JPH03223119A - Low loss mn-zn-based ferrite - Google Patents

Low loss mn-zn-based ferrite

Info

Publication number
JPH03223119A
JPH03223119A JP2091359A JP9135990A JPH03223119A JP H03223119 A JPH03223119 A JP H03223119A JP 2091359 A JP2091359 A JP 2091359A JP 9135990 A JP9135990 A JP 9135990A JP H03223119 A JPH03223119 A JP H03223119A
Authority
JP
Japan
Prior art keywords
loss
oxide
mol
zno
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2091359A
Other languages
Japanese (ja)
Other versions
JP2892095B2 (en
Inventor
Hideaki Koheki
英明 小日置
Satoru Narutani
成谷 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2091359A priority Critical patent/JP2892095B2/en
Publication of JPH03223119A publication Critical patent/JPH03223119A/en
Application granted granted Critical
Publication of JP2892095B2 publication Critical patent/JP2892095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a ferrite capable of remarkably reducing loss in using a transformer for a switching power source by blending SiO2, CaO, V2O5, Ta2O5 and TiO2 with Fe2O3, MnO and ZnO as basic components. CONSTITUTION:A low loss Mn-Zn-based ferrite obtained by adding and blending 0.008-0.025wt.% SiO2, 0.02-0.15wt.% CaO, 0.001-0.05wt.% V2O5, 0.01-0.1wt.% Ta2O5 and 0.05-0.4wt.% TiO2 with 52-54.5mol% Fe2O3, 33-40mol% MnO and 6-13mol% ZnO as basic components. The operating temperature of a transformer for a switching power source is normally 60-70 deg.C. Accordingly, it is desirable that power loss within the aforementioned temperature range is low and the iron loss has negative temperature dependence from ambient temperature to a temperature range of about 80-120 deg.C exceeding the operating temperature. The blending ratio of the Fe2O3, MnO and ZnO is preferably within the above- mentioned range from the aforementioned viewpoint.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、スイッチング電源用トランス等の用途に供
して好適な低損失Mn −Zn系フェライトに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a low-loss Mn-Zn ferrite suitable for use in transformers for switching power supplies and the like.

(従来の技術) Mn−Zn系フェライトは、各種通信機器、民生機器な
どのトランス材として使用されている。このMn−Zn
系フェライトに要求される特性としては、高飽和磁束密
度、高透磁率、高抵抗および低鉄損など種々の特性が挙
げられるが、特にこの発明で対象とするようなスイッチ
ング電源用トランスについては、高磁場下において低損
失であることがとりわけ重要とされる。
(Prior Art) Mn-Zn ferrite is used as a transformer material for various communication devices, consumer devices, and the like. This Mn-Zn
The properties required of the ferrite-based ferrite include various properties such as high saturation magnetic flux density, high magnetic permeability, high resistance, and low iron loss.In particular, for transformers for switching power supplies as the subject of this invention, Low loss under high magnetic fields is particularly important.

このためMn −Zn系フェライトにおいては、従来か
ら種々の微量成分を添加することによってその改善が試
みられている。
For this reason, attempts have been made to improve Mn-Zn ferrite by adding various trace components.

例えば特開昭58−15037号公報ではNb2O2の
添加により、また特開昭60−132301号公報では
Nb2O,。
For example, in JP-A-58-15037, Nb2O2 is added, and in JP-A-60-132301, Nb2O is added.

Cab、 5io2. V2O5+ Zr0z+ Al
zO,、5n02. CuOおよびCaO等の添加によ
り、現在スイッチング周波数として標準になりつつある
100 kHzにおける損失の改善を図っており、10
0 kHz、 200 mTにおける鉄損値として30
0〜350 mW/cm”までのレベルが実現されてい
る。
Cab, 5io2. V2O5+ Zr0z+ Al
zO,,5n02. By adding CuO, CaO, etc., we aim to improve the loss at 100 kHz, which is currently becoming the standard switching frequency.
The iron loss value at 0 kHz and 200 mT is 30
Levels from 0 to 350 mW/cm'' have been achieved.

ところで最近では、電源の一層の小型化のために、使用
周波数が高周波化(500kHz 〜I MHz )す
る傾向にあり、その目的にかなうMn −Zn系フェラ
イトの開発も進められていて、例えば特開昭63−62
206号公報においてはTiO2,Taxes、 Si
O2t CaOの添加により500 kHz以上の周波
数での鉄損の改善が試みられている。
By the way, recently, in order to further downsize power supplies, the frequency used has tended to become higher (500 kHz to I MHz), and Mn-Zn ferrites that meet this purpose are being developed. Showa 63-62
In Publication No. 206, TiO2, Taxes, Si
Attempts have been made to improve iron loss at frequencies above 500 kHz by adding O2tCaO.

(発明が解決しようとする課B) この発明は、前述したとおり、現在スイ・ノチング電源
周波数として標準になりつつある100 kHz。
(Problem B to be Solved by the Invention) As mentioned above, this invention deals with the power supply frequency of 100 kHz, which is currently becoming the standard frequency for power notching.

200 mTにおける鉄損値300〜3501/Cl1
1″をさらに改善し、スイッチング電源用トランスとし
て使用した場合において損失を大幅に低減することがで
きる低損失Mn −Zn系フェライトを提案することを
目的とする。
Iron loss value at 200 mT 300-3501/Cl1
The purpose of the present invention is to further improve 1'' and to propose a low-loss Mn-Zn-based ferrite that can significantly reduce loss when used as a transformer for a switching power supply.

なお500 k)lz以上の周波数において低鉄損化を
はかる技術は、100 kHz程度の周波数で200 
mTに達する高磁場化の鉄損について見ると、従来材を
超える低鉄損を与えることはできず、上記の特性値が得
られている例はない。
Note that the technology for reducing core loss at frequencies of 500 k)lz or higher is
Looking at the iron loss in high magnetic fields reaching mT, it is not possible to provide a lower iron loss that exceeds that of conventional materials, and there is no example in which the above characteristic values have been obtained.

たとえば前掲特開昭63−62206号公報において、
その実施例1の特性を示す第4図に開示された曲線GI
Oについて見ると、100 kl(z、1000ガウス
(100mT)における鉄損値は70°Cで約50 m
W/cm3であるが、この値をもとに鉄損の最大磁束密
度依存性から100 k)Iz、 200mTにおける
鉄損値を評価すると約340〜380 mW/cm” 
となる。
For example, in the above-mentioned Japanese Patent Application Publication No. 63-62206,
The curve GI disclosed in FIG. 4 showing the characteristics of Example 1
Regarding O, the iron loss value at 100 kl (z, 1000 Gauss (100 mT) is approximately 50 m at 70°C.
W/cm3, but based on this value and evaluating the iron loss value at 100 k) Iz and 200 mT from the maximum magnetic flux density dependence, it is approximately 340 to 380 mW/cm.
becomes.

(課題を解決するための手段) すなわちこの発明の要旨構成は次のとおりである。(Means for solving problems) That is, the gist of the present invention is as follows.

(1) FezO:+  :  52〜54.5 mol%、M
n0=33〜4011IO1%およびZnO:  6〜
13 mol% を基本成分とし、この基本成分に SiO□ : 0.008〜0.025wt%、CaO
: 0.02〜0.15 wt%、V2O5: 0.0
01〜0.05 wt%、Ta2es : 0.01 
”0.1 wt%およびTiO□ : 0.05〜0.
4 wt%を添加配合してなる低損失Mn −Znn系
フシイ(第1発明)。
(1) FezO:+: 52-54.5 mol%, M
n0=33~4011IO1% and ZnO: 6~
13 mol% as a basic component, and this basic component contains SiO□: 0.008 to 0.025 wt%, CaO
: 0.02-0.15 wt%, V2O5: 0.0
01-0.05 wt%, Ta2es: 0.01
"0.1 wt% and TiO□: 0.05-0.
A low-loss Mn-Znn-based adhesive (first invention) obtained by adding and blending 4 wt% of Mn-Znn.

Fe2r3: 52〜54.5 mol%、MnO= 
33〜40 mol%およびZnO: 6〜13 mo
l% (2) ト を基本成分とし、この基本成分に Sing  : 0.008〜0.025wt%、Ca
O: 0.02〜0.15 wt%、酸化バナジウム:
 0.001〜0.05 wt%、酸化タンタル: 0
.01〜0.1 wt%および酸化チタン:O,OS〜
0.4 ivt%を含有してなる低損失Mn−Zn系フ
ェライト2発明)。
Fe2r3: 52-54.5 mol%, MnO=
33-40 mol% and ZnO: 6-13 mo
1% (2) is the basic component, and this basic component contains Sing: 0.008 to 0.025wt%, Ca
O: 0.02-0.15 wt%, vanadium oxide:
0.001-0.05 wt%, tantalum oxide: 0
.. 01~0.1 wt% and titanium oxide: O, OS~
Low-loss Mn-Zn ferrite containing 0.4 ivt% (2 invention).

Fe2O:+ : 52〜54.5 mol%、MnO
: 33〜40 mol%およびZnO:  6〜13
 mol% を基本成分とし、この基本成分に SiO□ : 0.008〜0.025wt%、CaO
: 0.02〜0.15 iyt%、V2O5: 0.
001〜0.05 wt%、Ta2O5 : 0.01
〜0.1 wt%およびTi(h  : 0.05〜0
.4 wt%(3) (第 と、 酸化りん及び/又は酸化ほう素: 0.003 wt%
以下 とを添加配合してなる低損失Mn−Zn系フェライト(
第3発明)。
Fe2O:+: 52-54.5 mol%, MnO
: 33-40 mol% and ZnO: 6-13
mol% is the basic component, and this basic component includes SiO□: 0.008 to 0.025wt%, CaO
: 0.02-0.15 iyt%, V2O5: 0.
001-0.05 wt%, Ta2O5: 0.01
~0.1 wt% and Ti (h: 0.05~0
.. 4 wt% (3) (Phosphorus oxide and/or boron oxide: 0.003 wt%
Low-loss Mn-Zn ferrite made by adding and blending the following (
Third invention).

Fezes : 52〜54.5 mol%、MnO:
 33〜40 mol%およびZnO:  6〜13 
mol% を基本成分とし、この基本成分に 5in2: 0.008〜0.025wt%、CaO:
 0.02〜0.15 wt%、酸化バナジウム: o
、ooi〜0.05 imt%、酸化タンタル: 0.
01〜0.1 wt%および酸化チタン: 0.05〜
0.4 wt%と、 (4) 酸化りん及び/又は酸化ほう素: 0.003 wt%
以下 とを含有してなる低損失Mn −Zn系フェライト(第
4発明)。
Fezes: 52-54.5 mol%, MnO:
33-40 mol% and ZnO: 6-13
mol% is the basic component, and this basic component contains 5in2: 0.008-0.025wt%, CaO:
0.02-0.15 wt%, vanadium oxide: o
, ooi~0.05 imt%, tantalum oxide: 0.
01~0.1 wt% and titanium oxide: 0.05~
(4) Phosphorus oxide and/or boron oxide: 0.003 wt%
A low-loss Mn-Zn-based ferrite (fourth invention) comprising:

(作 用) まずこの発明において、基本成分の配合割合を上記の範
囲に限定した理由について説明する。
(Function) First, in this invention, the reason why the blending ratio of the basic components is limited to the above range will be explained.

FezO:+ : 52〜54.5 mol%、Mn0
=33〜4011I01%、ZnO:  6〜13 m
ol%; スイッチング電源用トランスの動作温度は、通常60〜
70’Cであり、従ってこの温度範囲で電力損失が低く
、かつ室温から動作温度を超える80〜120°C程度
の温度域まで鉄損が負の温度依存性をもつことが望まし
い。この観点からFe、O,、MnOおよびZnOの配
合割合を検討した結果、上記の範囲が得られたのである
FezO:+: 52-54.5 mol%, Mn0
=33~4011I01%, ZnO: 6~13 m
ol%; The operating temperature of a switching power supply transformer is usually 60~
70'C, therefore, it is desirable that the power loss is low in this temperature range, and that the iron loss has a negative temperature dependence from room temperature to a temperature range of about 80 to 120 degrees Celsius, which exceeds the operating temperature. From this point of view, as a result of examining the blending ratios of Fe, O, MnO, and ZnO, the above range was obtained.

なおFezO3原料としては、FezO1だけでなく、
FeOやFe50.、さらには焼成により3.Fe2O
3に変わることのできる化合物、例えば水酸化鉄、しゅ
う酸鉄などを使用することができる。またMnO原料と
しては、MnOのみならず、Mn0z、 Mn30.さ
らには焼成によりMn(lに変わることのできる化合物
、例えば炭酸マンガン、しゅう酸マンガンなどを使用す
ることができる。さらにZnO原料としては、ZnOの
みに限らず、焼成によりZnQに変わることのできる化
合物、例えば炭酸亜鉛、しゅう酸亜鉛などを使用するこ
とができる。
Note that FezO3 raw materials include not only FezO1 but also
FeO and Fe50. , and further by firing 3. Fe2O
Compounds that can be substituted with 3, such as iron hydroxide, iron oxalate, etc., can be used. In addition, MnO raw materials include not only MnO but also Mn0z, Mn30. Furthermore, it is possible to use compounds that can be converted into Mn(l) by calcination, such as manganese carbonate and manganese oxalate.Furthermore, the ZnO raw material is not limited to only ZnO, but also compounds that can be converted to ZnQ by calcination. For example, zinc carbonate, zinc oxalate, etc. can be used.

Sing  :  0.008〜0.025wt%Si
O□は、CaOとの共存によって粒界の比抵抗を高め、
渦電流損の低減に有効に寄与するが、含有量が、0.0
08wt%に満たないとその添加効果に乏しく、一方0
.025wt%を超えると焼成時に異常粒成長が起こり
易く特性が不安定になるので、0.008〜0.025
wt%の範囲に限定した。
Sing: 0.008~0.025wt%Si
O□ increases the specific resistance of grain boundaries by coexisting with CaO,
It effectively contributes to reducing eddy current loss, but the content is 0.0
If the amount is less than 0.08 wt%, the addition effect will be poor;
.. If it exceeds 0.025 wt%, abnormal grain growth tends to occur during firing and the properties become unstable, so 0.008 to 0.025
The range was limited to wt%.

CaO: 0.02〜0.15wt% CaOは、Singとの共存下で効果的に粒界抵抗を高
め、もって低鉄損をもたらす有用成分であるが、含有量
が0.02wt%に満だないと粒界抵抗の向上効果に乏
しく、一方0.15wt%を超えると、逆に損失が大き
くなるので、0.02〜0.15wt%の範囲で含有さ
せるものとした。
CaO: 0.02 to 0.15 wt% CaO is a useful component that effectively increases grain boundary resistance in coexistence with Sing and thereby brings about low core loss, but the content is less than 0.02 wt%. Without it, the effect of improving grain boundary resistance will be poor, and on the other hand, if it exceeds 0.15 wt%, the loss will increase, so the content was determined to be in the range of 0.02 to 0.15 wt%.

酸化バナジウム70.001〜0.05wt%この発明
において、酸化バナジウムとは、主にv20.を指すけ
れども、必ずしもこの酸化物形態に限るものではなく、
V2O5以外の酸化物を含有する場合をも含む。なおり
205以外の酸化物を含有する場合でも、その組成範囲
は■20.換算で表すものとする。
Vanadium oxide 70.001 to 0.05 wt% In this invention, vanadium oxide mainly refers to v20. However, it is not necessarily limited to this oxide form,
It also includes cases where oxides other than V2O5 are contained. Even if it contains oxides other than Naori 205, its composition range is ■20. It shall be expressed in terms of conversion.

さて酸化バナジウムは、粒界抵抗を高める作用をそなえ
、しかもその効果は5t(hおよびCaO、さらには後
述する酸化タンタルとの共存下でより一層大きくなる。
Now, vanadium oxide has the effect of increasing grain boundary resistance, and this effect becomes even greater when it coexists with 5t(h), CaO, and tantalum oxide, which will be described later.

しかしながら含有量がO,001wt%に満たない場合
はその効果が小さく、一方0.05wt%を超えて含有
させると結晶粒の異常成長が生じ、損失の大幅な増加を
招く。
However, if the content is less than 0.001 wt%, the effect is small, while if the content exceeds 0.05 wt%, abnormal growth of crystal grains will occur, leading to a significant increase in loss.

酸化タンタル: 0.01〜0.1wt%この発明にお
いて、酸化タンタルとは主にTa205を指すけれども
、必ずしもこの酸化物形態に限るものではなく、Taz
05以外の酸化物を含有する場合をも含む。なおTax
es以外の酸化物を含有する場合でも、その組成範囲は
Ta2O5換算で表すものとする。
Tantalum oxide: 0.01 to 0.1 wt% In this invention, tantalum oxide mainly refers to Ta205, but it is not necessarily limited to this oxide form, and Taz
This also includes cases where oxides other than 05 are contained. Please note that Tax
Even when oxides other than es are contained, the composition range shall be expressed in terms of Ta2O5.

さて酸化タンタルは、酸化バナジウムと同様、SiO□
、 CaOさらには酸化バナジウムとの共存下で比抵抗
の増大に有効に寄与するが、含有量が0.01wt%未
満ではその効果に乏しく、一方0.1wt%を超えると
、逆に損失の増大を招(。
Now, like vanadium oxide, tantalum oxide is SiO□
, CaO effectively contributes to increasing resistivity in the coexistence with vanadium oxide, but if the content is less than 0.01 wt%, the effect is poor, while if it exceeds 0.1 wt%, the loss increases. Invite (.

酸化チタン:0.05〜0.1wt% この発明において、酸化チタンとは、主にTie。Titanium oxide: 0.05-0.1wt% In this invention, titanium oxide mainly refers to Tie.

を指すけれども、必ずしもこの酸化物形態に限るもので
はな(、Tie、以外の酸化物を含有する場合をも含む
。なおTie、以外の酸化物を含有する場合でも、その
組成範囲はTi(h換算で表すものとする。
However, it is not necessarily limited to this oxide form (it also includes cases in which oxides other than Tie are contained. Even if oxides other than Tie are contained, the composition range is Ti(h It shall be expressed in terms of conversion.

さて酸化チタンは、フェライトコア焼成時の冷却過程で
の粒界の再酸化を促進し、粒界抵抗を大きくする効果が
あるが、0.05wt%に満だないとその効果が少なく
、一方0.4wt%を超えると逆に損失の増加を招く。
Now, titanium oxide has the effect of promoting grain boundary reoxidation during the cooling process during ferrite core firing and increasing grain boundary resistance, but if it is less than 0.05 wt%, the effect is small; If it exceeds .4 wt%, the loss will increase.

酸化りん及び/又は酸化ほう素: 0.003wt%以
下この発明において、酸化りんおよび酸化ほう素とは、
それぞれ主にP2O,およびB20.を指すけれども、
必ずしもこの酸化物形態に限るものではなく、P2O,
やB2O3以外の酸化物を含有する場合をも含む。
Phosphorus oxide and/or boron oxide: 0.003 wt% or less In this invention, phosphorus oxide and boron oxide are:
Mainly P2O and B20. Although it refers to
It is not necessarily limited to this oxide form, but P2O,
It also includes cases where oxides other than B2O3 are contained.

なおP2O5やB20.以外の酸化物を含有する場合で
も、その組成範囲はP2O,やBz(h換算で表すもの
とする。
In addition, P2O5 and B20. Even when containing oxides other than oxides, the composition range shall be expressed in terms of P2O, Bz (h).

さて酸化りんおよび酸化ほう素はいずれも、微量の添加
によって鉄損の低減をもたらす有用成分である。しかし
ながら含有量が0.003ewt%を超えて含有される
と、かえって鉄損の劣化を招くので、これらの成分は単
独使用、併用いずれの場合においても、0.003wt
%以下(好ましくは0.0001%1t%以上)の範囲
で添加するものとした。
Both phosphorus oxide and boron oxide are useful components that reduce iron loss when added in trace amounts. However, if the content exceeds 0.003wt%, it will actually cause deterioration of iron loss, so whether these components are used alone or in combination, 0.003wt%
% (preferably 0.0001% 1t% or more).

なお酸化りんの添加に際しては、りん酸()lsPO4
)や無水りん酸(P2O5)、さらには酸化物磁性体を
構成する金属のりん酸塩などが有利に適合する。また酸
化ほう素の添加に際しては、ほう酸()13BO3)や
無水ほう酸(BzO,)、さらには酸化物磁性体を構成
する金属のほう酸塩などが有利に適合する。
When adding phosphorous oxide, phosphoric acid ()lsPO4
), phosphoric anhydride (P2O5), and metal phosphates constituting the oxide magnetic material are advantageously suitable. Further, when adding boron oxide, boric acid (13BO3), anhydrous boric acid (BzO, ), and borates of metals constituting the oxide magnetic material are advantageously suitable.

以上述べたとおり、100 kHzにおよぶ高周波領域
での損失の低減には、比抵抗を高めることが非常に効果
的であるが、この発明ではSin、、 CaOの存在下
で、酸化バナジウム(主としてvzos) 、酸化タン
タル(主としてTag’s )および酸化チタン(主と
してTi1t) 、さらには酸化りん(主としてP2O
5)及び/又は酸化ほう素(主としてBz(h )を含
有させ、粒界に均一に分散させることにより、上記の目
的を達成したものである。
As mentioned above, increasing the resistivity is very effective in reducing loss in the high frequency range of 100 kHz, but in this invention, vanadium oxide (mainly vzos ), tantalum oxide (mainly Tag's) and titanium oxide (mainly Ti1t), as well as phosphorus oxide (mainly P2O
5) and/or boron oxide (mainly Bz(h 2 )), and by uniformly dispersing it in the grain boundaries, the above object is achieved.

ここにこの発明に従うフェライトを製造するには、各成
分粉末原料を所定の組成になるように混合したのち、常
法に従い、圧縮成形ついで焼結を施せば良い。
In order to produce the ferrite according to the present invention, the powdered raw materials of each component are mixed to a predetermined composition, and then compression molded and sintered according to a conventional method.

(実施例) 実施例I Fezes : 52.9 mol%、MnO: 35
.4 n+o1%およびZnO: 11.7 a+o1
%からなる基本組成の原料を混合したのち、大気中にて
900°C13時間仮焼した。
(Example) Example I Fezes: 52.9 mol%, MnO: 35
.. 4 n+o1% and ZnO: 11.7 a+o1
After mixing the raw materials with a basic composition of 10%, they were calcined in the air at 900°C for 13 hours.

この仮焼粉に対し、表1に示す割合(添字a)で5iO
t+ CaO(CaCO*を使用)+ V2O3,Ta
g’sおよびTi(hを添加配合し、同時に湿式ボール
ミルで粉砕・混合した。ついで粉砕粉にバインダーとし
てPVAを添加し、造粒した後、外径36m、内径24
m、高さ12am+のリング状に成形したのち、酸素濃
度を制御した窒素雰囲気中で1320°C13時間の焼
成を行った。
To this calcined powder, 5iO
t+ CaO (using CaCO*) + V2O3, Ta
g's and Ti (h) were added and blended, and simultaneously ground and mixed in a wet ball mill. Next, PVA was added as a binder to the ground powder, and after granulation, the outer diameter was 36 m and the inner diameter was 24 m.
After molding into a ring shape with a height of 12 am+ and a height of 12 am+, firing was performed at 1320° C. for 13 hours in a nitrogen atmosphere with controlled oxygen concentration.

かくして得られた焼結コアの5t02. Cab、 V
tOs+Ta2O5およびTiO□の含有量(添字b)
、ならびに周波数: 100 kHz 、最大磁束密度
: 200+aT、温度80°Cにおける鉄損値を交流
BHループトレーサーにて測定した結果を表1に併記す
る。
The sintered core thus obtained was 5t02. Cab, V
tOs+Ta2O5 and TiO□ content (subscript b)
Table 1 also shows the results of measuring the iron loss value using an AC BH loop tracer at a frequency of 100 kHz, a maximum magnetic flux density of 200+aT, and a temperature of 80°C.

実施例2 実施例1と同様に、Fe!0@、 MnOおよびZnO
がそれぞれ、52.9 mol%、 35.4 so1
%、 11.7 mol%の基本組成の原料を、混合、
仮焼したのち、この仮焼粉に5jOz+ Cab、 v
、o、、 TaxesおよびTie、、さらにはB20
.およびB20.を、表2に示す割合(添字a)で添加
し、同時に湿式ボールミルで粉砕・混合した。ついで造
粒およびプレス成形後、1320’Cで3時間の焼成を
行った。
Example 2 As in Example 1, Fe! 0@, MnO and ZnO
are 52.9 mol% and 35.4 so1, respectively.
%, 11.7 mol% of the basic composition of the raw materials were mixed,
After calcining, add 5jOz+ Cab, v to this calcined powder.
,o,, Taxes and Tie, and even B20
.. and B20. were added in the proportions shown in Table 2 (subscript a), and simultaneously ground and mixed using a wet ball mill. Then, after granulation and press molding, firing was performed at 1320'C for 3 hours.

かくして得られた焼結コアの5jCh+ Cab、 V
2O5Tat03およびTiO□の含有量(添字b)、
ならびに100 kHz 、200 mT、80°Cに
おける鉄損値の測定結果を表2に併記する。
5jCh+ Cab, V of the sintered core thus obtained
Content of 2O5Tat03 and TiO□ (subscript b),
Table 2 also shows the measurement results of iron loss values at 100 kHz, 200 mT, and 80°C.

実施例3 実施例1.2と同様に.Fe2O3 : 52.9 m
ol%、MnO: 35.4 mol%およびZnO:
 11.7 mol%からなる基本組成の原料を、混合
、仮焼したのち、この仮焼粉に5IOz+ Cab、 
V!051 TaxesおよびTie、、さらにはp、
o、およびB20.を添加(添字a)L、同時に湿式ボ
ールミルで粉砕・混合した。ついで造粒およびプレス成
形後、1320°Cで3時間の焼成を行った。
Example 3 Same as Example 1.2. Fe2O3: 52.9 m
ol%, MnO: 35.4 mol% and ZnO:
After mixing and calcining raw materials with a basic composition of 11.7 mol%, 5IOz+ Cab,
V! 051 Taxes and Tie, and further p.
o, and B20. was added (subscript a) L, and simultaneously ground and mixed in a wet ball mill. Then, after granulation and press molding, firing was performed at 1320°C for 3 hours.

かくして得られた焼結コアのSin、、 Cab、ν2
0゜Ta、OlおよびTiO□の含有量(添字b)、な
らびに100 kHz 、200 mT、80°Cにお
ける鉄損値の測定結果を表3に併記する。
Sin, Cab, ν2 of the sintered core thus obtained
The content of 0°Ta, Ol, and TiO□ (subscript b) and the measurement results of iron loss values at 100 kHz, 200 mT, and 80°C are also listed in Table 3.

(発明の効果) かくしてこの発明によれば、スイッチング電源周波数が
100 kHz程度の高周波電源用トランスのコアとし
て、従来の材料と比較して高磁場下での損失が格段に小
さいMn −Zn系ソフトフェライトを得ることができ
る。
(Effects of the Invention) Thus, according to the present invention, the Mn-Zn soft material, which has much lower loss under high magnetic fields than conventional materials, can be used as the core of a transformer for a high-frequency power supply with a switching power supply frequency of about 100 kHz. Ferrite can be obtained.

Claims (4)

【特許請求の範囲】[Claims] 1.Fe_2O_3:52〜54.5mol%、MnO
:33〜40mol%および ZnO:6〜13mol% を基本成分とし、この基本成分に SiO_2:0.008〜0.025wt%、CaO:
0.02〜0.15wt%、 V_2O_5:0.001〜0.05 wt%、Ta_
2O_5:0.01〜0.1wt%およびTiO_2:
0.05〜0.4wt% を添加配合してなる低損失Mn−Zn系フェライト。
1. Fe_2O_3: 52-54.5 mol%, MnO
:33-40 mol% and ZnO: 6-13 mol% as basic components, SiO_2: 0.008-0.025 wt%, CaO:
0.02-0.15 wt%, V_2O_5:0.001-0.05 wt%, Ta_
2O_5: 0.01-0.1wt% and TiO_2:
A low-loss Mn-Zn ferrite containing 0.05 to 0.4 wt%.
2.Fe_2O_3:52〜54.5mol%、MnO
:33〜40mol%および ZnO:6〜13mol% を基本成分とし、この基本成分に SiO_2:0.008〜0.025wt%、CaO:
0.02〜0.15wt%、 酸化バナジウム:0.001〜0.05wt%、酸化タ
ンタル:0.01〜0.1wt%および酸化チタン:0
.05〜0.4wt% を含有してなる低損失Mn−Zn系フェライト。
2. Fe_2O_3: 52-54.5 mol%, MnO
:33-40 mol% and ZnO: 6-13 mol% as basic components, SiO_2: 0.008-0.025 wt%, CaO:
0.02 to 0.15 wt%, vanadium oxide: 0.001 to 0.05 wt%, tantalum oxide: 0.01 to 0.1 wt%, and titanium oxide: 0
.. A low-loss Mn-Zn ferrite containing 05 to 0.4 wt%.
3.Fe_2O_3:52〜54.5mol%、MnO
:33〜40mol%および ZnO:6〜13mol% を基本成分とし、この基本成分に SiO_2:0.008〜0.025wt%、CaO:
0.02〜0.15wt%、 V_2O_5:0.001〜0.05wt%、Ta_2
O_5:0.01〜0.1wt%およびTiO_2:0
.05〜0.4wt% と、 酸化りん及び/又は酸化ほう素:0.003wt%以下 とを添加配合してなる低損失Mn−Zn系フェライト。
3. Fe_2O_3: 52-54.5 mol%, MnO
:33-40 mol% and ZnO: 6-13 mol% as basic components, SiO_2: 0.008-0.025 wt%, CaO:
0.02-0.15wt%, V_2O_5:0.001-0.05wt%, Ta_2
O_5:0.01-0.1wt% and TiO_2:0
.. 05 to 0.4 wt% and 0.003 wt% or less of phosphorus oxide and/or boron oxide.
4.Fe_2O_3:52〜54.5mol%、MnO
:33〜40mol%および ZnO:6〜13mol% を基本成分とし、この基本成分に SiO_2:0.008〜0.025wt%、CaO:
0.02〜0.15wt%、 酸化バナジウム:0.001〜0.05wt%、酸化タ
ンタル:0.01〜0.1wt%および酸化チタン:0
.05〜0.4wt% と、 酸化りん及び/又は酸化ほう素:0.003wt%以下 とを含有してなる低損失Mn−Zn系フェライト。
4. Fe_2O_3: 52-54.5 mol%, MnO
:33-40 mol% and ZnO: 6-13 mol% as basic components, SiO_2: 0.008-0.025 wt%, CaO:
0.02 to 0.15 wt%, vanadium oxide: 0.001 to 0.05 wt%, tantalum oxide: 0.01 to 0.1 wt%, and titanium oxide: 0
.. 05 to 0.4 wt%, and 0.003 wt% or less of phosphorus oxide and/or boron oxide.
JP2091359A 1989-12-26 1990-04-07 Low loss Mn-Zn ferrite Expired - Fee Related JP2892095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2091359A JP2892095B2 (en) 1989-12-26 1990-04-07 Low loss Mn-Zn ferrite

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33502789 1989-12-26
JP1-335027 1989-12-26
JP2091359A JP2892095B2 (en) 1989-12-26 1990-04-07 Low loss Mn-Zn ferrite

Publications (2)

Publication Number Publication Date
JPH03223119A true JPH03223119A (en) 1991-10-02
JP2892095B2 JP2892095B2 (en) 1999-05-17

Family

ID=26432801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2091359A Expired - Fee Related JP2892095B2 (en) 1989-12-26 1990-04-07 Low loss Mn-Zn ferrite

Country Status (1)

Country Link
JP (1) JP2892095B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242904A (en) * 1991-01-08 1992-08-31 Nippon Steel Corp Oxide magnetic material with low power loss
JP2000182816A (en) * 1998-12-16 2000-06-30 Tdk Corp Manganese-based ferrite, transformer using the same and choke coil
US6627103B2 (en) 2000-03-31 2003-09-30 Tdk Corporation Mn-Zn ferrite production process, Mn-Zn ferrite, and ferrite core for power supplies
JP2017014096A (en) * 2015-07-06 2017-01-19 Jfeケミカル株式会社 IRON OXIDE FOR MnZn-BASED FERRITE RAW MATERIAL, MnZn-BASED FERRITE AND MANUFACTURING METHOD OF MnZn-BASED FERRITE
CN114105627A (en) * 2021-12-24 2022-03-01 深圳信义磁性材料有限公司 Wide-temperature low-loss ferrite and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242904A (en) * 1991-01-08 1992-08-31 Nippon Steel Corp Oxide magnetic material with low power loss
JP2000182816A (en) * 1998-12-16 2000-06-30 Tdk Corp Manganese-based ferrite, transformer using the same and choke coil
US6627103B2 (en) 2000-03-31 2003-09-30 Tdk Corporation Mn-Zn ferrite production process, Mn-Zn ferrite, and ferrite core for power supplies
JP2017014096A (en) * 2015-07-06 2017-01-19 Jfeケミカル株式会社 IRON OXIDE FOR MnZn-BASED FERRITE RAW MATERIAL, MnZn-BASED FERRITE AND MANUFACTURING METHOD OF MnZn-BASED FERRITE
CN114105627A (en) * 2021-12-24 2022-03-01 深圳信义磁性材料有限公司 Wide-temperature low-loss ferrite and preparation method thereof
CN114105627B (en) * 2021-12-24 2022-06-17 深圳信义磁性材料有限公司 Wide-temperature low-loss ferrite and preparation method thereof

Also Published As

Publication number Publication date
JP2892095B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
JP2000286119A (en) Ferrite
JP3597673B2 (en) Ferrite material
US5368763A (en) Low power loss Mn-Zn ferrites
JPH03223119A (en) Low loss mn-zn-based ferrite
JP2001261344A (en) Mn-zn ferrite and method of producing the same
JPH05198416A (en) Mn-zn based ferrite
JPH07142222A (en) Low-loss mn-zn soft ferrite
JP3446082B2 (en) Mn-Zn ferrite and method for producing the same
JP3597666B2 (en) Mn-Ni ferrite material
JP3597665B2 (en) Mn-Ni ferrite material
JPH05267040A (en) Low-loss mn-zn ferrite
JP2935219B1 (en) Method for producing Mn-Zn ferrite core
JP2000182816A (en) Manganese-based ferrite, transformer using the same and choke coil
JP2654205B2 (en) High frequency low loss Mn-Zn ferrite with a frequency of 100KHz or more
JP3499283B2 (en) High permeability oxide magnetic material
TWI663127B (en) Low magnetic-loss nickel-copper-zinc ferrite soft magnetic powder material and transformer having magnetic core made thereof
JP3597605B2 (en) High permeability oxide magnetic material
JP3157525B2 (en) Low loss Mn-Zn ferrite
JP2899908B2 (en) Low loss oxide magnetic material
JP3552794B2 (en) Method for producing low-loss oxide magnetic material
JP3401298B2 (en) Low loss Mn-Zn soft ferrite
JP3366707B2 (en) Mn-Zn ferrite
JP2510788B2 (en) Low power loss oxide magnetic material
JP3617070B2 (en) Low loss ferrite manufacturing method
JPS61101458A (en) Manganese base ferrite composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees