JPH03222258A - Lithium iron sulfide battery - Google Patents

Lithium iron sulfide battery

Info

Publication number
JPH03222258A
JPH03222258A JP2015769A JP1576990A JPH03222258A JP H03222258 A JPH03222258 A JP H03222258A JP 2015769 A JP2015769 A JP 2015769A JP 1576990 A JP1576990 A JP 1576990A JP H03222258 A JPH03222258 A JP H03222258A
Authority
JP
Japan
Prior art keywords
iron sulfide
positive electrode
electrode
battery
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015769A
Other languages
Japanese (ja)
Other versions
JP2932563B2 (en
Inventor
Yoshinori Kodaira
小平 芳典
Nobuhiro Endo
信博 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2015769A priority Critical patent/JP2932563B2/en
Publication of JPH03222258A publication Critical patent/JPH03222258A/en
Application granted granted Critical
Publication of JP2932563B2 publication Critical patent/JP2932563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE:To prevent the separation of iron sulfide from a collector into practical use by applying iron sulfide to be positive-electrode active material to the collector using fluorine group rubber as binder to form a positive electrode. CONSTITUTION:A positive electrode 1, a negative electrode 2 and a pair of separators 3 are used for lamination with each other and winding many times to form a winding structure 4 in a spiral type. In this case, iron sulfide to be positive-electrode active material is applied to a collector using fluorine group rubber as binder to form the positive electrode 1. The blending ratio by weight of fluorine group rubber to iron sulfide is preferably 3% or more and less than 10%. If the ratio of fluorine group rubber is less than 3%, the positive electrode, or iron sulfide, is easily separated from the collector and if it is 10% or more the fill content of iron sulfide is decreased to cause less battery capacity. There is thus no separation of iron sulfide from the collector in even the case that the positive electrode 1 is wound in a spiral shape as in the negative electrode 2 to ensure reliability as the positive electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウム硫化鉄電池特にその正極に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a lithium iron sulfide battery, and in particular to a positive electrode thereof.

〔発明の概要〕[Summary of the invention]

本発明は、リチウム硫化鉄電池において、正極活物質で
ある硫化鉄をフッ素系ゴムをバインダーとして集電体に
塗布して正極を構成することにより、硫化鉄の集電体か
らの剥離を防ぎ、渦巻式構造のリチウム硫化鉄電池の実
用化を可能にしたものである。
The present invention provides a lithium iron sulfide battery in which iron sulfide, which is a positive electrode active material, is applied to a current collector using fluorine rubber as a binder to form a positive electrode, thereby preventing the iron sulfide from peeling off from the current collector. This made it possible to put a lithium iron sulfide battery with a spiral structure into practical use.

〔従来の技術〕[Conventional technology]

近年、ビデオカメラやヘッドフォンステレオ等の電子機
器の高性能化、小型化にいは目ざましいものがあり、こ
れらの電子機器の電源となる電池の重負荷特性の改善や
高容量化への要求も強まってきている。こうした小型電
子機器用電池としては、マンガン乾電池やアルカリマン
ガン乾電池が従来から用いられているが、最近はリチウ
ムを負極材料とし、硫化鉄を正極材料として用いたリチ
ウム硫化鉄電池が、保存性が良く且つ従来の電池とも電
圧の互換性のある1、5■を示すとして着目さるように
なってきた。
In recent years, there has been a remarkable increase in the performance and miniaturization of electronic devices such as video cameras and headphone stereos, and there is also a growing demand for improved heavy-load characteristics and higher capacity of the batteries that power these electronic devices. It's coming. Traditionally, manganese dry batteries and alkaline manganese dry batteries have been used as batteries for small electronic devices, but recently lithium iron sulfide batteries, which use lithium as the negative electrode material and iron sulfide as the positive electrode material, have a good shelf life. In addition, it has attracted attention because it exhibits a voltage of 1.5 cm, which is compatible with conventional batteries.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

リチウムを負極材料とした電池は、一般に非水電解液を
使用しているために、水溶液系の電解液を使用している
電池と比べ、基本的に電池の内部抵抗が高く、重負荷特
性が悪い。これを補うためにリチウムマンガン電池等は
渦巻式構造が採用され効果を上げている。これは帯状電
極を渦巻型に多数回巻いて得られるもので、この方式に
より電極の反応面積は大きくとれ、大電流での放電が可
能となっている。
Batteries that use lithium as the negative electrode material generally use a non-aqueous electrolyte, so compared to batteries that use an aqueous electrolyte, they basically have a higher internal resistance and less heavy load characteristics. bad. To compensate for this, lithium manganese batteries and the like have adopted a spiral structure, which has been effective. This is obtained by winding a band-shaped electrode many times in a spiral shape, and this method allows the electrode to have a large reaction area, making it possible to discharge with a large current.

