JPH03221294A - Mig wire for high tensile steel - Google Patents

Mig wire for high tensile steel

Info

Publication number
JPH03221294A
JPH03221294A JP1426590A JP1426590A JPH03221294A JP H03221294 A JPH03221294 A JP H03221294A JP 1426590 A JP1426590 A JP 1426590A JP 1426590 A JP1426590 A JP 1426590A JP H03221294 A JPH03221294 A JP H03221294A
Authority
JP
Japan
Prior art keywords
less
toughness
amount
low
high tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1426590A
Other languages
Japanese (ja)
Other versions
JP2854650B2 (en
Inventor
Yutaka Nishikawa
裕 西川
Shogo Natsume
夏目 松吾
Noriyuki Hara
則行 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1426590A priority Critical patent/JP2854650B2/en
Publication of JPH03221294A publication Critical patent/JPH03221294A/en
Application granted granted Critical
Publication of JP2854650B2 publication Critical patent/JP2854650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To assure the safety of a steel structure by constituting the MIG wire of specific weight % of C, Si, Mn, Cu, Ni, Mo, Cr, Ti, Al, B, N, and the balance Fe. CONSTITUTION:The components of the MIG wire for welding high-tensile steels is limited by weight % as follows: 0.03 to 0.09% C, 0.30 to 0.55% Si, 1.00 to 1.80% Mn, <= 0.01% P, S, 0.07 to 0.30% Cu, 2.40 to 3.00% Ni, 0.20 to 0.50% Mo, 0.20 to 0.90% Cr, 0.005 to 0.05% Ti, 0.003 to 0.02% Al, <= 0.0005% B, <=0.0080% N, <= 0.005% Sb, As, Sn, <=1.0% ratio of Ti/N and the balance Fe and unavoidable impurities. The good fracture toughness and Charpy impact characteristics are obtd. in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、溶接後熱処理後においても良好な破壊靭性と
シャルピー衝撃特性が得られる70キロ及び80キロ級
高張力鋼用MIGワイヤに関するものである。 (従来の技術及び解決しようとする課題)近年において
、鋼構造物、特に高圧タンク、圧力容器、ペンストック
等の安全性を確保するための弾塑性破壊力学の導入及び
それに伴う溶接部へのより高い破壊靭性値の要求が設計
思想面での動向として特筆される。 要求特性値としては、脆性破壊発生温度と関連を有する
シャルピー衝撃試験での破面遷移温度(νTrs)、設
計温度での破壊靭性値(Kic)等が代表的なものであ
る。 従来、これらの構造物、特に高圧タンクや圧力容器等で
は、溶接部の靭性の確保が困難なことから、低強度の材
料で製作されることが殆どであるが、許容応力を高くし
得る高張力鋼化への要望はより高まりつつある。 そのためには、この高張力鋼化に対処し?1?る溶接材
料の開発が必須であるが、従来より若干の提案がなされ
ている。例えば、特公昭53−27216号公報では、
70キロ、80キロ級高張力鋼用のMIGワイヤとして
、高Si、Ti系のワイヤをAr−C0−混合ガス(C
O2混合比:5−75%)を用いて溶接するものが提案
されている。しかし、破壊靭性観点からは検討されてい
ないので、鋼構造物の安全性に問題なしとは云えない。 本発明は、上記要望に応えるへくなされたものであって
、溶接後熱処理後においても良?fな破壊靭性とシャル
ピー衝撃特性が得られる70キロ及び80キロ級高張力
鋼用MIGワイヤを提供することを目的とするものであ
る。 (課題を解決するための手段) 前記目的を達成するため、本発明者は、高強度溶接金属
の特異点並びに新たな観点(特に破壊靭性値に1c)に
着目し、溶接のまま及び後熱処理後の状態において、良
好な破壊靭性が得られる70キロ及び80キロ級高張力
鋼用MIGワイヤについて鋭意研究を重ねた。 その結果、特定の化学成分に調整すると共にシールドガ
ス組成を規制することによって、焼入れ性を阻害する酸
素量を少なく保持できること、靭性に有害な固溶Nを少
なくできること、靭性に有害な過剰Tiを少なく保てる
こと、特にMn、Ni及びT1によって結晶粒を微細化
し得ること、Cu、Mn及びNiを適量とすることによ
って粒界を安定化し得ること、焼戻し脆化元素であるS
b、As及びSnの制限によって安定した破壊靭性値を
有する高強度溶接金属が得られることを見い出し、ここ
に本発明をなしたものである。 すなわち、本発明は、70キロ、80キロ級高張力鋼を
Ar−CO2混合ガス(CO2混合比=15〜25%)
を用いて溶接するMIGワイヤであって、C:0.03
〜0.09%、Si:0.30−0゜55%、Mn: 
1.OO〜1.80%、P : 0.010%以下、s
 : o、o i o%以下、Cu:0.07〜0.3
0%、Ni:2.40〜3.00%、MO=0.20〜
0.50%、Cr: 0.20〜0.90%、Ti:0
.005〜0.050%、Al:0.003〜0.02
0%、B:O,0.0005%以下、Neo。 ooso%以下、Sb: 0.005%以下、AS:0
.005%以下、Sn:0.005%以下、但し。 Ti/Nの比=160以上、残部二FCと不可避的不純
物からなることを特徴とする高張力鋼用MIGワイヤを
要旨とするものである。 以下に本発明を更に詳述する。 (作用) まず、本発明における化学成分の限定理由について説明
する。 C:0.03〜0.09% Cは一般に強度を確保する元素として知られているが、
本発明者の研究によれば、Cは脱酸剤としても作用し、
低すぎると酸M量が増加して焼入れ性が低下し、靭性が
劣化することが判明した(第1図参照)、したがって、
少なくとも0.03%は必要である5しかし、多すぎる
と高炭素マルテンサイトを生成してKiCが劣化するの
で、上限値を0.09%とする。 si: 0.30−0.55% Siは作業性を維持するために不可欠の元素であり、少
なくとも0.30%が必要である。しかし、多すぎると
結晶粒内に脆化が生し、KICが劣化するので、上限値
を0.55%とする。 Mn: 1.OO〜1.80% Mnは結晶粒微細化と共に脱酸剤としても作用し、1.
00%よりも低すぎると結晶粒の粗大化と酸素量の増加
を伴って靭性が劣化する。しかし。 多すぎる場合には一次品粒界が発達して粒界破壊を生し
るようになり、KICが著しく劣化するので、上限値を
1.80%とする。 P、S:0.010%以下、 PとSは不純物であり、できるだけ少ない方が望ましく
、それぞれ0.010%以下に規制する。 Cu: 0.07−0.30% Cuは結晶粒界の安定化に有効で、vTrsは大きく変
化しないが、K、cを改善する作用がある。そのために
は0.07%以上が必要である。しかし、多すぎる場合
には溶接凝固割れが生じ易くなるので、上限値を0.3
0%とする。 Ni: 2.40〜3.00% Niは結晶粒微細化能を有し、靭性安定化元素である。 そのためには2.40%以上が必要である。しかし、多
すぎると一次品粒界が発達するようになり、vTrsは
大きく変化しないかに、cが著しく劣化するので、上限
値を3.00%とする。 Mo: 0.20−0.50% MoはCrと同様、強度の向上に有効であり、0゜20
%以上が必要である。しかし、析出硬化による靭性の劣
化を防止するために、上限値を0.50%とする。 Cr:0.20〜0.90% Crは強度の向上に有効な元素であり、0.20%以上
が必要である。しかし、多すぎると熱処理による析出硬
化がひどくなり、靭性が劣化するので、上限値を0.9
0%とする。 Ti:0.005〜0.050% TiはNと反応してTiNを形威し、固溶Nを低減して
靭性を改善する効果がある(第2図参照)。 また、脱酸剤としても作用し、少なすぎると酸素量が増
加し、固溶Nが増加して靭性が低下する(第1図参照)
。そのため、少なくとも0.005%以上が必要である
。しかし、多すぎると、固溶Ti及びTi炭化物を生成
するようになり、vTrsは大きく変化しないが、Kl
cが著しく劣化するので、上限値を0.050%とする
。 Al:0.003〜0.020% Alは少量で脱酸剤として作用するが、多すぎると脱酸
生成物のAl20.が溶接金属中に多く残存するように
なるため、脱酸効果が消失する。その限度は0.020
%であるが、脱酸を期待し得る範囲としては、0.00
3〜0.020%が好ましい(第1図参照)。 B:O,0.0005%以下 Bは焼入れ性を向上し、強度の確保に有効な元素である
が、多すぎるとミクロ組織がラス状化或いは針状化して
に、cが劣化するので、o、o o 。 5%以下とする。 N:0.0080%以下 Nは靭性面で有害な元素で、少ない方が望ましい。多す
ぎると、固溶Nによる内部歪みの増加によって強度が高
くなりすぎ、靭性が劣化するので(第2図)、0.00
80%以下とする。 Sb、As、Sn: 0.005%以下Sb、As= 
Snは、いずれも焼戻し脆化を示す元素であり、vTr
sに及ぼす影響はそれ程大きくないものの、切欠の鋭い
破壊靭性試験でのに、cを著しく劣化させるので、それ
ぞれ0.005%以下とする。 Ti/Nの比:1.0以上 Ti/Nは、固溶Nを抑制するために必要な比である。 この比が1.0未満になると、固溶Nが増加し、に1c
が劣化するので、1.0以上とする。 次に、シールドガスについて説明する。 シールドガス: Ar+(15〜25%)CO2シール
ドガスとしては、Ar−Co2混合ガスを使用するが、
溶接金属の酸素量を固定すると共に、作業性を維持する
ために、その混合比を規制する必要がある。すなわち、
CO□混合比が25%より多くなると、ワイヤ成分を適
正に調整しても酸素量が0.03%を超えるようになり
、性能が劣化する。一方、C○2混合比が15%より少
ないとアークの安定性が劣化し、耐ブローホール性が劣
化するので、GO□混合割合は15〜25%の範囲とす
る。 なお、他のMIG溶接条件は特に制限されないことは云
うまでもなく、母材も各種の70キロ及び80キロ級高
張力鋼を対象とすることができる。 次に本発明の実施例を示す。 (実施例) 第↓表に示す化学成分を有する1、2mmφのワイヤを
準備した。 母材鋼板として、板厚50u+の70キロ級高張力鋼に
X開先を取り、パルス電源により、130A(DC)、
30KJ/cmの入熱でMIG溶接を行った。なお、シ
ールドガスは、Ar+20%CO2を用いた。 溶接後、溶接金属から、引張試験片、シャルピー衝撃試
験片(2mmVノツチ)及び破壊靭性試験片(ASTM
E813に従う2TCT試験片)を採取して試験を実施
し、機械的性質を調べた。また溶接金属の酸素量も調へ
た。それらの結果を第2表に示す。 第2表より、以下の如く考察される。 A1〜A8の本発明例ワイヤは、いずれも作業性が良好
であり、更には、vTrsは全て一50℃以下で、−2
0’Cでの破壊靭性値(K工C)も500kgf/mm
”以上の良好な結果を示した。 一方、B9〜B28は比較例ワイヤの場合であり、まず
、比較例ワイヤB9は、CがO9O↓%と少なすぎるた
めに溶接金属の酸素量が増加して低靭性を示した。BI
Oでは、Cが0.12%と多すぎるためにに工Cが低値
を示した。 Bllは、Siが0.23%と少なすぎるために作業性
が悪く、その後の試験を中止した。B12は、Siが0
.72%と多すぎるためにに工Cが低値を示した。 B13は、Mnが0.87%と少ないために酸素量が増
加し、結晶粒が粗大化して低靭性を示した。 B14は、Mnが1.96%と多すぎるために粒界破壊
を生してに1cが低値を示した。 B15は、Cuが0.01%と少ないためにに1Cが低
値を示した。B16は、Cuが0.39%と多すぎるた
めに溶接時に凝固割れを生じたので、試験を中止した。 B17は、Niが2.12%と低すぎるために靭性が低
く、B18は、Niが3.28%と多すぎるために粒界
破壊を生じてKiCが低値を示した。 B19は、CrとMOの量が少なすぎるために強度が低
く、70〜80キロ級高張力鋼用としては不適当である
。B20は、Crが1.10%と多すぎるために、また
B21は、MOが0.61%と多すぎるために、それぞ
れ析出硬化@象がひどくなって靭性が低下した。 B22は、Tiが0.002%で、Alが0.001%
以下とそれぞれが少なすぎるために酸素量が増加し、固
溶Nの増加、結晶粒の粗大化を生じて低靭性を示した。 B23は、Tiが0.068%と多いために、vTrs
は良好であったが、K、c力1低値を示した。 B24は、Ti/Hの比が0.8と小さいために固溶N
の増加を生してに1cが低値を示した。 B25は、Alが0.037%と多すぎるため、酸素量
の増加を生じて低靭性を示した。 B26は、Nが0.0097%と多すぎるために、固溶
Nの増加を生じて靭性が劣化した。 B27は、Bが0.0009%と多いために、針状マル
テンサイトを生成してに工Cが低値を示した。 B28は、Sb、As、Snをそれぞれ多く含有する例
で、vTrsは比較的良好であるが、K i、 r、 
lよ著しく劣化した。 なお、上記実験例は全て、溶接後、580℃で4 hr
sの熱処理を施し、その後、各種機械試験を実施した結
果であるが、溶接のままの状態においても、本発明例ワ
イヤは良好な結果を示すことが確認された。
(Field of Industrial Application) The present invention relates to a MIG wire for 70 kg and 80 kg class high tensile strength steels that can obtain good fracture toughness and Charpy impact properties even after post-weld heat treatment. (Prior art and problems to be solved) In recent years, elastoplastic fracture mechanics has been introduced to ensure the safety of steel structures, especially high-pressure tanks, pressure vessels, penstocks, etc., and the associated reinforcement of welded parts has been introduced. The demand for high fracture toughness values is noteworthy as a trend in design philosophy. Typical required characteristic values include the fracture surface transition temperature (νTrs) in the Charpy impact test, which is related to the temperature at which brittle fracture occurs, and the fracture toughness value (Kic) at the design temperature. Conventionally, these structures, especially high-pressure tanks and pressure vessels, have been made of low-strength materials because it is difficult to ensure the toughness of welded parts. The demand for tensile steel is increasing. To that end, should we deal with this high-strength steel? 1? Although it is essential to develop welding materials that can For example, in Japanese Patent Publication No. 53-27216,
As MIG wire for 70 kg and 80 kg class high tensile strength steel, high Si and Ti wires are heated with Ar-C0-mixture gas (C
It has been proposed that welding is performed using an O2 mixture ratio of 5-75%. However, since it has not been studied from the perspective of fracture toughness, it cannot be said that there are no problems with the safety of steel structures. The present invention has been devised to meet the above-mentioned needs, and can be used even after post-weld heat treatment. The object of the present invention is to provide a MIG wire for use in 70 kg and 80 kg class high tensile strength steels, which provides excellent fracture toughness and Charpy impact properties. (Means for Solving the Problem) In order to achieve the above object, the present inventor focused on the singularity of high-strength weld metal and a new viewpoint (particularly 1c in the fracture toughness value), and welded as-welded and post-heat treated. We have conducted extensive research on MIG wires for 70kg and 80kg class high tensile strength steels that provide good fracture toughness in the latter state. As a result, by adjusting the shielding gas composition to a specific chemical composition, it is possible to maintain a low amount of oxygen that inhibits hardenability, to reduce solid solution N that is harmful to toughness, and to reduce excess Ti that is harmful to toughness. In particular, Mn, Ni, and T1 can make crystal grains finer. Grain boundaries can be stabilized by controlling Cu, Mn, and Ni in appropriate amounts. S, which is a tempering embrittlement element
It was discovered that a high-strength weld metal having a stable fracture toughness value can be obtained by limiting the amounts of B, As, and Sn, and the present invention has been made based on this discovery. That is, in the present invention, 70 kg and 80 kg class high tensile strength steel is heated with Ar-CO2 mixed gas (CO2 mixing ratio = 15 to 25%).
MIG wire welded using C: 0.03
~0.09%, Si: 0.30-0°55%, Mn:
1. OO~1.80%, P: 0.010% or less, s
: o, oio% or less, Cu: 0.07-0.3
0%, Ni: 2.40~3.00%, MO=0.20~
0.50%, Cr: 0.20-0.90%, Ti: 0
.. 005-0.050%, Al: 0.003-0.02
0%, B:O, 0.0005% or less, Neo. ooso% or less, Sb: 0.005% or less, AS: 0
.. 0.005% or less, Sn: 0.005% or less, however. The gist of the present invention is a MIG wire for high tensile strength steel, which is characterized by having a Ti/N ratio of 160 or more, with the remainder consisting of 2FC and unavoidable impurities. The present invention will be explained in further detail below. (Function) First, the reason for limiting the chemical components in the present invention will be explained. C: 0.03-0.09% C is generally known as an element that ensures strength, but
According to the research of the present inventor, C also acts as a deoxidizing agent,
It was found that if the acid M content is too low, the amount of acid M increases, the hardenability decreases, and the toughness deteriorates (see Figure 1). Therefore,
At least 0.03% is necessary.5 However, if it is too large, high carbon martensite is produced and KiC deteriorates, so the upper limit is set at 0.09%. Si: 0.30-0.55% Si is an essential element to maintain workability, and at least 0.30% is required. However, if it is too large, embrittlement will occur within the crystal grains and KIC will deteriorate, so the upper limit is set at 0.55%. Mn: 1. OO~1.80% Mn not only refines grains but also acts as a deoxidizing agent.1.
If it is too low than 00%, the toughness deteriorates due to coarsening of crystal grains and an increase in the amount of oxygen. but. If the amount is too high, primary product grain boundaries will develop and grain boundary fracture will occur, resulting in significant deterioration of KIC, so the upper limit is set at 1.80%. P, S: 0.010% or less, P and S are impurities, and it is desirable to have as little as possible, so each is regulated to 0.010% or less. Cu: 0.07-0.30% Cu is effective in stabilizing grain boundaries, and although vTrs does not change significantly, it has the effect of improving K and c. For that purpose, 0.07% or more is required. However, if the amount is too high, weld solidification cracking is likely to occur, so the upper limit is set at 0.3.
0%. Ni: 2.40 to 3.00% Ni has the ability to refine grains and is a toughness stabilizing element. For that purpose, 2.40% or more is required. However, if it is too large, primary grain boundaries will develop, and vTrs will not change much, but c will deteriorate significantly, so the upper limit is set at 3.00%. Mo: 0.20-0.50% Mo, like Cr, is effective in improving strength, and 0°20
% or more is required. However, in order to prevent deterioration of toughness due to precipitation hardening, the upper limit is set to 0.50%. Cr: 0.20-0.90% Cr is an element effective in improving strength, and 0.20% or more is required. However, if the amount is too high, precipitation hardening due to heat treatment will become severe and toughness will deteriorate, so the upper limit is set at 0.9.
0%. Ti: 0.005 to 0.050% Ti reacts with N to form TiN, which has the effect of reducing solid solution N and improving toughness (see Figure 2). It also acts as a deoxidizing agent, and if it is too small, the amount of oxygen increases, solute N increases, and toughness decreases (see Figure 1).
. Therefore, at least 0.005% or more is required. However, if the amount is too large, solid solution Ti and Ti carbides will be generated, and vTrs will not change significantly, but Kl
Since c deteriorates significantly, the upper limit is set to 0.050%. Al: 0.003-0.020% Al acts as a deoxidizing agent in a small amount, but if it is too large, the deoxidized product Al20. remains in the weld metal, and the deoxidizing effect disappears. Its limit is 0.020
%, but the range in which deoxidation can be expected is 0.00
3 to 0.020% is preferred (see Figure 1). B: O, 0.0005% or less B is an effective element for improving hardenability and ensuring strength, but if it is too much, the microstructure becomes lath-like or acicular, and c deteriorates. o, o o. 5% or less. N: 0.0080% or less N is a harmful element in terms of toughness, and the smaller the amount, the better. If it is too large, the strength will become too high due to the increase in internal strain due to solid solution N, and the toughness will deteriorate (Figure 2), so 0.00
80% or less. Sb, As, Sn: 0.005% or less Sb, As=
Sn is an element that exhibits tempering embrittlement, and vTr
Although the effect on s is not so great, it significantly deteriorates c in fracture toughness tests with sharp notches, so each content is set at 0.005% or less. Ti/N ratio: 1.0 or more Ti/N is a ratio necessary to suppress solid solution N. When this ratio becomes less than 1.0, solute N increases and 1c
is deteriorated, so it should be set to 1.0 or more. Next, the shielding gas will be explained. Shielding gas: Ar+(15-25%) CO2 As the shielding gas, Ar-Co2 mixed gas is used.
In order to fix the amount of oxygen in the weld metal and maintain workability, it is necessary to regulate the mixing ratio. That is,
If the CO□ mixing ratio exceeds 25%, the oxygen content will exceed 0.03% even if the wire components are properly adjusted, and the performance will deteriorate. On the other hand, if the C○2 mixing ratio is less than 15%, the arc stability will deteriorate and the blowhole resistance will deteriorate, so the GO□ mixing ratio should be in the range of 15 to 25%. Note that it goes without saying that other MIG welding conditions are not particularly limited, and the base metal can also be made of various 70 kg and 80 kg class high tensile strength steels. Next, examples of the present invention will be shown. (Example) Wires of 1 to 2 mmφ having chemical components shown in Table ↓ were prepared. As the base material steel plate, a 70kg class high tensile steel with a plate thickness of 50u+ was prepared with an X groove, and was heated to 130A (DC) using a pulse power source
MIG welding was performed with a heat input of 30 KJ/cm. Note that Ar+20% CO2 was used as the shielding gas. After welding, tensile test pieces, Charpy impact test pieces (2 mm V notch) and fracture toughness test pieces (ASTM
2TCT specimens according to E813) were taken and tested to investigate mechanical properties. The amount of oxygen in the weld metal was also controlled. The results are shown in Table 2. From Table 2, the following considerations can be made. All of the wires A1 to A8 of the present invention have good workability, and all have vTrs of -2 below -50°C.
Fracture toughness value at 0'C (K-C) is also 500kgf/mm
On the other hand, B9 to B28 are comparative example wires. First, in comparative example wire B9, the amount of oxygen in the weld metal increased because the C content was too low at O9O↓%. showed low toughness.BI
In case of O, C showed a low value because C was too high at 0.12%. Bll had poor workability because its Si content was too low at 0.23%, and subsequent tests were discontinued. B12 has 0 Si
.. Because the amount was 72%, which was too high, Ni-C showed a low value. In B13, since the Mn content was as low as 0.87%, the amount of oxygen increased, the crystal grains became coarse, and the toughness was low. In B14, the Mn content was too high at 1.96%, causing grain boundary destruction and resulting in a low value of 1c. B15 showed a low value of 1C due to its low Cu content of 0.01%. In B16, the test was discontinued because solidification cracking occurred during welding due to the excessively high Cu content of 0.39%. B17 had low toughness because the Ni content was too low at 2.12%, and B18 had a low KiC value due to intergranular fracture due to the too high Ni content at 3.28%. B19 has low strength because the amounts of Cr and MO are too small, and is unsuitable for use in 70-80 kg class high tensile strength steel. B20 had too much Cr at 1.10%, and B21 had too much MO at 0.61%, so precipitation hardening became severe and the toughness decreased. B22 has 0.002% Ti and 0.001% Al.
Since each of the following was too small, the amount of oxygen increased, resulting in an increase in solid solution N and coarsening of crystal grains, resulting in low toughness. B23 has a high Ti content of 0.068%, so vTrs
was good, but K and c forces showed 1 low value. B24 has a small Ti/H ratio of 0.8, so there is no solid solution N.
1c showed a low value. In B25, since Al was too high at 0.037%, the amount of oxygen increased and showed low toughness. In B26, since N was too high at 0.0097%, solid solution N increased and the toughness deteriorated. Since B27 has a high B content of 0.0009%, it produced acicular martensite and exhibited a low value of C. B28 is an example containing a large amount of Sb, As, and Sn, and has relatively good vTrs, but K i, r,
It has deteriorated significantly. In addition, in all the above experimental examples, after welding, the temperature was 580℃ for 4 hours.
The results show that the wires of the present invention exhibited good results even in the as-welded state after being subjected to the heat treatment of s and then various mechanical tests.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、溶接のままは勿
論のこと、溶接後熱処理後においても、特に良好な破壊
靭性が得られると共にシャルピー衝撃特性も良好である
ので、70キロ及び80キロ級高張力鋼のMIG用とし
て好適であり、鋼構造物の安全性を充分確保でき、産業
の発展に大きく貢献する効果は顕著である。
(Effects of the Invention) As detailed above, according to the present invention, particularly good fracture toughness can be obtained not only as welded, but also after post-weld heat treatment, and Charpy impact properties are also good. It is suitable for MIG of 70kg and 80kg class high tensile strength steel, can sufficiently ensure the safety of steel structures, and has a remarkable effect of greatly contributing to the development of industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はC,Ti、Al量と溶接金属の酸素量の関係を
示す図、第2図はワイヤ中のN量と溶接金属の固溶NJ
iの関係を示す図である。
Figure 1 shows the relationship between the amounts of C, Ti, and Al and the amount of oxygen in the weld metal, and Figure 2 shows the relationship between the amount of N in the wire and the solid solution NJ in the weld metal.
It is a figure showing the relationship of i.

Claims (1)

【特許請求の範囲】 70キロ、80キロ級高張力鋼をAr−CO_2混合ガ
ス(CO_2混合比:15〜25%)を用いて溶接する
MIGワイヤであって、重量%で(以下、同じ)、 C:0.03〜0.09%、 Si:0.30〜0.55%、 Mn:1.00〜1.80%、 P:0.010%以下、 S:0.010%以下、 Cu:0.07〜0.30%、 Ni:2.40〜3.00%、 Mo:0.20〜0.50%、 Cr:0.20〜0.90%、 Ti:0.005〜0.050%、 Al:0.003〜0.020%、 B:0.0005%以下、 N:0.0080%以下、 Sb:0.005%以下、 As:0.005%以下、 Sn:0.005%以下、 但し、Ti/Nの比:1.0以上、 残部:Feと不可避的不純物からなる、 ことを特徴とする高張力鋼用MIGワイヤ。
[Claims] A MIG wire for welding 70 kg and 80 kg class high tensile strength steel using Ar-CO_2 mixed gas (CO_2 mixture ratio: 15 to 25%), expressed in weight% (hereinafter the same) , C: 0.03-0.09%, Si: 0.30-0.55%, Mn: 1.00-1.80%, P: 0.010% or less, S: 0.010% or less, Cu: 0.07~0.30%, Ni: 2.40~3.00%, Mo: 0.20~0.50%, Cr: 0.20~0.90%, Ti: 0.005~ 0.050%, Al: 0.003 to 0.020%, B: 0.0005% or less, N: 0.0080% or less, Sb: 0.005% or less, As: 0.005% or less, Sn: 0.005% or less, provided that the Ti/N ratio is 1.0 or more, and the balance consists of Fe and unavoidable impurities. A MIG wire for high-strength steel.
JP1426590A 1990-01-23 1990-01-23 MIG wire for high tensile steel Expired - Fee Related JP2854650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1426590A JP2854650B2 (en) 1990-01-23 1990-01-23 MIG wire for high tensile steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1426590A JP2854650B2 (en) 1990-01-23 1990-01-23 MIG wire for high tensile steel

Publications (2)

Publication Number Publication Date
JPH03221294A true JPH03221294A (en) 1991-09-30
JP2854650B2 JP2854650B2 (en) 1999-02-03

Family

ID=11856264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1426590A Expired - Fee Related JP2854650B2 (en) 1990-01-23 1990-01-23 MIG wire for high tensile steel

Country Status (1)

Country Link
JP (1) JP2854650B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557478A (en) * 1991-09-02 1993-03-09 Kobe Steel Ltd Gas shielded arc welding wire for pipe
JPH07276080A (en) * 1994-03-31 1995-10-24 Kobe Steel Ltd Welding wire for high-tensile steel
CN100445021C (en) * 2006-09-25 2008-12-24 董运生 Welding repair method for specific steel and its welding wire
CN102114581A (en) * 2011-04-06 2011-07-06 钢铁研究总院 Gas shield welding wire for oil cargo tank of oil tanker
WO2011126121A1 (en) 2010-04-09 2011-10-13 株式会社神戸製鋼所 Welding metal having excellent low-temperature toughness and excellent drop-weight characteristics
JP2013188771A (en) * 2012-03-13 2013-09-26 Nippon Steel & Sumikin Welding Co Ltd High tensile strength steel solid wire for gas shield arc welding
CN104227264A (en) * 2013-06-21 2014-12-24 日铁住金溶接工业株式会社 Solid welding stick for gas-shielded arc welding of high-strength steel
JP2015051441A (en) * 2013-09-05 2015-03-19 日鐵住金溶接工業株式会社 Electroslag welding wire for high tensile strength steel
US9550254B2 (en) 2008-04-16 2017-01-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Pure Ar gas shielded welding MIG flux-cored wire and MIG arc welding method
WO2021078136A1 (en) * 2019-10-21 2021-04-29 宝山钢铁股份有限公司 Wire rod for gas protection welding wire, and welding wire

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557478A (en) * 1991-09-02 1993-03-09 Kobe Steel Ltd Gas shielded arc welding wire for pipe
JPH07276080A (en) * 1994-03-31 1995-10-24 Kobe Steel Ltd Welding wire for high-tensile steel
CN100445021C (en) * 2006-09-25 2008-12-24 董运生 Welding repair method for specific steel and its welding wire
US9550254B2 (en) 2008-04-16 2017-01-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Pure Ar gas shielded welding MIG flux-cored wire and MIG arc welding method
WO2011126121A1 (en) 2010-04-09 2011-10-13 株式会社神戸製鋼所 Welding metal having excellent low-temperature toughness and excellent drop-weight characteristics
US8992698B2 (en) 2010-04-09 2015-03-31 Kobe Steel. Ltd. Welding metal having excellent low-temperature toughness and drop-weight characteristics
CN102114581A (en) * 2011-04-06 2011-07-06 钢铁研究总院 Gas shield welding wire for oil cargo tank of oil tanker
JP2013188771A (en) * 2012-03-13 2013-09-26 Nippon Steel & Sumikin Welding Co Ltd High tensile strength steel solid wire for gas shield arc welding
CN104227264A (en) * 2013-06-21 2014-12-24 日铁住金溶接工业株式会社 Solid welding stick for gas-shielded arc welding of high-strength steel
CN104227264B (en) * 2013-06-21 2016-08-10 日铁住金溶接工业株式会社 The surface treatment oil for solid wire for gas shielded arc welding of high strength steel
JP2015051441A (en) * 2013-09-05 2015-03-19 日鐵住金溶接工業株式会社 Electroslag welding wire for high tensile strength steel
WO2021078136A1 (en) * 2019-10-21 2021-04-29 宝山钢铁股份有限公司 Wire rod for gas protection welding wire, and welding wire

Also Published As

Publication number Publication date
JP2854650B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
KR100910493B1 (en) Flux Cored Arc Weld Metal Joint Having Superior CTOD in Low Temperature
JP6576348B2 (en) Super high strength gas metal arc welded joint with excellent impact toughness
EP3617337A1 (en) HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR
KR19990022987A (en) Steel with excellent toughness of weld heat affected zone
JP2009248175A (en) Tig welding method of high-strength steel using flux-containing wire
US9492894B2 (en) Flux-cored arc welding wire for providing superior toughness and weldability to a welded joint at a low temperature, and welded joint using same
KR100833048B1 (en) Welding joint having excellent in toughness of high heat input welded zone
JPH03221294A (en) Mig wire for high tensile steel
JPH07195193A (en) Solid wire for thin sheet of high tension steel
JP4441372B2 (en) High strength and high toughness gas shielded arc welding wire
JPS60158995A (en) Mig welding wire for high-tension steel
KR100833047B1 (en) High strength welding joint having excellent in toughness of high heat input welded zone
JP2007191785A (en) Method for manufacturing high-tensile steel material superior in weld cracking resistance
JPH08267273A (en) Wire for gas metal arc welding for high tensile steel
JP2012213803A (en) Gas-shielded arc welding method
EP3378962B1 (en) High heat input welded steel material
JPH0561036B2 (en)
KR101647148B1 (en) Flux cored arc weld wire for high tensile steel and weld metal joint using the same
JPS621842A (en) Tough, high tension steel having superior toughness in weld zone
CN114850627B (en) Flux-cored wire, weld metal, gas shielded arc welding method, and method for manufacturing welded joint
JPS63103051A (en) High toughness steel for welding
JP3194207B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JPH04313488A (en) Tig welding wire for high tension steel
JP3598600B2 (en) Weld metal having high strength and toughness and method of forming the same
JPH07323392A (en) Low hydrogen type coated arc electrode and welding method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees