JPH0323299A - Growth method for compound semiconductor crystal - Google Patents

Growth method for compound semiconductor crystal

Info

Publication number
JPH0323299A
JPH0323299A JP15587489A JP15587489A JPH0323299A JP H0323299 A JPH0323299 A JP H0323299A JP 15587489 A JP15587489 A JP 15587489A JP 15587489 A JP15587489 A JP 15587489A JP H0323299 A JPH0323299 A JP H0323299A
Authority
JP
Japan
Prior art keywords
layer
adduct
group
compound semiconductor
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15587489A
Other languages
Japanese (ja)
Inventor
Nobuyuki Otsuka
信幸 大塚
Masashi Ozeki
尾関 雅志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15587489A priority Critical patent/JPH0323299A/en
Publication of JPH0323299A publication Critical patent/JPH0323299A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To apply atomic-layer epitaxy with a self-limiting characteristic by forming one layer of the adduct of the alkyl compds. of the group III element and group V element constituting the semiconductor on a semiconductor substrate and then bringing the surface of the adduct layer with a reducing gas at a higher temp. CONSTITUTION:One semiconductor layer 4 (substrate) arranged in a crystal growth device (reaction tube 1) is brought into contact with the adduct 8 of the alkyl compds. of the group III element and group V element constituting the one semiconductor to deposit one layer of the adduct 8 on the layer 4. The layer 4 deposited with the adduct 8 layer is brought into contact with a reducing gas (e.g. H2) at a temp. higher that the contact temp. of the adduct 8 to grow a single crystal layer 9 of the compd. semiconductor of the group III element and group V element. (CH3)3In.P(CH3)3 is exemplified as the organometallic adduct compd.

Description

【発明の詳細な説明】 (4a要〕 化合物半導体結晶戒長方法の改良、特に、原子層単位で
の結晶成長をなす原子層エビタキシを利〔産業上の利用
分野〕 本発明は、化合物半導体結晶成長方法の改良、特に、原
子層単位での結晶戒長をなす原子層エビタキシを利用し
て化合物半導体結晶を成長させる方法の改良に関する. 〔従来の技術) 電子デバイスのvIl細化を進めてその性能を向上し、
更には従来の手法をもって製造された化合物半導体結晶
にはない物性を有する化合物半導体結晶を実現して新し
い機能を有する電子デバイスを開発すること等を目的と
して、化合物半導体結晶及びその不純物濃度を原子層単
位でM祷することが強く望まれている.これまでの化合
物半導体結晶の原子層単位での戒長方法を以下に説明す
る.例えば、InPTE板上にInPの単原子層を戒長
させる場合には、MO−CVD法を使用し、戒長温度3
 5 0 ’CにおいてトリメチルインジエウムC (
CHI )ff  I fl)またはトリエチルインジ
ュウム((C.H,),Inlとホスフィン(PH3)
とを交互に碁坂上に供給する.基坂上に供給された(C
H,)3 Inまたは(C.Hs)slnは、メチル基
(cH,−)またはエチル% (Cz Hs−)の一部
が残った状態で1&板上に吸着される.この残留してい
るメチル基またはエチル基によって基坂表面が覆われる
ため、【n単原子層に相当する(CH2 ))Inまた
は(CtHs)ilnが基板上に吸着されるのみで、そ
れ以上の厚さには吸着されない.次いで、この状態のと
ころへPH.を供給すると、これらの残留しているメチ
ル基またはエチル基は分解除去され、InとPとが結合
してIn.P分子lit分がセルフリミフティング作用
によって基板上に形威される. 〔発明が解決しようとする課題〕 ところが、基板上に原料ガスを交互に供給して、化合物
半導体結晶を原子層単位で成長させる場合には、目的と
する化合物半導体結晶が形威される前に、化合物半導体
を横成する元素が原子状朋で存在する時間が原理的に存
在する.基板上に、基板の構成元素と同一の元素からな
る化合物半導体結晶を戒長させる場合には、特に問題に
はならないが、基板の横戒元素と異なる元素からなる化
合物半導体結晶を成長させるヘテロエビタキシャル成長
をなす場合には、ヘテロ界面近傍において横或原子の相
互拡散が発生するため、急峻なヘテロ界面を形成するこ
とが困難となる,また、単原子I1itJi位の厳密さ
をもった急峻な不純物濃度の制御も困難になる. 本発明の目的は、これらの欠点を解消することにあり、
論、峻なヘテロ界面を形戒することが可能であり、単原
子層単位の@密さをもった急峻な不′4@物濃度の制御
が可能である化合物半導体結晶成長方法を提供すること
にある. 〔課題を解決するための手段〕 上記の目的は、結晶成長装置中に配置された1の半導体
層(4)に、この1の半導体を横或する■族元素のアル
キル化物とV族元素のアルキル化物とのアダクト(8)
を接触させて、前記の1の半導体層(4)上に前記のア
ダクト(8)の1層をinし、このアダクト(8)の1
層が堆積している前記の1の半導体1(4)に還元ガス
を前記のアダクトの接触温度より高い温度において接触
させて、前記の■族元素と前記の■族元素と.の化合物
半導体の単結晶11 (9)を戒長させる化合物半導体
結晶戒長方法によって達成される.〔作用〕 本発明に係る化合物半導体桔晶成長方法においては、例
えばlnP結晶をMO−CVD法を使用して成長ずる場
合に、原材料としてInPの有機金属アダクト化合物、
例えば(CHユ),10P(CH,)zを使用し、(C
H)),In’P (CHs )zの供給とH,パージ
とを交互に実行する. 300゜Cに加熱された基板表面に供給された(CHs
 ),In ’P (CHI ))はメチル基(CH!
  )を一部残した状態[(CH,).In−P (C
H− ).、但し、n,m=0〜3)で基板表面に吸着
される,  (CH3 )!  In−P(CH3)3
の供給を続けても、メチル基が基板表面を覆っているの
で、InP分子1層分に相当する(CHi、In・P(
CH,)−が基坂上に吸着されるのみでそれ以上は吸着
されない.次いで、400゜Cまで基仮温度を昇温して
H.を供給すると、吸着されている(CHs)−In−
P(CH3)−のメチル基が分解除去されてInP単結
晶1層が形威される.この結果、In及びPが原子状態
で存在することな< rnP単結晶1層が形威されるの
で、戒長界面における原子の相互拡散は発生しない.以
上の工程を操り返すことによって、InP単結晶を一層
づ\成長させた原子層ユピタキシが可能になる. 〔実施例〕 以下、図面を参照しつ\、本発明の一実施例に係る化合
物半導体結晶成長方法について、InP(100)基板
上にMO−CVD法を使用してinPを原子層エビタキ
シャル成長ずる場合を例として説明する. 第2図参照 第2図は、原子層エビタキシャル威良に使用される装置
の横威図であり、1は石英製の反応管であり、2は真空
ポンプ(図示せず)に接続された排気系であり、3は基
板4を戦置するサセブタであり、5は高周波加P!器で
あり、6、7はガス切り換えバルブである. 第1a図、第1b図同時参照 InPi板4をサセプタ3上に載置し、反応管lの内圧
を排気系2を使用して約20Torrに保持し、高周波
加熱85を使用してInP基板4を約300゜Cに加熱
する.(CHs )I In−P(CH,),の入った
バブラ(図示せず)に水素キャリャを通気して発生した
(CHz ) s  I n・P (CH− )sガス
をガス切り換えバルブ7を介して反応室1内に流量10
03CCMをもってX秒間供給し、基仮4上にトリメチ
ルインジュウム・トリメチルホスフィンアダクト8の1
層を堆積する.次いで、ガス切り換えバルブ7を切り換
えて、(CHs)s  In’P (CH−)3の反応
室l内への供給を停止して、これを系外に排気し、In
P蟇vi.4を400゜Cに昇温し、ガス切り換えバル
ブ6を介してH8ガスを約60秒間反応室1内に供給し
てlnP基板4上にlnP単結晶層9を成長させる. 第3図参照 上記の工程を1701’1期繰り返し実行した結果から
、l周期当りのlnP単結晶の成長膜厚のInP1分子
層の膜厚に対する比とllil期当りの(CHz )z
  In−p (CH!)sの供給時間χとの関係を求
めると第3図に示すようになる.供袷時間Xが4秒に達
すれば、InPの戒長膜厚は飽和し、それ以上供給時間
Xを増加させても戒長護厚は増加せず、111期当りの
成長膜厚が1分子II膜厚にセルフリミフティングされ
た原子層エピタキシャル成長が可能であるという結果が
得られた. なお、有機金属アダクト化合物としては、上記の(CH
,),I n ’ P CCHs )sの他に、Ga、
In,Affi等の■族元素のメチル基、エチル基等と
のアルキル化物とAs,P等のV族元素のメチル基、エ
チル基等とのアルキル化物とのアダクト化合物を使用す
ることが可能であり、また、水素を供給して残留してい
るメチル基またはエチル基を除去する時に、基板の温度
を昇温する代わりに、紫外線を照射してもよく、また、
加熱した水素を供姶してもよい。
Detailed Description of the Invention (Required 4a) The present invention provides improvements in compound semiconductor crystal growth methods, particularly utilizing atomic layer epitaxy that grows crystals in units of atomic layers [Industrial Application Field] This invention relates to improvements in growth methods, particularly improvements in methods for growing compound semiconductor crystals using atomic layer epitaxy, in which crystal length is controlled in units of atomic layers. improve performance,
Furthermore, with the aim of realizing compound semiconductor crystals with physical properties not found in compound semiconductor crystals manufactured using conventional methods and developing electronic devices with new functions, compound semiconductor crystals and their impurity concentrations have been reduced to an atomic layer. It is strongly recommended that students pray M in units. The conventional methods for lengthening compound semiconductor crystals in atomic layer units are explained below. For example, when forming a monoatomic layer of InP on an InPTE plate, the MO-CVD method is used, and the forming temperature is 3.
Trimethylindium C (
CHI )ff I fl) or triethyl indium ((C.H,), Inl and phosphine (PH3)
and are alternately supplied to Gosakagami. Supplied to Motosakaue (C
H,)3In or (C.Hs)sln is adsorbed onto the 1& plate with a portion of the methyl group (cH,-) or ethyl% (CzHs-) remaining. Since the surface of the base plate is covered by the remaining methyl or ethyl groups, only [(CH2))In or (CtHs)iln, which corresponds to an n monoatomic layer, is adsorbed onto the substrate, and no further It is not attracted to thickness. Next, PH. When In is supplied, these remaining methyl groups or ethyl groups are decomposed and removed, and In and P are combined to form In. P molecules lit are formed on the substrate by the self-lifting effect. [Problem to be Solved by the Invention] However, when a compound semiconductor crystal is grown in atomic layer units by alternately supplying raw material gas onto a substrate, a In principle, there is a time when the elements forming a compound semiconductor exist in atomic form. There is no particular problem when growing a compound semiconductor crystal made of the same elements as the constituent elements of the substrate on a substrate, but it is difficult to grow a compound semiconductor crystal made of an element different from the horizontal elements of the substrate. In the case of taxial growth, interdiffusion of atoms occurs near the hetero interface, making it difficult to form a steep hetero interface. It also becomes difficult to control the impurity concentration. The purpose of the present invention is to eliminate these drawbacks,
To provide a method for growing a compound semiconductor crystal, which is capable of forming a sharp hetero-interface and controlling a steep impurity concentration with a density of a single atomic layer. It is in. [Means for Solving the Problems] The above object is to form a semiconductor layer (4) disposed in a crystal growth apparatus with an alkylated compound of a group V element and an alkylate of a group Adduct with alkylate (8)
One layer of the adduct (8) is placed on the semiconductor layer (4) of the one above by contacting the two layers of the adduct (8).
A reducing gas is brought into contact with the semiconductor 1 (4) of the above 1 on which the layer is deposited at a temperature higher than the contact temperature of the above adduct, and the above group Ⅰ element and the above group Ⅰ element are combined. This is achieved by the compound semiconductor crystal lengthening method of lengthening a compound semiconductor single crystal 11 (9). [Function] In the compound semiconductor crystal growth method according to the present invention, for example, when growing an InP crystal using the MO-CVD method, an organometallic adduct compound of InP,
For example, using (CHyu), 10P(CH,)z, (C
H)), In'P (CHs)z supply and H purge are performed alternately. (CHs) was supplied to the substrate surface heated to 300°C.
), In 'P (CHI )) is a methyl group (CH!
) with some remaining [(CH,). In-P (C
H-). , where n, m = 0 to 3) is adsorbed to the substrate surface, (CH3 )! In-P(CH3)3
Even if the supply of
CH, )- is only adsorbed onto the base slope and no further adsorption occurs. Next, the base temperature was raised to 400°C and H. When supplying (CHs)-In-
The methyl group of P(CH3)- is decomposed and removed to form a single layer of InP single crystal. As a result, a single <rnP single crystal layer is formed in which In and P do not exist in the atomic state, so interdiffusion of atoms at the Kaicho interface does not occur. By repeating the above steps, atomic layer upitaxy, in which InP single crystals are grown layer by layer, becomes possible. [Example] Hereinafter, with reference to the drawings, regarding a compound semiconductor crystal growth method according to an example of the present invention, inP is grown by atomic layer epitaxial growth on an InP (100) substrate using the MO-CVD method. Let's take the case of cheating as an example. See Figure 2 Figure 2 is a diagram of the equipment used for atomic layer epitaxy, where 1 is a quartz reaction tube and 2 is connected to a vacuum pump (not shown). It is an exhaust system, 3 is a susceptor for placing the board 4, and 5 is a high frequency power supply P! 6 and 7 are gas switching valves. 1a and 1b, an InPi plate 4 is placed on the susceptor 3, the internal pressure of the reaction tube l is maintained at approximately 20 Torr using the exhaust system 2, and the InP substrate 4 is heated using high frequency heating 85. Heat to approximately 300°C. (CHs) I In-P (CH,), generated by passing a hydrogen carrier through a bubbler (not shown) containing (CH- Flow rate 10 into reaction chamber 1 through
03 CCM was supplied for X seconds, and 1 of trimethylindium trimethylphosphine adduct 8 was added to the base 4.
Deposit layers. Next, the gas switching valve 7 is switched to stop the supply of (CHs)s In'P (CH-)3 into the reaction chamber 1, and exhaust it to the outside of the system.
P toad vi. 4 is heated to 400° C., and H8 gas is supplied into the reaction chamber 1 for about 60 seconds through the gas switching valve 6 to grow an InP single crystal layer 9 on the InP substrate 4. See Figure 3. From the results of repeating the above steps for 1701'1 period, the ratio of the growth film thickness of the InP single crystal per 1 period to the film thickness of 1 InP molecular layer and the (CHz)z per llil period.
Figure 3 shows the relationship between In-p (CH!)s and the supply time χ. When the supply time X reaches 4 seconds, the InP film thickness is saturated, and even if the supply time The results showed that self-lifting atomic layer epitaxial growth to II film thickness was possible. In addition, as an organometallic adduct compound, the above-mentioned (CH
, ), I n ' P CCHs ) In addition to Ga,
It is possible to use an adduct compound of an alkylated product of a Group I element such as In, Affi, etc. with a methyl group, ethyl group, etc. and an alkylated product of a Group V element such as As, P, etc. with a methyl group, ethyl group, etc. Also, when supplying hydrogen to remove remaining methyl or ethyl groups, ultraviolet rays may be irradiated instead of increasing the temperature of the substrate, and
Heated hydrogen may also be supplied.

(発明の効果〕 以上説明せるとおり、本発明に係る化合物半導体結晶成
長方法においては、■族元素のアルキル化物と■族元素
のアルキル化物とのアダクト化合物を基板上に接触させ
て前記のアダクトの1層を堆積し、次いで、運元ガスを
供給してアルキル基を分解除去して■・V族化合物半導
体結晶を原子層単位で戒長させるため、成長の通程にお
いて■・■族元素が原子状態で存在することなく■・■
族化合物半導体の原子層エビタキシャル戒良がなされる
ので、特にヘテロエビタキシャル戒長をなす場合に、戒
長界面における原子の相互拡散が発生しないので、急峻
なヘテロ界面が形或される.また、原子層単位の@密さ
をもった急峻な不純物濃度の制御が可能になる.
(Effects of the Invention) As explained above, in the method for growing compound semiconductor crystals according to the present invention, an adduct compound of an alkylated compound of a group Ⅰ element and an alkylated compound of a group Ⅰ element is brought into contact with a substrate to form the adduct. One layer is deposited, and then a driving gas is supplied to decompose and remove the alkyl groups to lengthen the ■/V group compound semiconductor crystal in atomic layer units. ■・■ Without existing in an atomic state
Since the atomic layer epitaxial alignment of the group compound semiconductor is performed, especially when forming a heteroepitaxial alignment, interdiffusion of atoms at the alignment interface does not occur, so a steep hetero-interface is formed. In addition, it becomes possible to control steep impurity concentrations with density on the order of atomic layers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図、ilb図は、本発明の一実施例に係る化合物
半導体結晶戒長方法を説明する工程図である. 第2図は、本発明の化合物半導体結晶戒長方法に使用さ
れる装置の構或図である. 第3図は、(CH− ) s l n−P (CHi 
) sの供給時間とInP成長膜厚/ I n P 1
分子II膜厚との関係を示すグラフである. 1・・・反応管、 2・・・排気系、 3・・・サセブタ、 4・・・半導体基板、 5・・・高周波加熱器、 6、7・・・ガス切り換えバルブ、 8・・ ・アダクト層、 9・・・lnP単結晶層.
FIGS. 1a and 1b are process diagrams illustrating a method for lengthening a compound semiconductor crystal according to an embodiment of the present invention. FIG. 2 is a diagram showing the structure of an apparatus used in the compound semiconductor crystal cutting method of the present invention. Figure 3 shows (CH-) s l n-P (CHi
) s supply time and InP growth film thickness/I n P 1
It is a graph showing the relationship with the molecule II film thickness. DESCRIPTION OF SYMBOLS 1... Reaction tube, 2... Exhaust system, 3... Sustainer, 4... Semiconductor substrate, 5... High frequency heater, 6, 7... Gas switching valve, 8... Adduct Layer 9... lnP single crystal layer.

Claims (1)

【特許請求の範囲】 結晶成長装置中に配置された1の半導体層(4)に、該
1の半導体を構成するIII族元素のアルキル化物とV族
元素のアルキル化物とのアダクト(8)を接触させて、
前記1の半導体層(4)上に前記アダクト(8)の1層
を堆積し、 該アダクト(8)の1層が堆積している前記1の半導体
層(4)に還元ガスを前記アダクトの接触温度より高い
温度において接触させて、前記III族元素と前記V族元
素との化合物半導体の単結晶層(9)を成長させる ことを特徴とする化合物半導体結晶成長方法。
[Claims] An adduct (8) of an alkylated product of a group III element and an alkylated product of a group V element constituting the first semiconductor is added to one semiconductor layer (4) arranged in a crystal growth apparatus. Let me come into contact with you.
One layer of the adduct (8) is deposited on the first semiconductor layer (4), and a reducing gas is applied to the first semiconductor layer (4) on which the one layer of the adduct (8) is deposited. A method for growing a compound semiconductor crystal, comprising growing a single crystal layer (9) of a compound semiconductor of the Group III element and the Group V element by contacting them at a temperature higher than the contact temperature.
JP15587489A 1989-06-20 1989-06-20 Growth method for compound semiconductor crystal Pending JPH0323299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15587489A JPH0323299A (en) 1989-06-20 1989-06-20 Growth method for compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15587489A JPH0323299A (en) 1989-06-20 1989-06-20 Growth method for compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH0323299A true JPH0323299A (en) 1991-01-31

Family

ID=15615392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15587489A Pending JPH0323299A (en) 1989-06-20 1989-06-20 Growth method for compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH0323299A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456207A (en) * 1994-05-16 1995-10-10 The United States Of America As Represented By The Secretary Of The Navy Synthesis of triisopropylindium diisopropyltelluride adduct and use for semiconductor materials
US6833161B2 (en) * 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456207A (en) * 1994-05-16 1995-10-10 The United States Of America As Represented By The Secretary Of The Navy Synthesis of triisopropylindium diisopropyltelluride adduct and use for semiconductor materials
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US6833161B2 (en) * 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode

Similar Documents

Publication Publication Date Title
US5166092A (en) Method of growing compound semiconductor epitaxial layer by atomic layer epitaxy
US5483919A (en) Atomic layer epitaxy method and apparatus
KR950006035A (en) Method of forming crystalline silicon carbide film at low temperature
JPH0323299A (en) Growth method for compound semiconductor crystal
JPH0574724A (en) Method for growth of atomic layer of aluminum compound
Soga et al. The effects of the growth parameters on the initial stage of epitaxial growth of GaP on Si by metalorganic chemical vapor deposition
JP2736655B2 (en) Compound semiconductor crystal growth method
JP3090232B2 (en) Compound semiconductor thin film formation method
JP2687371B2 (en) Vapor growth of compound semiconductors
JPH0574717A (en) Compound semiconductor crystal growth method
Tsang Chemical beam epitaxy of InGaAs
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
JP2705726B2 (en) Atomic layer epitaxial growth method
JPH04175299A (en) Compound semiconductor crystal growth and compound semiconductor device
JPH02116120A (en) Crystal growth method
JPH0547668A (en) Crystal growth method for compound semiconductor
JPH02199820A (en) Vapor phase treatment apparatus
JPH05186295A (en) Method for growing crystal
JPH01206618A (en) Organic metal vapor growth method
JP3063317B2 (en) Vapor growth method of semiconductor thin film
JPH04260696A (en) Production of crystal of compound semiconductor
JP2687862B2 (en) Method of forming compound semiconductor thin film
JP2569141B2 (en) Crystal formation method
JPH04254499A (en) Production of compound semiconductor crystal
JP2982333B2 (en) Vapor growth method