しかしながら、この方式をリチウム硫化鉄電池に応用し
ようとした場合、電極を渦巻状に巻きとるときに硫化鉄
が集電体から剥離してしまい、電池が良好に作れないと
いう問題があった。
However, when attempting to apply this method to a lithium iron sulfide battery, there was a problem in that the iron sulfide peeled off from the current collector when the electrode was spirally wound, making it difficult to produce a good battery.

本発明は、上述の点に鑑み、正極即ち硫化鉄の集電体か
らの剥離を防ぎ実用可能にしたリチウム硫化鉄電池を提
供するものである。
In view of the above-mentioned points, the present invention provides a lithium iron sulfide battery which can be put to practical use by preventing the positive electrode, that is, iron sulfide, from peeling off from the current collector.

〔課題を解決するための手段] 本発明者らは、鋭意研究の結果、リチウム硫化鉄電池の
正極のバインダーとしてフッ素系ゴムを用いることによ
り、正極が集電体から剥離するのを防げるとの知見を得
た。
[Means for Solving the Problem] As a result of extensive research, the present inventors have found that by using fluorine rubber as a binder for the positive electrode of lithium iron sulfide batteries, it is possible to prevent the positive electrode from peeling off from the current collector. I gained knowledge.

そこで、本発明に係るリチウム硫化鉄電池は、正極活物
質である硫化鉄をフッ素系ゴムをバインダーとして集電
体に塗布してなる正極(1)を用いて構成する。
Therefore, the lithium iron sulfide battery according to the present invention is constructed using a positive electrode (1) formed by applying iron sulfide, which is a positive electrode active material, to a current collector using fluorine rubber as a binder.

フッ素系ゴムの配合比は硫化鉄の重量に対して3%以上
10%未満が望ましい。フッ素系ゴムが3%より少ない
と正極即ち硫化鉄が集電体から剥離しやすくなり、10
%以上だと硫化鉄の充填量が減少し、電池容量が少なく
なってしまうので好ましくない。
The blending ratio of fluororubber is desirably 3% or more and less than 10% based on the weight of iron sulfide. If the fluorine rubber content is less than 3%, the positive electrode, that is, iron sulfide, will easily peel off from the current collector,
% or more is not preferable because the amount of iron sulfide charged decreases and the battery capacity decreases.

フッ素系ゴムは、フッ素原子を含有するゴム状物質のこ
とであり、その代表的なものは、トリフルオロクロルエ
チレンとフッ化ビニリデンの共重合体 或はヘキサフルオロプロピレンとフッ化ビニリデンの共
重合体 等が挙げられる。このゴムの弾性は構造に起因しており
網目状に分子がからんでいるのでゴム状となる。こうし
たフッ素系ゴムの添加剤としては一般に加硫剤としてボ
リア短ン、ポリオール、ペルオキシド等が用いられてお
り、フッ素系ゴム100gに対して0.1〜5g程度添
加される。
Fluorine rubber is a rubber-like substance containing fluorine atoms, and typical examples are copolymers of trifluorochloroethylene and vinylidene fluoride or copolymers of hexafluoropropylene and vinylidene fluoride. etc. The elasticity of this rubber is due to its structure, and the molecules are entangled in a network, giving it a rubber-like appearance. As additives for such fluororubbers, boria trichloride, polyols, peroxides, etc. are generally used as vulcanizing agents, and about 0.1 to 5g are added to 100g of fluororubber.

〔作用〕[Effect]

上述の構成のリチウム硫化鉄電池においては、フッ素系
ゴムをバインダーとして硫化鉄を集電体に塗布してなる
正極(1)を用いることにより、正極(1)を負極(2
)と共に渦巻状に巻回した場合にも硫化鉄が集電体から
剥離せず、正極としての信頼性が保持される。
In the lithium iron sulfide battery configured as described above, the positive electrode (1) is made of a current collector coated with iron sulfide using fluorine rubber as a binder.
), the iron sulfide does not peel off from the current collector, and its reliability as a positive electrode is maintained.

(実施例〕 以下、第1図に従って実施例を説明する。(Example〕 An embodiment will be described below with reference to FIG.

実施例 本実施例ではバインダーに用いるフッ素ゴムとしては、
ヘキサフルオロプロピレンとフッ化ビニリデンを主体と
した共重合体、 (CHz’CFzチ、(CF、 CF+。
Example In this example, the fluororubber used for the binder is as follows:
A copolymer mainly composed of hexafluoropropylene and vinylidene fluoride, (CHz'CFz, (CF, CF+).

CF。C.F.

で平均分子量約60000のフッ素ゴムを用いた。A fluororubber having an average molecular weight of about 60,000 was used.

フッ素ゴムの配合比が硫化鉄の重量に対して、それぞれ
2%、3%、5%、7%、 10%になるように硫化鉄
とフッ素ゴム水性塗料(フッ素ゴム50%含有)を混合
し、これに水を加えて集電体に塗布するのに適度な粘度
を有するようにした第1表に示す組成のペーストを作成
した。これを正極集電体としての厚さ30μm1幅30
m5+ 、長さ170mmの帯状のアルミニウム箔の両
面に均一に塗布して、乾燥した後、150°Cで1時間
熱して、これをローラープレス機により圧縮成型して帯
状の正極(1)を作成した。この帯状の正極(1)にお
いて、正極活物質は正極集電体の両面に互いにほぼ同じ
膜厚で形成してあり、正極(1)の厚さとしては300
 tt yaであった。
Iron sulfide and fluororubber water-based paint (containing 50% fluororubber) were mixed so that the compounding ratio of fluororubber was 2%, 3%, 5%, 7%, and 10%, respectively, based on the weight of iron sulfide. A paste having the composition shown in Table 1 was prepared by adding water to the paste to have an appropriate viscosity for application to a current collector. This is used as a positive electrode current collector with a thickness of 30 μm and a width of 30 μm.
m5+, uniformly applied to both sides of a strip-shaped aluminum foil with a length of 170 mm, dried, heated at 150°C for 1 hour, and compression-molded using a roller press machine to create a strip-shaped positive electrode (1). did. In this strip-shaped positive electrode (1), the positive electrode active material is formed on both sides of the positive electrode current collector with approximately the same film thickness, and the thickness of the positive electrode (1) is 300 mm.
It was ttya.

また、厚さ300 p m、幅30R11I+のリチウ
ムを長さ183mmに切断して、負極(2)を作った。
Further, a negative electrode (2) was made by cutting lithium having a thickness of 300 pm and a width of 30R11I+ into a length of 183 mm.

上記正極(1)及び負極(2)を用い、さらにセパレー
タ(3)を一対用いて、これらを互に積層させてから、
多数回巻回することによって、渦巻型の巻回体(4)を
作った。このとき、第1表に示される5種類の電極a 
−eのうち、硫化鉄に対しフッ素ゴムの配合比が2%の
電極aは正極活物質である硫化鉄が正極集電体から脱落
してしまい、この巻回体(4)が作れなかった。
Using the above positive electrode (1) and negative electrode (2), and further using a pair of separators (3), and stacking them on each other,
A spirally wound body (4) was made by winding a large number of turns. At this time, the five types of electrodes a shown in Table 1
Of -e, for electrode a with a 2% blending ratio of fluororubber to iron sulfide, iron sulfide, which is the positive electrode active material, fell off from the positive electrode current collector, and this wound body (4) could not be made. .

残りの電極す、電極C1電極d、電極eを用いて作成し
た巻回体(4)を、第1図に示すように、ニッケルめっ
きを施した内径13.3mmの鉄製電池缶(5)に収納
した。そして正極(1)の集電を行うためにアルミニウ
ム製の正極リード(6)を正極(1)に取付け、これを
正極(1)から導出して電池蓋を構成する中間蓋体(防
爆弁)(7)に溶接した。また負極(2)の集電を行う
ために、ニッケル製の負極リード(9)を負極(2)に
取り付け、これを負極(2)から導出して電池缶(5)
に溶接した。
The wound body (4) made using the remaining electrodes, electrode C1, electrode d, and electrode e, was placed in a nickel-plated iron battery can (5) with an inner diameter of 13.3 mm, as shown in Figure 1. I put it away. Then, in order to collect current from the positive electrode (1), an aluminum positive electrode lead (6) is attached to the positive electrode (1), and this is led out from the positive electrode (1) to form an intermediate lid body (explosion-proof valve) that forms the battery lid. (7) was welded. In addition, in order to collect current from the negative electrode (2), a nickel negative electrode lead (9) is attached to the negative electrode (2), which is led out from the negative electrode (2) and placed in the battery can (5).
Welded to.

この電池缶(5)の中に過塩素酸リチウムを1モル/l
溶解した炭酸プロピレンと1,2−ジメトキシエタンと
を混合して得た電解液を注入した。巻回体(4)の上下
面に対向するように、電池缶(5)内に絶縁板(10A
)及び(IOB)を配設した。
This battery can (5) contains 1 mol/l of lithium perchlorate.
An electrolytic solution obtained by mixing dissolved propylene carbonate and 1,2-dimethoxyethane was injected. An insulating plate (10A
) and (IOB) were arranged.

また、この電池缶(5)と中間蓋体(7)及び閉塞蓋体
(8)からなる電池11F(11)を絶縁封口ガスケッ
ト(12)を介してかしめて、電池蓋(11)を封口し
た。以上のようにして、直径13.8mm、高さ50m
mの1.5V系の円筒型渦巻式リチウム硫化鉄電池(1
3)を作成した。
Further, the battery 11F (11) consisting of the battery can (5), the intermediate lid (7), and the closing lid (8) was caulked through an insulating sealing gasket (12) to seal the battery lid (11). . As above, the diameter is 13.8 mm and the height is 50 m.
m 1.5V cylindrical spiral type lithium iron sulfide battery (1
3) was created.

第1表 電極す、電極C1電極d、電極eを用いて作った電池を
160mAの定電流で終止電圧0.9Vまで放電させた
。この時の放電容量を第2図に示す。この図に示される
ように、硫化鉄に対しフッ素ゴLの配合比が多いものほ
ど、硫化鉄の充填量が少なくなるために容量が取り出せ
なくなる。硫化鉄に対しフッ素ゴムの配合比がl0%以
上では、容量が2、5A)l以下になってしまった。
A battery made using the first front electrode S, the electrode C1, the electrode d, and the electrode e was discharged to a final voltage of 0.9 V at a constant current of 160 mA. The discharge capacity at this time is shown in FIG. As shown in this figure, the larger the blending ratio of fluorine rubber L to iron sulfide is, the smaller the amount of iron sulfide filled becomes, making it difficult to extract the capacity. When the blending ratio of fluororubber to iron sulfide was 10% or more, the capacity became 2.5 A) or less.

一方、比較例として渦巻式電極に広く用いられているバ
インダー、ポリフッ化ビニリデンを用いて電池の作成を
試みた。
On the other hand, as a comparative example, we attempted to create a battery using polyvinylidene fluoride, a binder widely used in spiral electrodes.

比較例 ポリフッ化ビニリデンの配合比が硫化鉄の重量に対して
、それぞれ2%、3%、5%、7%、10%になるよう
に、硫化鉄とポリフッ化ビニリデンを混合し、これにN
−メチル2−ピロリドンを加えて集電体に塗布するのに
適度な粘度を有するようにした第2表に示す組成のペー
スとを作成した。
Comparative Example Iron sulfide and polyvinylidene fluoride were mixed so that the blending ratio of polyvinylidene fluoride was 2%, 3%, 5%, 7%, and 10%, respectively, based on the weight of iron sulfide, and N
- A paste having the composition shown in Table 2 was prepared by adding methyl 2-pyrrolidone so as to have an appropriate viscosity for coating on a current collector.

これを正極集電体としての厚さ30μm1幅30mm、
長さ170mmの帯状のアルミニウム箔の両面に均一に
塗布して乾燥した後、これをローラープレス機により圧
縮成型して帯状の正極(1)を作った。
This was used as a positive electrode current collector with a thickness of 30 μm and a width of 30 mm.
After uniformly coating both sides of a strip-shaped aluminum foil with a length of 170 mm and drying, this was compression-molded using a roller press to produce a strip-shaped positive electrode (1).

この帯状の正極(1)において、正極活物質は正極集電
体の両面に互いにほぼ同じ膜厚で形成してあり、正極の
厚さとしては300μ麟であった。
In this strip-shaped positive electrode (1), the positive electrode active material was formed on both sides of the positive electrode current collector with approximately the same film thickness, and the thickness of the positive electrode was 300 μm.

また、厚さ300μm1幅30mmのリチウムを長さ1
831に切断して負極(2)を作った。
In addition, a piece of lithium with a thickness of 300 μm and a width of 30 mm is
A negative electrode (2) was made by cutting the electrode into 831 pieces.

上記正極(1)及び負極(2)を用い、さらにセパレー
タ(3)を一対相いて、これらを互いに積層させてから
、多数回巻回したところ、第2表に示される5種類の電
極g、電極り、電極i、電極j、電極には全て硫化鉄が
集電体から脱落してしまい、巻回体が作れなかった。
Using the above positive electrode (1) and negative electrode (2), a pair of separators (3) were stacked on top of each other, and then wound a large number of times, the five types of electrodes g shown in Table 2 were obtained. Iron sulfide fell off from the current collector in all of the electrodes, electrode i, electrode j, and electrode, and a wound body could not be formed.

第2表 上述の実施例によれば、リチウム硫化鉄電池の正極のバ
インダーとしてフッ素系ゴムを用いることにより正極活
物質が集電体から剥離するのを防ぐことができる。従っ
て、これにより、重負荷放電に効果のある渦巻式構造を
有するリチウム硫化鉄電池の作成が可能となり、重負荷
特性に優れ、保存性がよく、かつ従来の電池とも電圧の
互換性のある電池を提供できる。
According to the above-mentioned examples in Table 2, by using fluorine rubber as a binder for the positive electrode of a lithium iron sulfide battery, it is possible to prevent the positive electrode active material from peeling off from the current collector. Therefore, this makes it possible to create a lithium iron sulfide battery with a spiral structure that is effective for heavy load discharge, and has excellent heavy load characteristics, good storage stability, and voltage compatibility with conventional batteries. can be provided.

[発明の効果] 本発明のリチウム硫化鉄電池によれば、正極のバインダ
ーとしてフッ素系ゴムを用いることにより、硫化鉄の正
極集電体からの剥離を防せぐことかできる。従って、重
負荷放電に効果のある渦巻式構造を有するリチウム硫化
鉄電池の作成が可能となり、重負荷特性に優れ、保存性
が良く、かつ従来の電池とも電圧の互換性のあるリチウ
ム硫化鉄電池を提供でき、その工業的価値は大である。
[Effects of the Invention] According to the lithium iron sulfide battery of the present invention, by using fluorine rubber as a binder for the positive electrode, it is possible to prevent iron sulfide from peeling off from the positive electrode current collector. Therefore, it is possible to create a lithium iron sulfide battery with a spiral structure that is effective for heavy load discharge, and has excellent heavy load characteristics, good storage stability, and voltage compatibility with conventional batteries. It has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るリチウム硫化鉄電池の一例を示す
断面図、第2図は硫化鉄に対するフッ素系ゴム配合比と
リチウム硫化鉄電池の放電容量の関係を示すグラフであ
る。 (1)は正極、 (2)は負極、 (3)はセパレータ、 〈4)は巻 囲体、(5)は電池缶、 (11)は電池蓋である。 代 理 人 松 隈 秀 盛 第 図 ゑeii仲sll \ イ
FIG. 1 is a cross-sectional view showing an example of a lithium iron sulfide battery according to the present invention, and FIG. 2 is a graph showing the relationship between the fluorine rubber compounding ratio to iron sulfide and the discharge capacity of the lithium iron sulfide battery. (1) is a positive electrode, (2) is a negative electrode, (3) is a separator, <4) is a winding body, (5) is a battery can, and (11) is a battery lid. Agent Hidemori Matsukuma Diagram Eeii Nakasll \ I

Claims (1)

【特許請求の範囲】[Claims] 硫化鉄がフッ素系ゴムをバインダーとして集電体に塗布
されてなる正極を有して成るリチウム硫化鉄電池。
A lithium iron sulfide battery comprising a positive electrode made of iron sulfide coated on a current collector using fluorine rubber as a binder.
JP2015769A 1990-01-25 1990-01-25 Lithium iron sulfide battery Expired - Fee Related JP2932563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015769A JP2932563B2 (en) 1990-01-25 1990-01-25 Lithium iron sulfide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015769A JP2932563B2 (en) 1990-01-25 1990-01-25 Lithium iron sulfide battery

Publications (2)

Publication Number Publication Date
JPH03222258A true JPH03222258A (en) 1991-10-01
JP2932563B2 JP2932563B2 (en) 1999-08-09

Family

ID=11898009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015769A Expired - Fee Related JP2932563B2 (en) 1990-01-25 1990-01-25 Lithium iron sulfide battery

Country Status (1)

Country Link
JP (1) JP2932563B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432030A (en) * 1993-12-02 1995-07-11 Eveready Battery Company, Inc. Li/FeS2 cell employing a solvent mixture of diox, DME and 3ME20X with a lithium-based solute
US5565284A (en) * 1992-12-25 1996-10-15 Tdk Corporation Lithium secondary cell
JPH11283615A (en) * 1998-03-26 1999-10-15 Tdk Corp Manufacture of electrode for nonaqueous electrolyte battery
WO2008029366A2 (en) * 2006-09-06 2008-03-13 The Gillette Company Lithium cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565284A (en) * 1992-12-25 1996-10-15 Tdk Corporation Lithium secondary cell
US5432030A (en) * 1993-12-02 1995-07-11 Eveready Battery Company, Inc. Li/FeS2 cell employing a solvent mixture of diox, DME and 3ME20X with a lithium-based solute
JPH11283615A (en) * 1998-03-26 1999-10-15 Tdk Corp Manufacture of electrode for nonaqueous electrolyte battery
WO2008029366A2 (en) * 2006-09-06 2008-03-13 The Gillette Company Lithium cell
WO2008029366A3 (en) * 2006-09-06 2008-05-15 Gillette Co Lithium cell

Also Published As

Publication number Publication date
JP2932563B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
GB2329513A (en) A method of preparing an electrode for lithium based secondary cell
JP2011138632A (en) Nonaqueous electrolyte secondary battery
US20120171535A1 (en) Nickel-zinc battery and manufacturing method thereof
JP2006310010A (en) Lithium ion secondary battery
TWI311383B (en)
JP2003331825A (en) Nonaqueous secondary battery
TW517405B (en) Nonaqueous electrolyte secondary cell and method of producing the same
JPH10247519A (en) Lithium secondary battery
JP3589021B2 (en) Lithium ion secondary battery
JP4240060B2 (en) Positive electrode active material and battery
JP2003257433A (en) Nonaqueous electrolyte secondary battery and binding agent
JPH03222258A (en) Lithium iron sulfide battery
JP2004095306A (en) Non-aqueous electrolyte secondary battery
JP2001307735A (en) Lithium secondary battery
JPH11144762A (en) Spiral lithium ion battery electrode and spiral lithium ion battery using the same
JPH03152881A (en) Rectangular type lithium secondary battery
JP2000012079A (en) Nonaqueous electrolyte secondary battery
JP2005347222A (en) Electrolyte liquid and battery
JP2007042439A (en) Electrolyte and battery
JP2004158362A (en) Organic electrolyte liquid battery
WO1999040644A1 (en) Method for manufacturing lithium ion battery
JPH1140163A (en) Non-aqueous secondary battery
JPS624828B2 (en)
JPH09213306A (en) Secondary battery with non-aqueous electrolyte
JPH10284039A (en) Secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees