JPH03219215A - Wavelength converting element - Google Patents

Wavelength converting element

Info

Publication number
JPH03219215A
JPH03219215A JP1361290A JP1361290A JPH03219215A JP H03219215 A JPH03219215 A JP H03219215A JP 1361290 A JP1361290 A JP 1361290A JP 1361290 A JP1361290 A JP 1361290A JP H03219215 A JPH03219215 A JP H03219215A
Authority
JP
Japan
Prior art keywords
fundamental wave
resonator
light source
wavelength conversion
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1361290A
Other languages
Japanese (ja)
Other versions
JP2955609B2 (en
Inventor
Yuzuru Tanabe
譲 田辺
Yousuke Fujino
藤野 陽輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1361290A priority Critical patent/JP2955609B2/en
Publication of JPH03219215A publication Critical patent/JPH03219215A/en
Application granted granted Critical
Publication of JP2955609B2 publication Critical patent/JP2955609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To attain the conversion efficiency to increasingly higher harmonic waves by having double resonators for both of a basic wave and the higher harmonic wave. CONSTITUTION:This converting element has a light source 21 to admit the basic wave into a nonlinear optical crystal 25, the nonlinear optical crystal 25 which converts the basic wave to the higher harmonic wave and the double resonators 23, 24 to both of the basic wave and the higher harmonic wave. Namely, the basic wave omega from a light source 11 is resonated by the resonator 23 of the basic wave to prevent the dissipation to the outside and to improve the absorption of the omega to the nonlinear optical crystal 25. Further, the 2omega of a high output is obtd. by providing the resonator 24 for the second harmonic wave 2omega. The conversion efficiency is improved in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は非線形光学結晶による波長変換素子に係り、特
に第2高調波と基本波の両方に対する2重共振器を構成
することによって高い波長変換効率が得られる波長変換
素子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a wavelength conversion element using a nonlinear optical crystal, and in particular, high wavelength conversion by configuring a double resonator for both the second harmonic and the fundamental wave. The present invention relates to a wavelength conversion element that can obtain efficiency.

[従来の技術] 従来の共振型波長変換素子の基本的構成を第1]図に示
す。半導体レーザ(LD) 1等の光源から発した基本
波は凸レンズ2等の結合光学系により収束され、基本波
に対する共振器用の共振ミラー4,4°へ入射し、共振
器内部に配置されたKNbOa等の非線形光学結晶3に
入射する。このとき、光源側の共振ミラー4の基本波に
対する反射率をrln+ln個の共振ミラー4゛の基本
波に対する反射率をrout、非線形光学結晶3の透過
率をtとすると、rln =j2routの関係になっ
ており、通常rautはほぼ100%でtは99%程度
である。このとき、共振器内部の位相シフト量ψはOで
最も強い共振状態ともなっている。
[Prior Art] The basic configuration of a conventional resonant wavelength conversion element is shown in Fig. 1. A fundamental wave emitted from a light source such as a semiconductor laser (LD) 1 is converged by a coupling optical system such as a convex lens 2, and is incident on a resonator mirror 4, 4° for the resonator for the fundamental wave, and the KNbOa disposed inside the resonator. The light is incident on a nonlinear optical crystal 3 such as At this time, if the reflectance of the resonant mirror 4 on the light source side to the fundamental wave is rln+ln, and the reflectance of the resonant mirrors 4' to the fundamental wave is rout, and the transmittance of the nonlinear optical crystal 3 is t, then the relationship rln = j2rout is established. Normally, rout is approximately 100% and t is approximately 99%. At this time, the phase shift amount ψ inside the resonator is O, which is the strongest resonance state.

このような構成にすると、共振器内部の基本波ωは共振
器外部へほとんど散逸せず、第2高調波2ωが高効率で
出力される。
With this configuration, the fundamental wave ω inside the resonator is hardly dissipated to the outside of the resonator, and the second harmonic 2ω is outputted with high efficiency.

[発明の解決しようとする問題点] 本発明の目的は、従来に比してさらに高い高調波への変
換効率を達成した新規な波長変換素子を提供するもので
ある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a novel wavelength conversion element that achieves higher harmonic conversion efficiency than conventional wavelength conversion elements.

[問題点を解決するための手段] 本発明は、非線形光学結晶へ基本波を入射する光源と、
基本波を高調波へ変換する非線形光学結晶と、基本波と
高調波の両方に対する2重共振器とを備えてなる波長変
換素子を提供するものである。
[Means for Solving the Problems] The present invention provides a light source that inputs a fundamental wave into a nonlinear optical crystal;
The present invention provides a wavelength conversion element comprising a nonlinear optical crystal that converts a fundamental wave into a harmonic wave, and a double resonator for both the fundamental wave and the harmonic wave.

本発明の2重共振器型の波長変換素子の様々な態様を第
3図〜第10図に示す。図中実線の光は基本波ωを、破
線の光は第2高調波2ωを表す。非線形光学結晶のωに
対する透過率t=99%とし、ω及び2ωに対する共振
器用ミラ一対23.23’の光源側と出力側の反射率を
rz3(ω)。
Various embodiments of the double resonator type wavelength conversion element of the present invention are shown in FIGS. 3 to 10. In the figure, the solid line light represents the fundamental wave ω, and the broken line light represents the second harmonic 2ω. The transmittance of the nonlinear optical crystal with respect to ω is t = 99%, and the reflectance of the light source side and output side of the pair of resonator mirrors 23.23' with respect to ω and 2ω is rz3(ω).

r2x°(ω)、r2s  (2ω)、r2m’(2ω
)とし、ω及び2ωに対する共振器用ミラ一対24.2
4’の光源側と出力側の反射率をr24(ω) + r
 24°(ω)。
r2x°(ω), r2s (2ω), r2m'(2ω
), and a pair of resonator mirrors for ω and 2ω 24.2
The reflectance on the light source side and output side of 4' is r24(ω) + r
24° (ω).

rz< (2ω)、rz4’(2ω)とすると、第3図
においてはrimo(ω) = 99.9%、 rza
 ((aJ ) ”: t” rz 3(ω)=98%
、rz4’(2ω)=99%、r24(2ω)=99.
9%である。ここでr24(ω)→0%、r23(2ω
)崎O%とする。
If rz< (2ω), rz4'(2ω), in Fig. 3, rimo(ω) = 99.9%, rza
((aJ) ”: t” rz 3(ω)=98%
, rz4'(2ω)=99%, r24(2ω)=99.
It is 9%. Here, r24(ω) → 0%, r23(2ω
) Saki O%.

第4図においては、r2t°(ω) = 99.9%。In FIG. 4, r2t°(ω) = 99.9%.

rz3(ω) ”t2rxs°(ω)=98%、r24
°(2ω)=99%、 rz4(2ω)=99.9%で
ある。ここで、r2t (2(IJ ) ”= 0%、
 rzs’  (2CJ) ’W 0%。
rz3(ω) ”t2rxs°(ω)=98%, r24
°(2ω)=99%, rz4(2ω)=99.9%. Here, r2t (2(IJ)”=0%,
rzs' (2CJ) 'W 0%.

r24(ω)→0%とする。Let r24(ω)→0%.

第5図においては、r23°(ω)=99.9%r2x
(ω) =t”ras’ (ω)=98%、ra4’(
2ω)=99%、 r24(2ω)=99.9%である
。ここで、rza(ω) hto%、r、、’ (ω)
”FO%である。
In Figure 5, r23° (ω) = 99.9% r2x
(ω) = t"ras' (ω) = 98%, ra4'(
2ω)=99%, r24(2ω)=99.9%. Here, rza(ω) hto%, r,,' (ω)
“FO%.

第6図の場合、上記と同様に共振器用ミラー対26.2
6°のωと2ωに対する反射率をr26(ω)。
In the case of FIG. 6, similarly to the above, the resonator mirror pair 26.2
The reflectance for 6° ω and 2ω is r26(ω).

r2m’ (ω)、rza (2ω)、raa ’ (
2ω)とすると、rxao(ω) =99.9%、 r
za(ω) =t”rtao(ω)=98%、rzs 
’ (2ω)=99%、 rts (2ω) =99.
9%である。
r2m' (ω), rza (2ω), raa' (
2ω), rxao(ω) = 99.9%, r
za(ω)=t”rtao(ω)=98%, rzs
' (2ω) = 99%, rts (2ω) = 99.
It is 9%.

第7図の場合は、2重共振器用の光学膜が直接非線形光
学結晶25の光源側と出力側の端面に形成されたもので
あり、反射率は第6図のミラ一対26.26 ’と同様
である。
In the case of FIG. 7, the optical film for the double resonator is directly formed on the light source side and output side end faces of the nonlinear optical crystal 25, and the reflectance is 26.26' for the pair of mirrors in FIG. The same is true.

第3図〜第7図において、基本波ω用のミラ一対の反射
率は(光源側)=t2(出力側)とし、第2高調波2ω
用のミラ一対の反射率は出力側の方が光源側より若干低
くするよう構成する。また、ω用のミラーを2ωが通過
する場合、逆に2ω用のミラーをωが通過する場合それ
ぞれ2ω、ωに対する反射率はほぼ0にするのが好まし
い。
In Figures 3 to 7, the reflectance of the mirror pair for the fundamental wave ω is (light source side) = t2 (output side), and the second harmonic wave 2ω
The reflectance of the pair of mirrors on the output side is made slightly lower than on the light source side. Further, when 2ω passes through a mirror for ω, and conversely, when ω passes through a mirror for 2ω, the reflectances for 2ω and ω are preferably set to approximately 0, respectively.

第8図〜第10図はリング型の2重共振器な示し、基本
波の光源は特に図示していないが図中左側にあるものと
する。ωと2ωは同一の光軸である。
8 to 10 show a ring-shaped double resonator, and the light source of the fundamental wave is not particularly shown, but is located on the left side of the figure. ω and 2ω are the same optical axis.

第8図の場合、リング型共振器は4枚のミラーで構成さ
れており、ミラー41.42.43.44の各々のωと
2ωに対する反射率をr4.(ω)。
In the case of FIG. 8, the ring-shaped resonator is composed of four mirrors, and the reflectance of each of mirrors 41, 42, 43, and 44 for ω and 2ω is set to r4. (ω).

Tar (2ω)、r4□(ω)、 r4z(2ω)+
r41(ω)。
Tar (2ω), r4□(ω), r4z(2ω)+
r41(ω).

r4s (2ω)、 r4. (ω)、 r44(2ω
)とすると、r4□(ω)=99.9%、r43(ω)
=99.9%、r44(ω)=99.9%、r41(ω
)=t xr4g(ω)xr4x(ω)Xr44(ω)
=98.7%であり、またr4+(2ω)=99.9%
、r4□(2ω)=99.9%、r43(2ω)=99
.9%、r4. (2ω)=99.9%であり、r、、
 (2ω)が他より少し低い反射率である。
r4s (2ω), r4. (ω), r44(2ω
), then r4□(ω)=99.9%, r43(ω)
=99.9%, r44(ω)=99.9%, r41(ω
)=t xr4g(ω)xr4x(ω)Xr44(ω)
=98.7%, and r4+(2ω)=99.9%
, r4□(2ω)=99.9%, r43(2ω)=99
.. 9%, r4. (2ω)=99.9%, r,,
(2ω) has a slightly lower reflectance than the others.

第9図では、リング型共振器は3枚のミラーで構成され
ており、ミラー46.47.48の各々のωと2ωに対
する反射率をr46(ω)。
In FIG. 9, the ring-shaped resonator is composed of three mirrors, and the reflectance of each of mirrors 46, 47, and 48 with respect to ω and 2ω is r46(ω).

r4a (2ω)、 r、、 (ω)、r4.(2ω)
、  r、、(ω)。
r4a (2ω), r,, (ω), r4. (2ω)
, r, , (ω).

r4. (2ω)とすると、r4.(ω)=99.9%
、r4g(ω)=99.9%、r4.(ω)=txr4
t(ω) X r<s(ω) =98.8%であり、ま
たr4a(2ω)=99.9%、rat (2ω)=9
9%、r4m (2ω)=99.9%であり、ra7(
2ω)が他より少し低い。
r4. (2ω), then r4. (ω)=99.9%
, r4g(ω)=99.9%, r4. (ω)=txr4
t(ω)
9%, r4m (2ω) = 99.9%, and ra7(
2ω) is slightly lower than the others.

第10図では、非線形光学結晶45の光源側と出力側の
端面と、それと3角形状のリングを形成する一端面に光
学膜を直接形成したものであり、各々の反射率は第9図
の場合と同じである。
In FIG. 10, optical films are directly formed on the light source side and output side end faces of the nonlinear optical crystal 45, and on one end face forming a triangular ring with them, and the reflectance of each is as shown in FIG. Same as in case.

非線形光学結晶45はリング共振器内の基本波の光軸上
のどこかに配置すればよいが、該非線形光学結晶45の
両側のミラーは凹型内面のミラーが光を収束させる点で
好ましい。
The nonlinear optical crystal 45 may be placed somewhere on the optical axis of the fundamental wave within the ring resonator, but it is preferable that the mirrors on both sides of the nonlinear optical crystal 45 have concave inner surfaces to converge the light.

本発明において、光源としてはLDの他に各種ガスレー
ザ、固体レーザ、液体レーザ、色素レーザ等が使用でき
るが、コンパクト化、軽量化の点でLDが好ましく、非
線形光学結晶としてはKNbOs 、 KTiOPO4
,KH2PO4,β−BaB204LtNbO,結晶等
が使用できる。
In the present invention, various gas lasers, solid-state lasers, liquid lasers, dye lasers, etc. can be used as light sources in addition to LDs, but LDs are preferable in terms of compactness and weight reduction, and examples of nonlinear optical crystals include KNbOs and KTiOPO4.
, KH2PO4, β-BaB204LtNbO, crystals, etc. can be used.

[作用] 基本波ωを共振器内で多重反射によって増倍すると電界
強度が高まり、波長変換効率が増加する。
[Operation] When the fundamental wave ω is multiplied by multiple reflections within the resonator, the electric field strength increases and the wavelength conversion efficiency increases.

一方、第2高調波強度が強(なると基本波ωから第2高
調波2ωへの変換効率が増大することが知られている。
On the other hand, it is known that when the second harmonic intensity becomes strong (ie, the conversion efficiency from the fundamental wave ω to the second harmonic 2ω increases).

そのため第2高調波の共振器をさらに設け、2重共振器
とすることによって変換効率をさらに向上させることが
できる。
Therefore, by further providing a second harmonic resonator to form a double resonator, the conversion efficiency can be further improved.

[実施例] 本発明の第1の実施例を第1図に示す。基本波ω(波長
842nm )の光源のLDIIには、5pectra
−Diode Lab、社製の5DL−3420Gを日
立社製HLP−1400でインジェクション・ロックし
たインジェクション・ロックド・アレイLDを用いた。
[Example] A first example of the present invention is shown in FIG. The LDII of the light source of the fundamental wave ω (wavelength 842 nm) has 5pectra
- An injection locked array LD in which 5DL-3420G manufactured by Diode Lab was injection-locked with HLP-1400 manufactured by Hitachi was used.

ωの戻り光の影響を防ぐため、ファラデー・アイソレー
タ12を使用し、焦点距離f=10cmの収束レンズに
よりωを収束し、非線形光学結晶のKNbO,14へ入
射する。KNbO,14の光源側の端面と、第2高調彼
2ω(波長421nm )の出力側の端面には各々光学
膜が形成されており、光源側の反射率rlnと出力側の
反射率routはω、2ωに対して各々ran(ω)=
98%、rout (ω) =99.9%、 r、l、
(2ω) = 99.9%。
In order to prevent the influence of the returned light of ω, a Faraday isolator 12 is used, and the ω is converged by a converging lens with a focal length f=10 cm, and is incident on the KNbO, 14 of the nonlinear optical crystal. An optical film is formed on the end face on the light source side of KNbO,14 and the end face on the output side of the second harmonic 2ω (wavelength 421 nm), and the reflectance rln on the light source side and the reflectance rout on the output side are ω. , 2ω, respectively ran(ω)=
98%, rout (ω) = 99.9%, r, l,
(2ω) = 99.9%.

rout (2CLI ) = 99%である。KNb
Osのωに対する透過率は99%であり、rln(ω)
 =0.99”rouい (ω)=0.98であり98
%としている。
rout (2CLI) = 99%. KNb
The transmittance of Os to ω is 99%, and rln(ω)
= 0.99”rou (ω) = 0.98 and 98
%.

出力側には基本波842nmに対するブロッキングフィ
ルター16が配置されている。
A blocking filter 16 for a fundamental wave of 842 nm is arranged on the output side.

2ωの青色発光が最も強くなるようにLDIIの波長を
微調整し、KNbo、 14の温度をベルチェ効果素子
等の温度制御装置15でチューニングしたところ100
mWのω入力に対して5mWの青色光が得られた。
The wavelength of LDII was finely adjusted so that the 2ω blue light emission was the strongest, and the temperature of KNbo, 14 was tuned with a temperature control device 15 such as a Bertier effect element, and the result was 100.
5 mW of blue light was obtained for an ω input of mW.

第2の実施例を第2図に示す。A second embodiment is shown in FIG.

基本波ωの光源として、5pectra−Diode 
Lab。
As a light source of the fundamental wave ω, 5pectra-Diode
Lab.

社製の5DL−3420Cを日立社製HLP−1400
でインジェクション・ロックしたLD 31を用いた。
Hitachi's 5DL-3420C was replaced with Hitachi's HLP-1400
An injection-locked LD 31 was used.

ωの戻り光の影響を防ぐため、図示はしないがファラデ
ー・アイソレータ12をLD 31と結合光学系32の
間に配置した。ωの波長は855nmで、コリメーティ
ングレンズ、シリンドリカルレンズ、スフエリカルレン
ズよりなる結合光学系32で、適当なビーム径に集光す
る。
Although not shown, a Faraday isolator 12 was placed between the LD 31 and the coupling optical system 32 in order to prevent the influence of the return light of ω. The wavelength of ω is 855 nm, and the light is focused to an appropriate beam diameter by a coupling optical system 32 consisting of a collimating lens, a cylindrical lens, and a spherical lens.

リング共振器は4枚のミラー33.34.35.36で
構成されている。
The ring resonator is composed of four mirrors 33, 34, 35, 36.

各々のミラーのω、2ωに対する反射率は、r33(ω
)=95%、 r3x (2ω)=99.9%、 rs
4(ω)=99.9%、 rs4(2ω)=99.9%
、 ris(ω)=99.9%。
The reflectance of each mirror for ω and 2ω is r33(ω
)=95%, r3x (2ω)=99.9%, rs
4(ω)=99.9%, rs4(2ω)=99.9%
, ris(ω)=99.9%.

rss (2ω)=99.9%、 rxa(ω)=99
.9%、rig(2ω)=99%である。
rss (2ω) = 99.9%, rxa (ω) = 99
.. 9%, rig(2ω)=99%.

2ωの青色発光が最も強くなるようにLD31の波長を
微調整し、KNbo、 37の温度をペルチェ効果素子
等の温度制御装置でチューニングしたところ100+n
Wのω入力に対して4mWの青色光(428nm)が得
られた。
The wavelength of LD31 was finely adjusted so that the 2ω blue light emission was the strongest, and the temperature of KNbo and 37 was tuned with a temperature control device such as a Peltier effect element, and the result was 100+n.
For W ω input, 4 mW of blue light (428 nm) was obtained.

[発明の効果] 本発明は、光源からの基本波ωを基本波の共振器により
共振させ外部への散逸をほとんど防ぎ、非線形光学結晶
へのωの吸収をよ(し、さらに第2高調波2ωに対する
共振器を設けることにより、高出力の2ωが得られると
いう優れた効果を有する。
[Effects of the Invention] The present invention causes the fundamental wave ω from a light source to resonate in a fundamental wave resonator, almost prevents it from dissipating to the outside, and improves the absorption of ω into the nonlinear optical crystal (and further reduces the absorption of the second harmonic). By providing a resonator for 2ω, there is an excellent effect that a high output of 2ω can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第10図は本発明の実施例を示し、2重共振型
波長変換素子の基本的構成の側面図であり、第11図は
従来例の基本的構成の側面図である。 11・・・LD      14・・・KNbO,。 第 3 図 第 図 第 図 第 図 第 図 第 0 図
1 to 10 show embodiments of the present invention, and are side views of the basic configuration of a double resonant wavelength conversion element, and FIG. 11 is a side view of the basic configuration of a conventional example. 11...LD 14...KNbO,. Figure 3 Figure 3 Figure 0 Figure 0

Claims (7)

【特許請求の範囲】[Claims] (1)非線形光学結晶へ基本波を入射する光源と、基本
波を高調波へ変換する非線形光学結晶と、基本波と高調
波の両方に対する2重共振器とを備えてなる波長変換素
子。
(1) A wavelength conversion element comprising a light source that inputs a fundamental wave into a nonlinear optical crystal, a nonlinear optical crystal that converts the fundamental wave into a harmonic, and a double resonator for both the fundamental wave and the harmonic.
(2)一対の共振器間に、基本波を高調波へ変換する非
線形光学結晶を配置し、該共振器の一方の外側に基本波
を発生させる光源を配置してなる波長変換素子において
、2重共振器として基本波を多重反射する共振器と高調
波を多重反射する共振器を設けた請求項1記載の波長変
換素子。
(2) In a wavelength conversion element, a nonlinear optical crystal for converting a fundamental wave into a harmonic wave is arranged between a pair of resonators, and a light source for generating a fundamental wave is arranged outside one of the resonators. 2. The wavelength conversion element according to claim 1, further comprising a resonator that multiple-reflects a fundamental wave and a resonator that multiple-reflects harmonic waves as multiple resonators.
(3)基本波を多重反射する一対の基本波の共振器と、
高調波を多重反射する高調波の共振器とを同一光軸上に
配置したことを特徴とする請求項2記載の波長変換素子
(3) a pair of fundamental wave resonators that multiple-reflect the fundamental wave;
3. The wavelength conversion element according to claim 2, wherein a harmonic resonator for multiple reflection of harmonics is arranged on the same optical axis.
(4)基本波及び高調波をともに多重反射する一対の共
振器を用いたことを特徴とする請求項2記載の波長変換
素子。
(4) The wavelength conversion element according to claim 2, further comprising a pair of resonators that multiple-reflect both the fundamental wave and the harmonics.
(5)基本波の共振器は、光源側の基本波に対する反射
率をr_i_n、出力側の基本波に対する反射率をr_
o_u_t、基本波の共振器内部の基本波に対する透過
率をtとするとr_i_n=t^2r_o_u_tであ
り、高調波の共振器は高調波に対する反射率が光源側よ
り出力側の方が小さいものである請求項2〜4いずれか
1項記載の波長変換素子。
(5) For the fundamental wave resonator, the reflectance for the fundamental wave on the light source side is r_i_n, and the reflectance for the fundamental wave on the output side is r_i_n.
o_u_t, and if the transmittance of the fundamental wave to the fundamental wave inside the resonator is t, then r_i_n=t^2r_o_u_t, and the harmonic resonator has a smaller reflectance for harmonics on the output side than on the light source side. The wavelength conversion element according to any one of claims 2 to 4.
(6)基本波および高調波の共振器が非線形光学結晶の
光源側と出力側の端面に形成された光学膜である請求項
2〜5いずれか1項記載の波長変換素子。
(6) The wavelength conversion element according to any one of claims 2 to 5, wherein the fundamental wave and harmonic resonators are optical films formed on the light source side and output side end faces of the nonlinear optical crystal.
(7)2重共振器として外部より入射された基本波およ
び高調波を少なくとも3枚のミラーによって循環せしめ
るリング型共振器と、 該リング型共振器内の基本波の光軸上に配置され基本波
を高調波へ変換する非線形光学結晶と、該リング型共振
器の外側に配置された基本波を発生する光源とを備えて
なる波長変換素子。
(7) A ring-shaped resonator as a double resonator in which a fundamental wave and harmonics incident from the outside are circulated by at least three mirrors; A wavelength conversion element comprising a nonlinear optical crystal that converts waves into harmonics, and a light source that generates a fundamental wave and is placed outside the ring-shaped resonator.
JP1361290A 1990-01-25 1990-01-25 Wavelength conversion element Expired - Fee Related JP2955609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1361290A JP2955609B2 (en) 1990-01-25 1990-01-25 Wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1361290A JP2955609B2 (en) 1990-01-25 1990-01-25 Wavelength conversion element

Publications (2)

Publication Number Publication Date
JPH03219215A true JPH03219215A (en) 1991-09-26
JP2955609B2 JP2955609B2 (en) 1999-10-04

Family

ID=11838052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1361290A Expired - Fee Related JP2955609B2 (en) 1990-01-25 1990-01-25 Wavelength conversion element

Country Status (1)

Country Link
JP (1) JP2955609B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608577A (en) * 1991-08-30 1997-03-04 Mitsui Petrochemical Industries, Ltd. Optical mirror and optical device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608577A (en) * 1991-08-30 1997-03-04 Mitsui Petrochemical Industries, Ltd. Optical mirror and optical device using the same

Also Published As

Publication number Publication date
JP2955609B2 (en) 1999-10-04

Similar Documents

Publication Publication Date Title
US5121404A (en) Optically pumped solid laser
JPH04234739A (en) Laser device and method of generating second higher harmonic of laser
JP4489440B2 (en) Generation of fourth harmonic with enhanced intracavity resonance using uncoated Brewster surface
JPH11502369A (en) Techniques for locking a laser diode to a passive optical cavity
JPH05129700A (en) Laser system and method of converting frequency
US6344920B1 (en) Monolithic serial optical parametric oscillator
EP0820130B1 (en) Laser beam emitting apparatus
JPH03219215A (en) Wavelength converting element
JP2761678B2 (en) Laser diode pumped solid state laser
US3366892A (en) Solid state laser mode selection means
JP2670647B2 (en) Laser diode pumped solid state laser
JPH06265954A (en) Wavelength converting element
JP2870918B2 (en) Pumped light resonance type laser
KR100360474B1 (en) Second harmonic generator
JP2963220B2 (en) Second harmonic generator and optical recording medium pickup
JPH06164048A (en) Harmonic generation apparatus
JPH0414024A (en) Secondary higher harmonic generation device
JP3282221B2 (en) Laser light generator
JPH0715061A (en) Wavelength converter for laser
JPH11103116A (en) Blue laser oscillation device
JP2000332327A (en) Semiconductor laser pumped solid state laser and fabrication thereof
JPH0743760A (en) Generating device for second higher harmonic
JPH0297920A (en) Optical nand gate
JPH1074994A (en) Solid-state laser equipment
JPH0669564A (en) Laser light generation equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees