Effects of the Invention) - As explained above, according to the present invention, the left and right viewpoint interval ■ is always set to the optimum value in accordance with the distance V from the viewpoint of the left and right camera to the object. When observing an object with binocular stereoscopic vision while changing the distance V between the camera and the object, the parallax remains constant even if the recording distance 1Ilv becomes less than Ka, so that the binocular stereoscopic image is always It is possible to observe in an easy-to-see state, and has the effect of reducing the feeling of eye fatigue and lateral force.

【図面の簡単な説明】 第1図はこの発明の一実施例を示すハードウェアのブロ
ック図、第2図は第1図のハードウェアを示す斜視図、
第3A図は物体と視点との関係を説明するレイアウト図
、第3B図は物体としての車を示す斜視図、第4図は立
体視の作用を説明する幾何学的モデル図、第5図は左右
視点間隔の決定手順を示すフローチャート、第6図(a
)。 (b)はそれぞれ従来装置による立体視の作用と観察の
状況を示す原理モデル図である。 la、lb・・・一対のカメラ P、10・・・物体 9a、 9b・・・視点 11・・・物体データ送出手段 12・・・視点拉置入力丁段 13・・・距離演算子段 14・・・視点間隔演算1段 15・・・表示手段 16・・・コンピュータ
[Brief Description of the Drawings] Fig. 1 is a block diagram of hardware showing an embodiment of the present invention, Fig. 2 is a perspective view showing the hardware of Fig. 1,
Figure 3A is a layout diagram explaining the relationship between an object and a viewpoint, Figure 3B is a perspective view showing a car as an object, Figure 4 is a geometric model diagram explaining the effect of stereoscopic vision, and Figure 5 is a Flowchart showing the procedure for determining the left and right viewpoint interval, FIG. 6 (a
). (b) is a principle model diagram showing the effect of stereoscopic vision and the situation of observation by the conventional device, respectively. la, lb...pair of cameras P, 10...objects 9a, 9b...viewpoint 11...object data sending means 12...viewpoint positioning input stage 13...distance operator stage 14 ...Viewpoint interval calculation 1 stage 15...Display means 16...Computer

Claims (1)

【特許請求の範囲】 1、表示する物体のデータを送出する物体データ送出手
段と、 上記物体に対する一対の左右眼用カメラの視点位置を入
力する視点位置入力手段と、 上記視点位置に基づいて上記カメラの視点と物体間の距
離を演算する距離演算手段と、 上記距離に応じた一対のカメラの左右視点間隔を演算す
る視点間隔演算手段と、 この左右視点間隔に基づいて物体データを表示する表示
手段と、 を備えることを特徴とする両眼立体視の画像生成装置。
[Scope of Claims] 1. Object data transmitting means for transmitting data of an object to be displayed; viewpoint position input means for inputting viewpoint positions of a pair of left and right cameras with respect to the object; Distance calculation means for calculating the distance between the camera viewpoint and the object; Viewpoint interval calculation means for calculating the distance between the left and right viewpoints of the pair of cameras according to the distance; and a display that displays object data based on the distance between the left and right viewpoints. A binocular stereoscopic image generation device comprising: means;
JP2033069A 1990-02-14 1990-02-14 Picture generating device for both eye stereoscopic view Pending JPH03236698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2033069A JPH03236698A (en) 1990-02-14 1990-02-14 Picture generating device for both eye stereoscopic view

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2033069A JPH03236698A (en) 1990-02-14 1990-02-14 Picture generating device for both eye stereoscopic view

Publications (1)

Publication Number Publication Date
JPH03236698A true JPH03236698A (en) 1991-10-22

Family

ID=12376439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033069A Pending JPH03236698A (en) 1990-02-14 1990-02-14 Picture generating device for both eye stereoscopic view

Country Status (1)

Country Link
JP (1) JPH03236698A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344541A (en) * 1992-06-09 1993-12-24 Mitsubishi Electric Corp Portable image pickup display device
JPH1074269A (en) * 1996-06-26 1998-03-17 Matsushita Electric Ind Co Ltd Stereoscopic cg moving image generator
US6163337A (en) * 1996-04-05 2000-12-19 Matsushita Electric Industrial Co., Ltd. Multi-view point image transmission method and multi-view point image display method
JP2003107603A (en) * 2001-09-28 2003-04-09 Namco Ltd Stereophonic image generating device, stereophonic image generation information and information storage medium
JP2008198228A (en) * 2002-11-12 2008-08-28 Namco Bandai Games Inc Method of preparing printed material for stereoscopic viewing and printed material for stereoscopic viewing
JP2009087110A (en) * 2007-10-01 2009-04-23 Toyota Motor Corp Design support device
JP2009211718A (en) * 2002-11-12 2009-09-17 Namco Bandai Games Inc Image forming system, image forming method, program, and information storage medium
JP2009271161A (en) * 2008-05-01 2009-11-19 Seiko Epson Corp Image projection device and image projection method
US7680322B2 (en) 2002-11-12 2010-03-16 Namco Bandai Games Inc. Method of fabricating printed material for stereoscopic viewing, and printed material for stereoscopic viewing
JP2011183070A (en) * 2010-03-10 2011-09-22 Konami Digital Entertainment Co Ltd Game device, operation method, and program

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344541A (en) * 1992-06-09 1993-12-24 Mitsubishi Electric Corp Portable image pickup display device
US6163337A (en) * 1996-04-05 2000-12-19 Matsushita Electric Industrial Co., Ltd. Multi-view point image transmission method and multi-view point image display method
JPH1074269A (en) * 1996-06-26 1998-03-17 Matsushita Electric Ind Co Ltd Stereoscopic cg moving image generator
JP2003107603A (en) * 2001-09-28 2003-04-09 Namco Ltd Stereophonic image generating device, stereophonic image generation information and information storage medium
JP2009211718A (en) * 2002-11-12 2009-09-17 Namco Bandai Games Inc Image forming system, image forming method, program, and information storage medium
JP2008198228A (en) * 2002-11-12 2008-08-28 Namco Bandai Games Inc Method of preparing printed material for stereoscopic viewing and printed material for stereoscopic viewing
US7596259B2 (en) 2002-11-12 2009-09-29 Namco Bandai Games Inc. Image generation system, image generation method, program, and information storage medium
US7680322B2 (en) 2002-11-12 2010-03-16 Namco Bandai Games Inc. Method of fabricating printed material for stereoscopic viewing, and printed material for stereoscopic viewing
JP2011102988A (en) * 2002-11-12 2011-05-26 Namco Bandai Games Inc Image creation system
US8249335B2 (en) 2002-11-12 2012-08-21 Namco Bandai Games Inc. Method of making printed material for stereoscopic viewing, and printed material for stereoscopic viewing
JP2009087110A (en) * 2007-10-01 2009-04-23 Toyota Motor Corp Design support device
JP2009271161A (en) * 2008-05-01 2009-11-19 Seiko Epson Corp Image projection device and image projection method
JP2011183070A (en) * 2010-03-10 2011-09-22 Konami Digital Entertainment Co Ltd Game device, operation method, and program

Similar Documents

Publication Publication Date Title
US6175379B1 (en) Stereoscopic CG image generating apparatus and stereoscopic TV apparatus
TWI523488B (en) A method of processing parallax information comprised in a signal
US20090268014A1 (en) Method and apparatus for generating a stereoscopic image
US20090174705A1 (en) Parallax scanning through scene object position manipulation
WO2010084716A1 (en) Image processing device, program, image processing method, recording method, and recording medium
JPS62293381A (en) Stereoscopic picture display device
US20010010508A1 (en) Apparatus and method for displaying stereoscopic images
US20160337640A1 (en) Method and system for determining parameters of an off-axis virtual camera
KR20120030005A (en) Image processing device and method, and stereoscopic image display device
US5847870A (en) Binocular stereo image display method
JP2003348621A (en) Means for setting two-viewpoint camera
JP3452244B2 (en) Three-dimensional display method and apparatus
Honda et al. Three-dimensional display technologies satisfying" super multiview condition"
JPH03236698A (en) Picture generating device for both eye stereoscopic view
Baker Generating images for a time-multiplexed stereoscopic computer graphics system
JP3802629B2 (en) Stereo image generator
JPH07230556A (en) Method for generating cg stereoscopic animation
Kang Wei et al. Three-dimensional scene navigation through anaglyphic panorama visualization
KR100893381B1 (en) Methods generating real-time stereo images
JPH0350684A (en) Stereoscopic video display system
Rhee et al. Stereoscopic view synthesis by view morphing
CA2252063C (en) System and method for generating stereoscopic image data
Laldin et al. The effects of depth warping on perceived acceleration in stereoscopic animation
Laldin Perceived Acceleration in Stereoscopic Animation
JP3691612B2 (en) Image display device