JPH03227472A - Calculation of h-factor of continuous digester - Google Patents

Calculation of h-factor of continuous digester

Info

Publication number
JPH03227472A
JPH03227472A JP2181790A JP2181790A JPH03227472A JP H03227472 A JPH03227472 A JP H03227472A JP 2181790 A JP2181790 A JP 2181790A JP 2181790 A JP2181790 A JP 2181790A JP H03227472 A JPH03227472 A JP H03227472A
Authority
JP
Japan
Prior art keywords
factor
stage
activation energy
value
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2181790A
Other languages
Japanese (ja)
Inventor
Atsushi Nishimura
淳 西村
Yoshiaki Murakami
村上 良明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2181790A priority Critical patent/JPH03227472A/en
Publication of JPH03227472A publication Critical patent/JPH03227472A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

PURPOSE:To carry out an efficient operation by dividing a digester into plural stages from the top part to the bottom part and considering the difference of the reaction rate constant depending on weighting of H-factor to the respective reaction phases and on the difference in the activation energy based on the quality of a material. CONSTITUTION:A continuous digester is divided vertically into plural stages, (ST0, ST1,..., STn) from the top part to the bottom part and the boundary between penetration stage and digestion stage is estimated. For the respective stages, an H-factor is calculated while varying the value of activation energy making the standard value thereof the mean value and an estimated kappa-number is calculated so that a kappa-number dispersion correlation may be obtained. A point showing the highest value in the dispersion correlation is used as a parameter for H-factor calculation and the activation energy based on the quality of the pulp is calculated thereby.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、製紙プラントにおいて用いられている木のチ
ップを蒸解するための連続蒸解釜のHファクタ算出方法
に関し、さらに詳しくは、連続蒸解釜のHファクタの算
出をオフ・ライン・シュミレータを用いて行う場合に適
用されるHファクタ算出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for calculating the H factor of a continuous digester used in a paper manufacturing plant for cooking wood chips. The present invention relates to an H-factor calculation method that is applied when calculating the H-factor using an off-line simulator.

〈従来の枝術〉 製紙プラントにおいて、チップ(木片)からパルプ(繊
維)を作る工程を蒸解と呼んでいる。
<Traditional Branch Technique> In a paper manufacturing plant, the process of making pulp (fiber) from chips (wood chips) is called cooking.

蒸解のメカニズムを簡単に表現すれば、チップをアルカ
リ性の蒸解液(水酸化ナトリウムを主体として、白液と
称される)と共に、釜内で加熱し、チップ中のリグニン
を溶出させ、繊維分のみを分離する脱リグニン反応を実
行させることにある。
To put it simply, the cooking mechanism is as follows: Chips are heated in a pot with an alkaline cooking liquor (mainly made of sodium hydroxide, called white liquor), the lignin in the chips is eluted, and only the fibers are removed. The goal is to carry out a delignification reaction that separates the .

この様な連続蒸解釜の効率的な運転の指標となるものは
、釜から排出された混合物の脱すグニングの度合いを表
す無次元の数、カッパーナンバー(KapPa価)であ
り、これは、蒸解釜内の温度の分布関数(これをHファ
クタという)によるところが大きい。
An indicator of the efficient operation of such a continuous digester is the kappa number (KapPa value), a dimensionless number that indicates the degree of degunning of the mixture discharged from the digester. This largely depends on the temperature distribution function (this is called the H factor).

Hファクタは、蒸解尺7G・において、一般に(1)式
で表される。
The H factor is generally expressed by equation (1) at a cooking scale of 7G.

H=/Kdt          ・・・(1)K=e
A−(B/T) Kは反応速度定数 そして、パラメータA、Bについて、スブルース(Sp
ruce)材の場合、A=43.2゜8=16.113
であることが知られている。
H=/Kdt...(1) K=e
A-(B/T) K is the reaction rate constant, and for parameters A and B, Spruce (Sp
ruce) material, A=43.2°8=16.113
It is known that

従来より、我国の操業現場での連続蒸解釜におけるHフ
ァクタの管理は、この様なパラメータを用いて行われて
いる。
Conventionally, such parameters have been used to manage the H factor in continuous digesters at operational sites in Japan.

〈発明が解決しようとする課題〉 しかしながら、この場合、蒸解釜内の各反応相(浸透ス
テージ、蒸解ステージ、洗浄ステージ)によるHファク
タの重み付けと材質による活性化エネルギーの相違から
くる反応速度定数の違いが考慮したものでないために、
効率のよい連続蒸解釜の運転を行う上で問題であった。
<Problem to be solved by the invention> However, in this case, the reaction rate constant due to the weighting of the H factor by each reaction phase (infiltration stage, cooking stage, washing stage) in the digester and the difference in activation energy depending on the material. Because the difference is not taken into account,
This was a problem in operating the continuous digester efficiently.

本発明は、この様な点に鑑みてなされたものであって、
その目的は、連続蒸解釜を用いたパルプの生産設備にお
いて、釜内の各ステージにおいて各種の材質に基づいた
最適な活性化エネルギーを求めることの可能なHファク
タの算出方法を提供することにある。
The present invention has been made in view of these points, and
The purpose is to provide a method for calculating the H factor that can determine the optimal activation energy based on various materials at each stage in the kettle in pulp production equipment using a continuous digester. .

〈課題を解決するための手段〉 第1図は、本発明の算出方法を示すフローチャートであ
る1本発明の方法は、 連続蒸解釜の頂部より底部までを垂直方向に複数のステ
ージに区分すると共に、区分した浸透ステージと蒸解ス
テージの境界がどこにあるかを推定し、 各ステージについて予め決めた基準の活性化エネルギー
を中心にその値を変えてHファクタを演算し、 演算して得られたHファクタを用いて推定カッパーナン
バを演算すると共に、このカッパナンバー分散相関を得
、 この分散相関の一番高い値を有する点を持ってHファク
タ演算のパラメータとする。
<Means for Solving the Problems> Fig. 1 is a flowchart showing the calculation method of the present invention.1 The method of the present invention consists of dividing the continuous digester from the top to the bottom into a plurality of stages in the vertical direction; , estimate where the boundary between the divided infiltration stage and digestion stage is, calculate the H factor by changing the value around the predetermined standard activation energy for each stage, and calculate the H factor obtained by calculating. An estimated kappa number is calculated using the factors, and this kappa number variance correlation is obtained, and the point having the highest value of this variance correlation is used as a parameter for H factor calculation.

〈実施例〉 以下図面を用いて、本発明の実施例を詳細に説明する。<Example> Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は、本発明の方法をコンピュータで実現する場合
の概略フローチャートであり、第3図は連続蒸解釜の構
成概念図である。
FIG. 2 is a schematic flowchart when the method of the present invention is implemented on a computer, and FIG. 3 is a conceptual diagram of the configuration of a continuous digester.

はじめに、連続蒸解釜1の内部において、その頂部より
底部までを垂直方向に複数のステージに区分する。ここ
ではイニシャルステージとして、STO1〜5T15に
区分することを想定している。その根拠は、一般の連続
蒸解釜は、プラントを設計する場合、便宜的にステージ
12がイニシャル(浸透)ステージとバルク(蒸解)ス
テージの境界としていることに基づいている。
First, the inside of the continuous digester 1 is vertically divided into a plurality of stages from the top to the bottom. Here, it is assumed that the initial stages are divided into STO1 to STO5T15. This is based on the fact that in general continuous digesters, when designing a plant, stage 12 is conveniently set as the boundary between the initial (permeation) stage and the bulk (cooking) stage.

ここで、洗浄ステージでは、上部、下部の比較的低温度
の洗浄水を注入しているので、蒸解反応はここでスト・
yプしてしまっていると仮定している。従って、浸透ス
テージと蒸解ステージの区切りがどこにあるかだけに着
目している。
Here, in the washing stage, relatively low temperature washing water is injected into the upper and lower parts, so the cooking reaction is carried out at this stage.
It is assumed that you have already typed y. Therefore, we are focusing only on where the break between the infiltration stage and the digestion stage is.

次に、浸透ステージ、蒸解ステージ、洗浄ステージにつ
いて、それぞれ各ステージの活性化エネルギーを仮定の
基準エネルギーの値を中心にして、種々の値を適合し逐
次演算を行う。
Next, for the infiltration stage, cooking stage, and cleaning stage, various values are adapted and sequential calculations are performed for the activation energy of each stage, centering on the assumed reference energy value.

材質による活性化エネルギーは、各ステージで同じであ
る可能性は低いので、本発明においては、仮定する基準
エネルギーとして、おおよそ以下の値を各ステージで基
にするようにしている。
Since the activation energy depending on the material is unlikely to be the same at each stage, in the present invention, the assumed reference energy is approximately based on the following values at each stage.

浸透ステージ=40KJ/mol 蒸解ステージ・・・150KJ/mol洗浄ステージ=
120KJ/mo 1 次に、(1)式に基づいて、各浸透ステージ。
Penetration stage = 40KJ/mol Digestion stage...150KJ/mol Washing stage =
120KJ/mo 1 Next, each infiltration stage is determined based on equation (1).

蒸解ステージ、洗浄ステージにて、Hファクタを求める
と共に、(2)式を用いて計算カッパナンバを求る。そ
して、相関係数の比較を行い、各ステージでの活性化エ
ネルギーを推定する。
At the cooking stage and washing stage, the H factor is determined, and the calculated kappa number is determined using equation (2). Then, the correlation coefficients are compared and the activation energy at each stage is estimated.

Kappa価=A+B [I og (Hファクタ)*
EaC]   ・・・(2) Eaはアルカリ濃度 (2)式における、定数A、B、Cのパラメータの求め
形は、従来の手法が適用される。すなわち、(1)式で
得られたHファクタのパラメータを所定の範囲で振って
みて(mlつかの値を適合して実際に演算を試みて)こ
のHファクタにより、Kappa価の予測を行うことに
なる。
Kappa value = A + B [I og (H factor) *
EaC] (2) Ea is alkaline concentration A conventional method is applied to find the parameters of constants A, B, and C in equation (2). In other words, the Kappa value can be predicted using the H factor by varying the parameters of the H factor obtained from equation (1) within a predetermined range (by adapting some values of ml and attempting the actual calculation). become.

第4図は、このようにして算出された相関係数を示す図
である。ここに示す例は、浸透ステージと蒸解ステージ
の区切りを浸透ステージのNo。
FIG. 4 is a diagram showing the correlation coefficients calculated in this manner. In the example shown here, the separation between the infiltration stage and the cooking stage is determined by the number of the infiltration stage.

12に想定し、また洗浄ステージの活性化エネルギーを
120KJ/molとした場合の蒸解ステージの相関係
数を示している。
12 and the activation energy of the cleaning stage is 120 KJ/mol.

浸透ステージでの、活性化エネルギーを20KJ/mo
 1〜60KJ/mo lの範囲で幾つかとったもので
、これに基づく蒸解ゾーンでの相関係数の最大値をとる
活性化エネルギーは、この例では95 K J / m
 o 1付近であることが分がる。
Activation energy at the penetration stage is 20KJ/mo
The activation energy that takes the maximum value of the correlation coefficient in the cooking zone is 95 KJ/m in this example.
It can be seen that o is around 1.

〈発明の効果〉 以上詳細に説明したように、本発明の方法によれば、パ
ルプの材質に基づいた活性化エネルギーが求められるも
ので、Hファクタやカッパナンバの制度アップを計るこ
とができる。また、洗浄ゾーンと蒸解ゾーンの境界を見
出だすことにより、厳密にHファクタを管理することが
可能となる。
<Effects of the Invention> As explained in detail above, according to the method of the present invention, activation energy is determined based on the material of the pulp, and it is possible to improve the accuracy of the H factor and Kappa number. Furthermore, by finding the boundary between the washing zone and the cooking zone, it becomes possible to strictly control the H factor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の算出方法を示すフローチャート、第2
図は本発明の方法をコンピュータで実現する場合の概略
フローチャート、第3図番よ連続蒸解釜の構成概念図、
第4図は算出された相関係数を示す図である。 第 図
FIG. 1 is a flowchart showing the calculation method of the present invention;
The figure is a schematic flowchart when the method of the present invention is realized on a computer, the third figure is a conceptual diagram of the structure of a continuous digester,
FIG. 4 is a diagram showing calculated correlation coefficients. Diagram

Claims (1)

【特許請求の範囲】 連続蒸解釜の頂部より底部までを垂直方向に複数のステ
ージに区分すると共に、区分した浸透ステージと蒸解ス
テージの境界がどこにあるかを推定し、 各ステージについて予め決めた基準の活性化エネルギー
を中心にその値を変えてHファクタを演算し、 演算して得られたHファクタを用いて推定カッパーナン
バを演算すると共に、このカッパナンバー分散相関を得
、 この分散相関の一番高い値を有する点を持ってHファク
タ演算のパラメータとすることを特徴とする連続蒸解釜
のHファクタ算出方法。
[Claims] The continuous digester is vertically divided into a plurality of stages from the top to the bottom, and the boundary between the divided permeation stage and cooking stage is estimated, and a predetermined standard is set for each stage. Calculate the H factor by changing its value around the activation energy of A method for calculating an H factor for a continuous digester, characterized in that a point having the highest value is used as a parameter for H factor calculation.
JP2181790A 1990-01-31 1990-01-31 Calculation of h-factor of continuous digester Pending JPH03227472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2181790A JPH03227472A (en) 1990-01-31 1990-01-31 Calculation of h-factor of continuous digester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2181790A JPH03227472A (en) 1990-01-31 1990-01-31 Calculation of h-factor of continuous digester

Publications (1)

Publication Number Publication Date
JPH03227472A true JPH03227472A (en) 1991-10-08

Family

ID=12065613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2181790A Pending JPH03227472A (en) 1990-01-31 1990-01-31 Calculation of h-factor of continuous digester

Country Status (1)

Country Link
JP (1) JPH03227472A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643992A (en) * 1987-06-25 1989-01-09 Matsushita Electric Works Ltd Memory light regulation device
JPS6445886A (en) * 1987-08-11 1989-02-20 Toyo Pulp Co Ltd Continuous digester control apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643992A (en) * 1987-06-25 1989-01-09 Matsushita Electric Works Ltd Memory light regulation device
JPS6445886A (en) * 1987-08-11 1989-02-20 Toyo Pulp Co Ltd Continuous digester control apparatus

Similar Documents

Publication Publication Date Title
US4348256A (en) Process for controlling the supply of delignifying and/or bleaching chemicals in the continuous delignification of lignocellulosic material
US4690731A (en) Method of making sulphate pulp
NO179918B (en) Process and apparatus for producing power mass
US3035963A (en) Process for the continuous digestion of cellulosic materials
NO180386C (en) Process for the production of kraft pulp by a batch cooking process
SE451202B (en) PROCEDURE FOR PREPARING CHEMICAL MECHANICAL Mass
CA2133574C (en) Method of producing pulp
JPH03227472A (en) Calculation of h-factor of continuous digester
EP0782642B1 (en) Method and apparatus for the continuous production of cellulosic pulp
US20010035272A1 (en) Method for oxygen delignification of a digested pulp
SE0004049D0 (en) Method of continuous cooking of pulp
JPS63502522A (en) Control of bleaching of various pulps with peroxide
CA2357864A1 (en) Process for continuous cooking of pulp
US5766413A (en) Process for isothermal cooking pulp in a continuous digester
US6238517B1 (en) Method for controlling oxygen delignification of pulp
JP3064616B2 (en) Method for controlling kappa number of pulp in vertical continuous digester with modified cooking method
CN104452395A (en) Method and device for oxygen delignification for bagasse pulping
JPH05247864A (en) Bleaching of cellulose pulp
CA2001270A1 (en) Method for the treatment of spent liquers in pulp production processes in the wood-processing industry
SU1587095A1 (en) Method of producing bleached pulp for chemical processing
JPH04119185A (en) Treatment of screen reject
JP3091777B2 (en) Control device of digester
Al-Shaikh et al. Multilevel Control of Continuous Digesters—Application and Results
SU617505A1 (en) Liquor for obtaining high-yield fibrous cellulose-containing semifinished product
JP2003278088A (en) Method for producing ecf bleached pulp