JPH0321841A - Gas leakage estimating device - Google Patents

Gas leakage estimating device

Info

Publication number
JPH0321841A
JPH0321841A JP15753989A JP15753989A JPH0321841A JP H0321841 A JPH0321841 A JP H0321841A JP 15753989 A JP15753989 A JP 15753989A JP 15753989 A JP15753989 A JP 15753989A JP H0321841 A JPH0321841 A JP H0321841A
Authority
JP
Japan
Prior art keywords
gas
data
wind
time
storage means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15753989A
Other languages
Japanese (ja)
Inventor
Kentaro Nagahori
永堀 謙太郎
Iwao Okazaki
岡崎 巖
Yukio Arisaka
有坂 靭男
Toru Tanaka
亨 田中
Michihiro Osakabe
刑部 道博
Masahiro Ezaki
雅弘 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Riken Keiki KK
Original Assignee
JGC Corp
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Riken Keiki KK filed Critical JGC Corp
Priority to JP15753989A priority Critical patent/JPH0321841A/en
Publication of JPH0321841A publication Critical patent/JPH0321841A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To estimate a gas leakage per unit time speedily with high accuracy by calculating a leak area according to data in two storage means and current wind direction and wind velocity data and finding a time-averaged density gradient. CONSTITUTION:A coordinate data storage circuit 13 is stored with coordinate data on gas detectors S(S1 - S15) arranged in a plant P. Further, a wind speed and wind direction history storage circuit 11 is stored with the mean wind direction and wind velocity based upon data of an anemometer K in the plane P which are obtained for a longer than a period required for gas to reach detectors S in a no-wind state, and the data are updated in order. Then an arithmetic unit 14 reads data out of the circuits 13 and 14 and calculates a leak area when at least one of the detectors S detects gas exceeding reference density. Further, the time-averaged density gradient is calculated from density signals from the respective detectors S and the gas leakage is calculated from the gradient and leak area.

Description

【発明の詳細な説明】 (技術分野) 本発明は、複数のガス検出器からの信号に基づいてガス
の漏洩jliを推定する技術に開する.(従来技術) 例えば広い地域に多数のガス源が点在する化学プラント
においては、複数のガス検出器を要所に配設して、カス
漏洩時にはガスJ度信号が最も高い3つの地点を検出し
、各検出濃度とガス検出器が配設されている位置に基づ
いて比例計算によりガスの漏洩領域を推定する方法か提
案されている(特開昭61−155932号公報).(
解決すべき課題) この方法によれば、理論的にはガス漏洩箇所の位置を算
定できることは明白であるが、化学プラントのように極
めで広い場所での実施にあっては、ガス検出器が通常2
0メートル以上の間隔で配設されるとともに、大きな各
種の設備が点在する関係上、複雑な気流の影gを受けて
正確な漏洩量の測定か不可能であるという問題がある.
本発明はこのような問題に鑑みてなされたものであって
、その目的とするところは風向や風速に関わりなく広い
地域においてガス漏洩量を可及的速やかに推定すること
ができるガス漏洩量測定装置を提供することにある. (課題を解決するための手段) このような問題を解消するために本発明においては、プ
ラント内に配設された複数のガス検出器の座標データを
格納した第1の記憶手段と、順次更新しつつ、無風状態
においてガスがガス検出器に到達に要するより長い期間
プラント内の風向風速計測手段からの信号を格納する第
2の記憶手段と、前記ガス検出器の少な〈とも1つが基
準濃度以上のガスを検出したときに、第1の記憶手段と
第2の記憶手段からデータを読出して漏洩領域を算出す
る手段、及び各ガス検出器からの濃度信号に基づいて平
均濃度勾配を算出する時間平均濃度勾配演算手段、該時
間平均濃度勾配と前記算出された漏洩領域からガス漏洩
Nを算出する手段を備えた. (作用) ガス検出器の1つからガス濃度信号が出力された段階で
第2記憶手段、及び現在の風向風速データに基づいて漏
洩領域を算出して時間平均濃度勾配を求め、これと漏洩
領域の面積に基づいて漏洩jlを算出する. (実施例) そこで以下に本発明の詳細を図示した実施例に基づいて
説明する. 第1図は本発明の一英施例を示したものであって、図中
符号1は、本発明が特徴とするガス漏洩量測定装置で、
fiタの設備を敷地に配置されたプラントPの敷地に平
面的に間Ill8lをおくととうに、ガスの比重に対応
した地上高でちって配設された複数のガス検出器S1、
S2、S3・・・・力)らの信号がスキャナ2を介して
入力し、風向風速計Kからの信号が人力し、漏洩量や漏
洩領域をディ゛スプレイ3に出力するものである. 図中符号11は、一定時間、例えば10秒間の平均風向
と平均風速を格納する風向風速履歴記憶回路で、第2図
に示したように無風状態において少なくとも漏洩領域か
らガス検出器Sまで拡散するに要する最長の時間分、つ
まり注目している一点を取囲む3個、もし〈はガス検出
器を結ぶ線分の交点から最も遠いガス検出器までガスが
拡散する時間のデータを格納可能な記憶容l!lを備え
るとともに、記憶データを更新しながら時間tnととも
に風向と風速を記憶して、後述する演算装置14からの
指令により記憶内容を出力するように構戊ざれている.
12は風向風速補正回路で、基準の方向、例えば北向き
の風に対して各ガス検出器S1、S2、S3・・・・が
配設されている付近についての風向と風速とを予め調査
したデータを第3図に示したように格納し、演算装置1
4からの指令に基づいて出力するように構或ざれでいる
.13は、座標データ記憶回路で、各ガス検出器S1、
S2、S3・・・・Snが配置されている座標データ(
Xi,Y I)(X2,Y2)(X3,Y3) ・・・
・(Xn,Yn)や、必要に応じてプラント設備の配置
図を格納して構或ざれでいる.14は前述の演算装置で
、CPU 1 4a、日○M14b、RAM14cを有
するマイクロコンピュータからなり、各ガス検出器S1
、S2、S3・・・・Snからのガス濃度信号と、風向
風速履歴記憶回路11、及び風向風速補正回路12から
の信号により、後述するフローチャートに基づいてガス
漏洩領域の推定演算を行ない、この結果に基づいて漏洩
量の算出演算を行なうように構或ざれている. なお図中符号15は、磁気ディスク装梢等からなる外部
記憶装置で、各ガス検出器S1、S2、S3・・・・や
、風向風速履歴回路11、風向風速補正回路12、風向
風速計Kからの信号や推定演算プロセスを記録するもの
である. 次(こ、このように構成した装置の動作を第4図に示し
たフローチャートに基づいて説明する.風向風速計Kに
より検出された風向、及び風速の時間平均データが経過
時間とともに風向風速履歴記憶回路11に格納ざれ、同
時に格納後一定時間が経過したデータは順次最新のデー
タに更新ざれていく。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention is directed to a technique for estimating gas leakage based on signals from a plurality of gas detectors. (Prior art) For example, in a chemical plant where many gas sources are scattered over a wide area, multiple gas detectors are installed at key points to detect the three points where the gas J degree signal is highest in the event of a gas leak. However, a method has been proposed in which the gas leakage area is estimated by proportional calculation based on each detected concentration and the position where the gas detector is installed (Japanese Patent Laid-Open No. 155932/1983). (
Issues to be Solved) It is clear that the location of gas leaks can be calculated theoretically using this method, but when used in extremely large areas such as chemical plants, it is difficult to use gas detectors. Normal 2
Because they are placed at intervals of 0 meters or more and are scattered with various large equipment, there is a problem in that it is impossible to accurately measure the amount of leakage due to the influence of complicated air currents.
The present invention was made in view of these problems, and its purpose is to measure the amount of gas leakage that can estimate the amount of gas leakage as quickly as possible in a wide area regardless of wind direction or wind speed. The goal is to provide equipment. (Means for Solving the Problems) In order to solve such problems, the present invention provides a first storage means that stores coordinate data of a plurality of gas detectors installed in a plant, and a first storage means that stores coordinate data of a plurality of gas detectors installed in a plant. and a second storage means for storing signals from the wind direction and wind speed measuring means in the plant for a longer period of time than it takes for gas to reach the gas detector in a windless state; means for calculating a leakage area by reading data from the first storage means and the second storage means when the above gases are detected; and calculating an average concentration gradient based on concentration signals from each gas detector. The apparatus is equipped with a time-average concentration gradient calculation means and a means for calculating gas leakage N from the time-average concentration gradient and the calculated leakage area. (Function) At the stage when a gas concentration signal is output from one of the gas detectors, the leak area is calculated based on the second storage means and the current wind direction and wind speed data, the time average concentration gradient is obtained, and this and the leak area are calculated. Calculate the leakage jl based on the area of . (Example) The details of the present invention will be explained below based on an illustrated example. FIG. 1 shows an embodiment of the present invention, and reference numeral 1 in the figure is a gas leakage measuring device which is a feature of the present invention.
When the FIT equipment is placed on the site of the plant P, which is located on the site, there are a plurality of gas detectors S1 arranged at ground heights corresponding to the specific gravity of the gas.
Signals from S2, S3, etc.) are input via the scanner 2, signals from the anemometer K are input manually, and the leakage amount and leakage area are output to the display 3. Reference numeral 11 in the figure is a wind direction/wind speed history memory circuit that stores the average wind direction and average wind speed for a certain period of time, for example, 10 seconds, and as shown in Figure 2, it diffuses from at least the leak area to the gas detector S in a calm state. A memory that can store data for the longest time required for gas to diffuse from the intersection of the three gas detectors surrounding the point of interest, or the farthest gas detector from the intersection of the three gas detectors. Good luck! 1, and is configured to store wind direction and wind speed along with time tn while updating the stored data, and output the stored contents in response to a command from an arithmetic unit 14, which will be described later.
Reference numeral 12 is a wind direction and wind speed correction circuit, which previously investigated the wind direction and wind speed in the vicinity where each gas detector S1, S2, S3, etc. is installed with respect to a standard direction, for example, northward wind. The data is stored as shown in FIG.
It is configured to output based on the command from 4. 13 is a coordinate data storage circuit for each gas detector S1,
S2, S3...Coordinate data where Sn is located (
Xi, Y I) (X2, Y2) (X3, Y3) ...
- Store (Xn, Yn) and layout diagrams of plant equipment as needed. 14 is the above-mentioned arithmetic unit, which consists of a microcomputer having a CPU 14a, an M14b, and a RAM 14c, and is connected to each gas detector S1.
, S2, S3, . It is designed to calculate the amount of leakage based on the results. Reference numeral 15 in the figure is an external storage device consisting of a magnetic disk mounted, etc., which includes each gas detector S1, S2, S3, etc., a wind direction/wind speed history circuit 11, a wind direction/wind speed correction circuit 12, and a wind direction/anemometer K. It records the signals from and the estimation calculation process. Next, the operation of the device configured in this way will be explained based on the flowchart shown in Fig. 4.The time-average data of the wind direction and wind speed detected by the wind direction and speed meter K is stored in the wind direction and wind speed history along with the elapsed time. Data that is stored in the circuit 11 and a certain period of time has elapsed since being stored is sequentially updated to the latest data.

このような状態において或る設備からガスか漏洩すると
、漏洩したガスは、周囲の気流に影響を受けながら流敗
することになる. [ガスの拡散速度よりも風の影響が大きい場合]設@L
(第5図)から漏洩したガスが、その流下方向に位置す
る第1番目のガス検出器Saに到達すると、ガス検出器
Saからガス濃度に比例した信号が出力する.これによ
り演算装璽14は、信号を出力した検出器Saの座標(
Xa,V’a)を座標データ記憶回路12力1ら読出し
、同時に風向風速計K及び風向風速履歴記憶回路11の
データに基づいて風の影響の有@を判断する.今の場合
には、風の影響が無視し得ないから風向風速履歴記憶回
路11にアクセスし、ここに格納ざれでいる過去の風向
風速データを順次遡するように読出す.このとき信号を
出力(ノたガス検出器Saの位置が、設備等の影響によ
り気流の乱れを受け易い箇所である場合には、風向風速
履歴紀憶回路11からの信号を補正回路12により補正
して漏洩発生時点からガス検出器Saに到達するまでの
気流の経路P1、P2、P3・・・・を算出する.この
経路P1、P2、P3・・・・を取囲むように位置する
ガス検出器Sb,Sc,Sdの圧標(Xb,Yb)(X
c,Yc)(Xd.Yd)8座標データ記憶回wA13
から読出し、この座標を周上に持つ円Mの座標を計算し
、この円Mを漏洩領域としてディスプレイ3に表示する
.これ(こより、この円Mの外側に位置する第2、第3
のガス検出器のガス検出信号を待つことなく、速やかに
漏洩領域Mをオペレータに知らせることができるばかり
でなく、第1番目のガス検出器から信号が出力した時点
における風だけを根拠とする従来の推定方式に比較して
格段に高い精度で漏洩領域が推定できることになる. 時間経過につれて漏洩ガスの拡散領域が拡大して第2の
ガス検出器から信号が出力すると、前述したのと同様の
プロセスに基づいて検出時点までの気流の経路を算出し
、この経路と、最初にガスを検出したガス検出器Saの
座標(Xa.Ya)を勘案しながら漏洩領域の推定演算
を実行する.すなわち、漏洩したガス気団が時間の経過
とともに拡散により広がって、推定対象範囲の面積が大
きくなって漏洩領域推定の正確性を欠くことになるので
、最初にガスを検出したガス検出器Saの座標(X a
. Y a)をあくまでも基準とした第1の推定結果を
尊重する一方、第2、第3・・・・の検出器S,Sc・
・・・の検出結果を補足的なデー夕としながら推定演算
を実行する。
If gas leaks from a certain facility under such conditions, the leaked gas will be affected by the surrounding airflow and dissipate. [When the influence of wind is greater than the gas diffusion speed] Set @L
When the gas leaking from the tube (FIG. 5) reaches the first gas detector Sa located in the downstream direction, the gas detector Sa outputs a signal proportional to the gas concentration. As a result, the arithmetic unit 14 calculates the coordinates (
Xa, V'a) are read out from the coordinate data storage circuit 12, and at the same time, based on the data of the wind direction and speed anemometer K and the wind direction and wind speed history storage circuit 11, it is determined whether there is a wind influence. In this case, since the influence of the wind cannot be ignored, the wind direction and wind speed history memory circuit 11 is accessed, and past wind direction and wind speed data that have not been stored there are sequentially read out. At this time, a signal is output (if the position of the gas detector Sa is in a place where airflow is easily disturbed due to the influence of equipment, etc., the signal from the wind direction and wind speed history memory circuit 11 is corrected by the correction circuit 12. Then, the air flow paths P1, P2, P3, etc. from the point of leak occurrence to the gas detector Sa are calculated. Pressure marks (Xb, Yb) (X
c, Yc) (Xd.Yd) 8 coordinate data storage times wA13
The coordinates of a circle M having these coordinates on its circumference are calculated, and this circle M is displayed on the display 3 as a leakage area. This (from this, the second and third positions located outside this circle M)
Not only can the leakage area M be immediately notified to the operator without waiting for the gas detection signal from the first gas detector, but also the conventional method is based only on the wind at the time when the signal is output from the first gas detector. This means that the leakage area can be estimated with much higher accuracy than the previous estimation method. When the leak gas diffusion area expands over time and a signal is output from the second gas detector, the air flow path up to the detection point is calculated based on the same process as described above, and this path and the first Estimating the leakage area is performed while taking into account the coordinates (Xa.Ya) of the gas detector Sa that detected the gas. In other words, the leaked gas air mass spreads over time due to diffusion, and the area of the estimation target area increases, resulting in a lack of accuracy in estimating the leakage area. Therefore, the coordinates of the gas detector Sa that first detected the gas (X a
.. While respecting the first estimation result based on Y a), the second, third, etc. detectors S, Sc, etc.
... is used as supplementary data to perform estimation calculations.

[風の影奮が無視できる場合] 漏洩点し(第6図)からのガスが拡散して最初のガス検
出器Saに到達すると、ガス検出器Saからガス濃度に
比例した信号が出力する.これにより、演W装置14は
、信号を出力した検出器Saの座標(Xa.Ya)を座
標データ記憶回路12から読出し、同時に風向風速計K
、及び風向風速履歴記憶回路11のデータ{こ基づいて
過去、現在の風の影gを判断する. 今の場合には、風向風速計Kからの風速信号、及び風向
風速履歴記憶回路11の風速が極めで小さいため、一応
風の影響がないものと判断する.このため、漏洩したガ
スは、気流に流ざれることなく漏洩領域Lを中心に四方
に拡散して漏洩領域Lに一番近いガス検出器Saに到達
する(第6図).演算装1fl4は、信号を出力したガ
ス検出器Saの座標(X a, Y a)を中心にして
、この検出器Saを取囲むように位1している4個のガ
ス検出器Sb.Sc%Sd,Se!選択しCその座標(
Xb,Yb)(Xc,Yc)・・・・(Xe,Ye)7
:読出す.ついで、ガスを検出した検出器Saと他の検
出器Sb,Sc・・・・Seとの略々中間点を通る領域
M′の座標を算出し、この領域M′を漏洩領域としてデ
ィスプレイ3に表示する.これにより第2、第3のガス
検出器からの信号を待つことなく漏洩領域を表示するこ
とになる. 時間の経過に伴って漏洩カスが拡散して順次別のガス検
出器Sd,Se−・・が検出信号を出力した場合には、
一番高い濃度信号を出力しているガス検出器の座標を読
出し、この座標を中心とするとともに、これを取囲む直
近の他の検出器の中間点を通る領域を表示する. このようにして、風速を零として漏洩領域を推定するこ
とにより、特に微弱な風が吹いている場合に生じがちな
風向データの大きな変動に起因する誤差を排除して確度
の高い推定を行なうことができる. [S洩量の算出] 上述のプロセスを経ながら漏洩領域を推定する過程にお
いて、漏洩が進行して複数のガス検出器にガスが到達し
た段階で、ガス濃度信号に基づいて瞬間的な濃度変化を
時間的に均した値を基準に座標点上の濃度勾配、つまり
時間平均濃度勾配を算出する. すなわち、大気中1こ存在するガス団塊が拡散する過程
を表す坂上の拡散式やサットンの拡散式を用いるなり、
簡便には2つの濃度検出点における濃度と、検出点間の
距Mをパラメータとして距離のN乗根により2点間の任
意の位置のガス濃度を按分する等の方法を用いることが
できる.このようにして求められた任意地点のガスの内
、一定濃度レベル、例えば1 0 0 ppmきざみで
領域Z1、z2を算出表示するとともに(第7図)、或
る一定濃度、例えば100ppmの等′,J4度線で囲
まれる領域の面積を算出して単位時間当りの漏洩量の推
定を行なう. [実 験 例] 間隔をもって複数のガス検出器をフィールドに配設して
、一定条件下、例えば平均風速0.  1メートル/秒
以下の実質的に無風とみなせる状態において100リッ
トル/分のガスを放出し、1 00ppmの等濃度曲線
で囲まれる面積SO(平方メートル)を算出し、この面
積と漏洩量との闇係Q=F (So )を求める. 次にガスの単位時間当りの流出!(リットル/分)を変
えながら、1ooppm等濃度曲線により囲まれる面積
Sを算出し、漏洩tを、Q=S/SOx 1 00 (
リットル/分)として、無風状態とみなせる場合におい
て、ガスの噴出量を変えながら、ガスの漏洩量を推定し
たところ、表1のHこ示すような結果となった.このこ
とから、上記推定式は、無風状態(上記表1の工)にあ
っては漏洩量を比較的正確に算出できるものであること
が判明した. 一方、風速が大きくなって無視し得なくなると、ガス気
団周縁部が風1こよつ吹き流ざれやすくなる場合には、
風速Vを加味した関係式Q=S/SO×100×(v+
1)(リットル/分) を用いることにより、表1のII及至■に示したよう(
こ1/2乃至2倍の範囲内で推定することができた. なお、この実施例においては風速vをそのまま用いてい
るが、設備の配置状況や気候等に応じで補正係数aa用
いて(aV+1)を乗算するようにすると、より一層推
定精度を向上させることができる。
[When the influence of wind can be ignored] When the gas from the leak point (Fig. 6) diffuses and reaches the first gas detector Sa, a signal proportional to the gas concentration is output from the gas detector Sa. As a result, the W controller 14 reads the coordinates (Xa.Ya) of the detector Sa that outputs the signal from the coordinate data storage circuit 12, and at the same time, the wind direction and speed meter K
, and the data of the wind direction/wind speed history storage circuit 11 {based on which the past and present wind shadows g are determined. In this case, since the wind speed signal from the anemometer K and the wind speed in the wind direction and speed history storage circuit 11 are extremely small, it is determined that there is no influence from the wind. Therefore, the leaked gas does not flow into the airflow, but spreads in all directions around the leak area L, and reaches the gas detector Sa closest to the leak area L (Fig. 6). The arithmetic unit 1fl4 has four gas detectors Sb. Sc%Sd, Se! Select C and its coordinates (
Xb, Yb) (Xc, Yc)...(Xe, Ye)7
: Read out. Next, the coordinates of an area M' passing approximately at the midpoint between the detector Sa that detected the gas and the other detectors Sb, Sc, . . . Se are calculated, and this area M' is displayed on the display 3 as a leakage area. indicate. This allows the leak area to be displayed without waiting for signals from the second and third gas detectors. If the leakage scum spreads over time and other gas detectors Sd, Se... sequentially output detection signals,
Read the coordinates of the gas detector outputting the highest concentration signal, and display the area centered on these coordinates and passing through the midpoints of the nearest other detectors surrounding it. In this way, by estimating the leakage area with the wind speed at zero, it is possible to perform highly accurate estimation by eliminating errors caused by large fluctuations in wind direction data that tend to occur especially when weak winds are blowing. Can be done. [Calculation of S leakage amount] In the process of estimating the leakage area through the process described above, when the leakage progresses and the gas reaches multiple gas detectors, instantaneous concentration changes are calculated based on the gas concentration signal. Calculate the concentration gradient at the coordinate point, that is, the time-averaged concentration gradient, based on the value that is averaged over time. In other words, by using Sakagami's diffusion equation or Sutton's diffusion equation, which describes the process by which a gas nodule existing in the atmosphere diffuses,
For convenience, a method can be used in which the concentration at two concentration detection points and the distance M between the detection points are used as parameters, and the gas concentration at an arbitrary position between the two points is proportionally divided by the Nth root of the distance. Among the gases at arbitrary points obtained in this way, regions Z1 and z2 are calculated and displayed at a constant concentration level, for example, in steps of 100 ppm (Fig. 7), and at a certain concentration level, for example, 100 ppm. , calculate the area of the area surrounded by the J4 parallel and estimate the amount of leakage per unit time. [Experimental example] A plurality of gas detectors are placed in the field at intervals, and the test is carried out under certain conditions, for example, at an average wind speed of 0. When gas is discharged at 100 liters/minute under conditions that can be considered as virtually no wind at 1 meter/second or less, the area SO (square meters) surrounded by the 100 ppm isoconcentration curve is calculated, and the relationship between this area and the amount of leakage is calculated. Find the coefficient Q=F (So). Next, the outflow of gas per unit time! (L/min), calculate the area S surrounded by the 1 ooppm isoconcentration curve, and calculate the leakage t as Q=S/SOx 100 (
When the amount of gas leakage was estimated by changing the amount of gas ejected under conditions that can be considered as windless (liters per minute), the results shown in H in Table 1 were obtained. From this, it was found that the above estimation formula can calculate the leakage amount relatively accurately in no-wind conditions (as shown in Table 1 above). On the other hand, when the wind speed increases and becomes impossible to ignore, the peripheral part of the gas mass tends to be blown away by a single piece of wind.
Relational expression Q=S/SO×100×(v+
1) (liter/min) As shown in II to ■ of Table 1, (
We were able to estimate this within the range of 1/2 to 2 times. In this example, the wind speed v is used as is, but the estimation accuracy can be further improved by multiplying it by (aV+1) using a correction coefficient aa depending on the equipment layout, climate, etc. can.

(効果) 以上、説明したよう{こ本発明によれば、プラント内に
配設された複数のガス検出器の座標データを格納した第
1の記憶手段と、順次更新しつつ、無風状態においてガ
スがガス検出器に到達に要するより長い期間プラント内
の風向風速計測手段からの信号を格納する第2の記憶手
段と、前記ガス検出器の少なくとも1つが基準濃度以上
のガスを検出したときに、第1の記憶手段と第2の記憶
手段からデータを読出して漏洩領域を算出する手段、及
び各ガス検出器からの濃度信号に基づいて時間平均濃度
勾配を算出する平均濃度勾配演算手段、時間平均濃度勾
配と前記算出された漏洩領域からガス漏洩Nを算出する
手段を備えたので、単位時間当りのガスの漏洩jiを迅
速かつ、高い精度により推定することができる.
(Effects) As described above, according to the present invention, the first storage means stores the coordinate data of a plurality of gas detectors installed in the plant, and the first storage means stores the coordinate data of a plurality of gas detectors installed in the plant. a second storage means for storing the signal from the wind direction and speed measuring means in the plant for a longer period than it takes for the gas to reach the gas detector; and when at least one of the gas detectors detects a gas having a reference concentration or higher, means for reading data from the first storage means and the second storage means to calculate a leakage area; and average concentration gradient calculation means for calculating a time-average concentration gradient based on concentration signals from each gas detector; Since a means for calculating the gas leakage N from the concentration gradient and the calculated leakage area is provided, the gas leakage ji per unit time can be estimated quickly and with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す装置の構戊図、第2、
3図は、それぞれ同上装置における記憶回路と補正回路
のデータ構造を示す模式図、第4、5、6、7図は同上
装置の動作を示すフローチャートと説明図である. P・・−・ブラシト Sa,Sb,Sc・・・・ガス検出器 K・・・・風向風速計
FIG. 1 is a schematic diagram of an apparatus showing an embodiment of the present invention;
3 is a schematic diagram showing the data structure of a storage circuit and a correction circuit in the above device, respectively, and FIGS. 4, 5, 6, and 7 are a flowchart and an explanatory diagram showing the operation of the above device. P...Brushite Sa, Sb, Sc...Gas detector K...Wind direction and speed meter

Claims (2)

【特許請求の範囲】[Claims] (1)プラント内に配設された複数のガス検出器の座標
データを格納した第1の記憶手段と、順次更新しつつ、
無風状態においてガスがガス検出器に到達に要するより
長い期間プラント内の風向風速計測手段からの信号を格
納する第2の記憶手段と、前記ガス検出器の少なくとも
1つが基準濃度以上のガスを検出したときに、第1の記
憶手段と第2の記憶手段からデータを読出して漏洩領域
を算出する手段、及び各ガス検出器からの濃度信号に基
づいて時間平均濃度勾配を算出する時間平均濃度勾配演
算手段、及び前記時間平均濃度勾配と前記算出された漏
洩領域からガス漏洩量を算出する手段を備えてなるガス
漏洩量推定装置。
(1) A first storage means storing coordinate data of a plurality of gas detectors installed in the plant, and sequentially updating the data,
a second storage means for storing signals from the wind direction and speed measuring means in the plant for a longer period than required for gas to reach the gas detector in a windless state; and at least one of the gas detectors detects gas having a reference concentration or higher. means for calculating a leakage area by reading data from the first storage means and the second storage means, and a time-average concentration gradient for calculating a time-average concentration gradient based on concentration signals from each gas detector. A gas leakage amount estimating device comprising a calculation means and a means for calculating a gas leakage amount from the time average concentration gradient and the calculated leakage area.
(2)プラント内に配設された複数のガス検出器の座標
データを格納した第1の記憶手段と、順次更新しつつ、
無風状態においてガスがガス検出器に到達に要するより
長い期間プラント内の風向風速計測手段からの信号を格
納する第2の記憶手段と、前記ガス検出器の少なくとも
1つが基準濃度以上のガスを検出したときに、第1の記
憶手段と第2の記憶手段からデータを読出して漏洩領域
を算出する手段、及び各ガス検出器からの濃度信号に基
づいて時間平均濃度勾配を算出する時間平均濃度勾配演
算手段、該平均濃度勾配と前記算出された漏洩領域から
ガス漏洩量を算出する手段、及び風速をVとしたとき前
記算出された漏洩量に(aV+1)(ただし、aは定数
)を乗ずる手段を備えてなるガス漏洩量推定装置。
(2) A first storage means storing coordinate data of a plurality of gas detectors installed in the plant, and sequentially updating the data,
a second storage means for storing signals from the wind direction and speed measuring means in the plant for a longer period than required for gas to reach the gas detector in a windless state; and at least one of the gas detectors detects gas having a reference concentration or higher. means for calculating a leakage area by reading data from the first storage means and the second storage means, and a time-average concentration gradient for calculating a time-average concentration gradient based on concentration signals from each gas detector. a calculation means, a means for calculating a gas leakage amount from the average concentration gradient and the calculated leakage area, and a means for multiplying the calculated leakage amount by (aV+1) (where a is a constant) when the wind speed is V. Gas leakage amount estimation device.
JP15753989A 1989-06-19 1989-06-19 Gas leakage estimating device Pending JPH0321841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15753989A JPH0321841A (en) 1989-06-19 1989-06-19 Gas leakage estimating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15753989A JPH0321841A (en) 1989-06-19 1989-06-19 Gas leakage estimating device

Publications (1)

Publication Number Publication Date
JPH0321841A true JPH0321841A (en) 1991-01-30

Family

ID=15651892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15753989A Pending JPH0321841A (en) 1989-06-19 1989-06-19 Gas leakage estimating device

Country Status (1)

Country Link
JP (1) JPH0321841A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297421A (en) * 1991-03-05 1994-03-29 Mitsui Toatsu Chemicals, Inc. Leak detection system for gas, steam or the like that involves multi-point sampling
JP2018146305A (en) * 2017-03-02 2018-09-20 三菱重工業株式会社 Leak point specifying device and leak point specifying method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297421A (en) * 1991-03-05 1994-03-29 Mitsui Toatsu Chemicals, Inc. Leak detection system for gas, steam or the like that involves multi-point sampling
US5390530A (en) * 1991-03-05 1995-02-21 Mitsui Toatsu Chemicals, Inc. Leak detection method for gas, steam or the like based, in part, on the measurement of wind direction and velocity
JP2018146305A (en) * 2017-03-02 2018-09-20 三菱重工業株式会社 Leak point specifying device and leak point specifying method

Similar Documents

Publication Publication Date Title
JPS5919273B2 (en) Condenser performance monitoring method
US5214412A (en) Leak detector method establishing two different threshold levels
JPH0240967B2 (en) GASUROEIGENNOKENCHIHOHO
JPH0321841A (en) Gas leakage estimating device
JPH07120344A (en) Estimation of leakage area and leakage amount of gas
JP2996349B2 (en) Gas leak source detection device
US8190376B2 (en) System and method for source identification for a chemical release
JPH01219533A (en) Device for estimating gas leaking area
JPH06117600A (en) System for estimating leakage point and leakage volume of gas, steam or the like
JP2006105845A (en) Axle weight measuring method and its device
CN205506797U (en) Ammonia gas detection surveys appearance metrological verification device
JPH0743241A (en) Method for monitoring gas leakage
JP3117834B2 (en) Gas leak detection method
JPH05317625A (en) Warning output device for maintenance of filter
JPH07333097A (en) Method for measuring gas leakage region
JPH0843239A (en) Method for estimating area and amount of gas leakage taking obstacle into consideration
JP3117835B2 (en) Gas leak detection method
JP2571844B2 (en) Gas detection alarm device
JPH0198939A (en) Water leakage information controller
JPH04342855A (en) Exhaust gas temperature abnormality detecting device of internal combustion engine
JPH0783786A (en) Estimation of leak spot and leak quantity of gas
JP2992403B2 (en) Method and apparatus for estimating gas leakage source
JPH07190879A (en) Estimation method of leak point of gaseous substance
JPS59202007A (en) Wall thickness detector
JPH02147931A (en) Detection of leak for pipeline