JPH03217731A - Air conditioner equipped with oxygen enriching device - Google Patents

Air conditioner equipped with oxygen enriching device

Info

Publication number
JPH03217731A
JPH03217731A JP2013936A JP1393690A JPH03217731A JP H03217731 A JPH03217731 A JP H03217731A JP 2013936 A JP2013936 A JP 2013936A JP 1393690 A JP1393690 A JP 1393690A JP H03217731 A JPH03217731 A JP H03217731A
Authority
JP
Japan
Prior art keywords
oxygen
air
enriched air
indoor
enriched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013936A
Other languages
Japanese (ja)
Inventor
Yodo Nakano
中野 容道
Hironobu Okuno
奥野 寛宣
Minoru Tanaka
稔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2013936A priority Critical patent/JPH03217731A/en
Publication of JPH03217731A publication Critical patent/JPH03217731A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To supply pure oxygen enriched air together with air conditioned air by a method wherein an oxygen enriching device which has a device to generate a pressure difference on primary and secondary sides of an oxygen enriching film and a feed pipe to take out oxygen enriched air from the secondary side is provided, and the tip of the feed pipe is opened at the indoor side room. CONSTITUTION:On the front and rear outer surfaces of a formwork shaped frame, an oxygen enriching film 16 which is made of a polymer macromolecule resin film is stretched to form a separation film module 17, and on one side of the formwork shaped frame, a take-out port 21 for oxygen enriched air, which communicates with a space on the secondary side, is provided. A large number of separation film modules 17 are arranged in parallel in a case 20. To the take-out port 21, an oxygen enriched air feed pipe 18 is connected, and in the feed pipe 18, a vacuum pump 22 is inserted. By operation of the vacuum pump 22, the secondary side of the oxygen enriching film 16 is made to have a lower pressure than the primary side, and outdoor air which is fed in the case 20 is separated into oxygen enriched air and nitrogen enriched air by a fan for film module 28. At the tip of the feed pipe 18 which extends from the discharge side of the vacuum pump 22 to an indoor side room 2, a rod shaped nozzle 25 is provided, the oxygen enriched air is fed into the room together with air conditioned air.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は空気調和装置、詳しくは、利用側熱交換器を収
容する室内側室と、熱源側熱交換器を収容する室外側室
とを備え、室内の酸素濃度を高くすることができる酸素
富化機材空気調和装置に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an air conditioner, more specifically, an air conditioner comprising an indoor chamber housing a user side heat exchanger and an outdoor chamber housing a heat source side heat exchanger. , relates to an oxygen-enriching equipment air conditioner that can increase indoor oxygen concentration.

(従来の技術) 従来、この種酸素富化機材空気調和装置は、特開昭64
−41732号公報に開示され、第8、9図に示すよう
に、一体形空気調和機(A)の室内側(B)に室内熱交
換器(C)及び室内送風機(D)を、又、室外側(E)
に冷凍用圧縮機(F)、室外送風機(G)及び室外熱交
換器(H)を配置すると共に、高圧下で窒素を吸着する
ゼオライトを用いたPSA方式の酸素富化機(J)を前
記一体形空気調和機(A)内に設けて、熱交換された室
内空気を空気取入配管(K)から取入れて、該空気取入
配管(K)に介装した空気圧縮機(L)により加圧し、
吸着筒(M)(N)に充填したゼオライト(P)に窒素
を吸着させて酸素富化空気を得るようにしている。そし
てこのようにして得る酸素富化空気を富化配管(Q)を
介して室内に供給するようにしている。
(Prior art) Conventionally, this type of oxygen-enriching equipment air conditioner was disclosed in Japanese Patent Application Laid-Open No.
-41732, and as shown in Figures 8 and 9, an indoor heat exchanger (C) and an indoor blower (D) are installed on the indoor side (B) of an integrated air conditioner (A), and Outdoor side (E)
A refrigeration compressor (F), an outdoor blower (G), and an outdoor heat exchanger (H) are installed in the above-mentioned area, and a PSA type oxygen enrichment machine (J) using zeolite that adsorbs nitrogen under high pressure is installed in the above-mentioned area. The air compressor (L) installed in the integrated air conditioner (A) takes in the heat-exchanged indoor air from the air intake pipe (K), and is inserted into the air intake pipe (K). Pressurize,
Oxygen-enriched air is obtained by adsorbing nitrogen to zeolite (P) filled in adsorption cylinders (M) and (N). The oxygen-enriched air obtained in this manner is then supplied into the room via an enrichment pipe (Q).

(発明が解決しようとする課題) ところで、以上のごとき酸素富化機材空気調和装置では
、加圧することにより前記ゼオライト(P)に窒素を吸
着させ、酸素富化空気を得ているのであるが、前記ゼオ
ライ} (P)は吸湿し易く、又、吸湿することにより
微小粉末になり、かつ、窒素吸着性、能が劣化するもの
であるから、前記ゼオライト(P)に窒素を吸着させる
空気を事前乾坤する必要がある。従って、前記ゼオライ
ト(P)に窒素を吸着させて得る酸素富化空気は乾燥し
ているから、空気が乾燥している冬季では、一層低湿と
なって室内に居る人に不快感を与える問題があったし、
又、吸湿剤を用いて事前乾燥したとしても、事前乾燥が
不十分であるとき、前記ゼオライト(P)は吸湿により
微小粉末になって、酸素富化空気と一緒に室内に送風さ
れることになり、室内空気中の塵の濃度が上昇する問題
があった。
(Problems to be Solved by the Invention) By the way, in the above-described oxygen-enriched equipment air conditioner, nitrogen is adsorbed on the zeolite (P) by pressurization to obtain oxygen-enriched air. The zeolite (P) easily absorbs moisture, and when it absorbs moisture, it becomes a fine powder and its nitrogen adsorption properties and capacity deteriorate. It is necessary to dry up. Therefore, since the oxygen-enriched air obtained by adsorbing nitrogen on the zeolite (P) is dry, in the winter when the air is dry, the problem is that the humidity becomes even lower, causing discomfort to people staying indoors. There was,
Furthermore, even if pre-drying is performed using a moisture absorbent, if the pre-drying is insufficient, the zeolite (P) will become fine powder due to moisture absorption and will be blown into the room together with the oxygen-enriched air. This caused the problem of increased dust concentration in the indoor air.

更に、運転を継続することにより前記ゼオライ} (P
)には窒素及び酸素等が蓄積するから、所定時間の運転
後、バルブ(R)或は(S)を開動作させ、前記吸着筒
(M)(N)内の圧力を減圧することにより前記ゼオラ
イト(P)に吸着した窒素を脱着し、窒素富化空気を外
部に放出する必要があって、加圧、減圧を切換える切換
弁(T)を設ける必要があり、構造が複雑になる問題も
あったのである。
Furthermore, by continuing the operation, the zeolite} (P
), nitrogen, oxygen, etc. accumulate in the adsorption cylinders (M) and (N). It is necessary to desorb the nitrogen adsorbed on the zeolite (P) and release the nitrogen-enriched air to the outside, and it is necessary to provide a switching valve (T) to switch between pressurization and depressurization, which leads to the problem of a complicated structure. There it was.

本発明は以上のような問題に鑑みてなしたもので、その
目的は、酸素富化空気を分離すると同時に水蒸気を濃縮
することのできる酸素富化膜に注目し、前記酸素富化膜
を用いて酸素富化空気を得ることにより、室内空気の酸
素濃度を上昇させながら、冬期においては加湿作用を期
待でき、しかも塵や雑菌の少ない清浄な酸素富化空気を
空調空気とともに供給できるようにする点にある。
The present invention was made in view of the above-mentioned problems, and its purpose is to focus on an oxygen-enriching membrane that can separate oxygen-enriched air and condense water vapor at the same time. By obtaining oxygen-enriched air, the oxygen concentration of the indoor air can be increased, while a humidifying effect can be expected in winter, and clean oxygen-enriched air with less dust and germs can be supplied together with the conditioned air. At the point.

(課題を解決するための手段) 上記目的を達成するために、本発明は、利用側熱交換器
(4)を収容する室内側室(2)と、熱源側熱交換器(
6)を収容する室外側室(3)とを備えた空気調和装置
であって、前記室外側室(3)に、大気を酸素富化空気
と窒素富化空気とに分離する酸素富化膜(16)をもっ
た分離膜モジュール(工7)と、前記酸素富化膜(l6
)の一次側圧力と二次側圧力との間に圧力差を生じさせ
る圧力手段及び前記酸素富化膜(16)の二次側から酸
素富化空気を取り出す酸素富化空気供給管(18)とを
もった酸素富化機(19)を配設する一方、前記酸素富
化空気供給管(18)の先端部を前記室内側室(2)内
に開口させたのである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an indoor chamber (2) accommodating a utilization side heat exchanger (4), and a heat source side heat exchanger (4).
6) an air conditioner comprising an outdoor chamber (3) containing an oxygen-enriched membrane for separating the atmosphere into oxygen-enriched air and nitrogen-enriched air; (16) and the oxygen enrichment membrane (16).
) pressure means for creating a pressure difference between the primary side pressure and the secondary side pressure, and an oxygen-enriched air supply pipe (18) for taking out oxygen-enriched air from the secondary side of the oxygen-enriched membrane (16). An oxygen enricher (19) having an oxygen enrichment device (19) is provided, and the tip of the oxygen enriched air supply pipe (18) is opened into the indoor chamber (2).

また、酸素富化空気供給管(18)の先端部を、前記室
内側室(2)に収容した前記利用側熱交換器(4)に対
し室内空気の循環方向前部に開口させるのが好ましい。
Further, it is preferable that the tip of the oxygen-enriched air supply pipe (18) be opened in the front part in the direction of indoor air circulation with respect to the user-side heat exchanger (4) housed in the indoor chamber (2).

(作用) 空気を酸素富化空気と窒素富化空気とに分離し、かつ、
水蒸気を通過させるが、塵、雑菌類を通過させない酸素
富化膜(16)を用い、前記酸素富化膜(16)の二次
側から酸素富化空気を取り出し、酸素富化空気供給管(
18)を介して酸素富化空気を室内側室(2)に供給で
き、室内の酸素濃度を向上できる。
(Function) Separates air into oxygen-enriched air and nitrogen-enriched air, and
Using an oxygen-enriched membrane (16) that allows water vapor to pass through but does not allow dust or germs to pass through, oxygen-enriched air is taken out from the secondary side of the oxygen-enriched membrane (16), and the oxygen-enriched air supply pipe (
18), oxygen-enriched air can be supplied to the indoor chamber (2), and the oxygen concentration in the room can be improved.

また、酸素富化空気の湿度は窒素富化空気との分離に伴
い上昇するから、冬期においては、加湿器を設けること
なく室内空気を加湿する加湿作用に寄与できるし、又、
酸素富化空気中への塵、雑菌の混入がないから、清浄な
空気を室内に供給できる。
In addition, since the humidity of oxygen-enriched air increases as it is separated from nitrogen-enriched air, it can contribute to the humidification effect of humidifying indoor air in winter without installing a humidifier.
Since there is no dust or germs mixed into the oxygen-enriched air, clean air can be supplied indoors.

(実施例) 第1図に示した酸素富化機材空気調和装置は一体形空気
調和装置で、空気調和装置本体(1)(以下空調機本体
と称す)を備え、該空調機本体(1)に室内側室(2)
と室外側室(3)とを設けて、前記室内側室(2)内に
は利用側熱交換器(4)と室内送風機(5)とを、又、
前記室外側室(3)には熱源側熱交換器(6)と室外送
風機(7)及び圧縮機(8)を配置している。そして、
前記室外側室(3)に収容した圧縮機(8)には、前記
熱源側熱交換器(6)及び利用側熱交換器(4)を冷媒
配管(図示しない)を介して接続し、前記圧縮機(8)
から冷媒を前記熱源側熱交換器(6)及び利用側熱交換
器(4)に循環させると共に、前記室内送風機(5)及
び室外送風機(7)を運転することにより、室内吸入口
(9)からフィルタ(10)を介して前記室内側室(2
)に入る空気を前記利用側熱交換器(4)にて熱交換さ
せ、熱交換した後の空気を室内吹出口(11)から室内
に供給することにより、室内を空調できるようにしてい
る。
(Example) The oxygen-enriching equipment air conditioner shown in FIG. Indoor chamber (2)
and an outdoor side chamber (3), and a user side heat exchanger (4) and an indoor fan (5) are provided in the indoor side chamber (2), and
A heat source side heat exchanger (6), an outdoor blower (7), and a compressor (8) are arranged in the outdoor room (3). and,
The heat source side heat exchanger (6) and the usage side heat exchanger (4) are connected to the compressor (8) housed in the outdoor side chamber (3) via refrigerant piping (not shown), and the Compressor (8)
By circulating the refrigerant from the heat source side heat exchanger (6) and the user side heat exchanger (4), and operating the indoor blower (5) and the outdoor blower (7), the indoor suction port (9) from the indoor chamber (2) through the filter (10).
) The air entering the room is heat-exchanged by the user-side heat exchanger (4), and the heat-exchanged air is supplied into the room from the indoor air outlet (11), thereby making it possible to air-condition the room.

尚、(12)は室外空気を室外側室(3)に取り入れる
室外吸入口、(13)は室外吹出口、(14)は前記利
用側熱交換器(4)にて凝縮するドレンを受けるドレン
受皿、(15)は該ドレン受皿(14)のドレンを前記
空調機本体(1)の外部に排出する排水管である。
Note that (12) is an outdoor intake port that takes outdoor air into the outdoor room (3), (13) is an outdoor outlet, and (14) is a drain that receives condensate condensed in the user-side heat exchanger (4). The drain tray (15) is a drain pipe for discharging the drain from the drain tray (14) to the outside of the air conditioner main body (1).

しかして、前記室外側室(3)に、次の構成から成る酸
素富化機(19)、即ち、大気を酸素富化空気と窒素富
化空気とに分離する酸素富化膜(16)をもった分離膜
モジュール(17)と、前記酸素富化膜(16)の一次
側圧力と二次側圧力との間に圧力差を生じさせる圧力手
段及び前記酸素富化膜(16)の二次側から酸素富化空
気を取り出す酸素富化空気供給管(18)とをもった酸
素富化機(19)を配設する一方、前記酸素富化空気供
給管(18)の先端部を前記室内側室(2)内に開口さ
せたのである。
Therefore, in the outdoor chamber (3), an oxygen enricher (19) consisting of the following configuration, that is, an oxygen enrichment membrane (16) that separates the atmosphere into oxygen enriched air and nitrogen enriched air is installed. a separation membrane module (17), a pressure means for creating a pressure difference between the primary side pressure and the secondary side pressure of the oxygen enriching membrane (16), and the secondary side pressure of the oxygen enriching membrane (16). An oxygen enricher (19) having an oxygen-enriched air supply pipe (18) for taking out oxygen-enriched air from the side is installed, while the tip of the oxygen-enriched air supply pipe (18) is connected to the interior of the room. It was opened into the side chamber (2).

詳しくは、例えば所定厚さをもつ枠組状フレーム(図示
しない)の厚さ方向前後外面にシリコン系或は弗素系の
高分子樹脂フィルムから成る酸素富化膜(16)を張り
付けて、箱状の分離膜モジュール(17)を形成して、
前記枠形フレームの一側に、前記分離膜モジュール(1
7)における前記各酸素富化膜(16)の内側に設ける
二次側空間と連通ずる酸素富化空気の取出し口(21)
を設けるのである。そしてこのように形成した分離膜モ
ジュール(17)を、第2図に示したように、両端が開
放する角筒状のケース(20)内に平行状に間隔を置い
て多数揃えて配置するのであって、前記ケース(20)
の開放側一側から室外空気を供給し、前記酸素富化膜(
16)により、室外空気を酸素富化空気と窒素富化空気
とに分離するのである。
Specifically, for example, an oxygen enrichment membrane (16) made of a silicone-based or fluorine-based polymer resin film is pasted on the front and back outer surfaces in the thickness direction of a framework-like frame (not shown) having a predetermined thickness, and a box-shaped frame is formed. forming a separation membrane module (17);
The separation membrane module (1
In 7), the oxygen-enriched air outlet (21) communicates with the secondary space provided inside each of the oxygen-enriched membranes (16).
We will set up the following. As shown in FIG. 2, the separation membrane modules (17) formed in this way are arranged in large numbers at intervals in parallel in a rectangular cylindrical case (20) that is open at both ends. Yes, the above case (20)
Outdoor air is supplied from one open side of the oxygen enrichment membrane (
16), the outdoor air is separated into oxygen-enriched air and nitrogen-enriched air.

そして、前記取出し口(21)には、酸素富化空気供給
管(18)(以下供給管と称する)を接続するのであり
、この供給管(18)には、前記圧力手段を構成する真
空ポンプ(22)を介装するのである。尚、前記真空ポ
ンプ(22)の吸入側は前記取出し口(21)に連通し
ており、該真空ポンプ(22)の駆動により前記酸素富
化膜(16)の二次側を一次側より低圧にして、一次側
と二次側とに圧力差を生じさせて、前記室外側室(3)
に配置する膜モジュール用送風機(28)により前記ケ
ース(20)内に供給される室外空気を酸素富化空気と
窒素富化空気とに分離するのである。また、前記真空ポ
ンプ(22)の吐出側から前記室内側室(2)に延びる
前記供給管(18)の先端部には、後記する棒状ノズル
(25)を設けて、該供給管(18)を介して前記酸素
富化膜(16)の二次側から取出した酸素富化空気を、
前記室内側室(2)から室内に供給する空調空気ととも
に室内に供給するのである。
An oxygen-enriched air supply pipe (18) (hereinafter referred to as the supply pipe) is connected to the outlet (21), and a vacuum pump constituting the pressure means is connected to the supply pipe (18). (22) is inserted. The suction side of the vacuum pump (22) communicates with the outlet (21), and by driving the vacuum pump (22), the secondary side of the oxygen enrichment membrane (16) is brought to a lower pressure than the primary side. to create a pressure difference between the primary side and the secondary side, and the outdoor chamber (3)
The outdoor air supplied into the case (20) is separated into oxygen-enriched air and nitrogen-enriched air by a membrane module blower (28) disposed in the membrane module. Further, a rod-shaped nozzle (25), which will be described later, is provided at the tip of the supply pipe (18) extending from the discharge side of the vacuum pump (22) to the indoor chamber (2), so that the supply pipe (18) The oxygen-enriched air taken out from the secondary side of the oxygen-enriched membrane (16) through the
It is supplied into the room together with the conditioned air that is supplied into the room from the indoor chamber (2).

第1図に示した実施例は、前記供給管(18)の先端部
に、第3図に示した多数の吹出し口(24)・・・を設
けた棒状ノズル(25)を接続して、この棒状ノズル(
25)を前記室内側室(2)におけるフィルタ(10)
の後方側で、かつ、前記利用側熱交換器(4)の直前に
配置し、酸素富化空気を前記熱交換器(4)の空気入口
側において供給するようにしている。尚、前記棒状ノズ
ル(25)の外径が大きくて、室内空気の熱交換の妨げ
になる場合には、小径とした棒状ノズル(25)を複数
本配置して、酸素富化空気を分散して吹き出させるよう
にするとよい。又、第3図において、(26)は多数の
フィン(27)・・・を貫通している前記利用側熱交換
器(4)の冷媒流通管である。
In the embodiment shown in FIG. 1, a rod-shaped nozzle (25) provided with a large number of outlets (24) shown in FIG. 3 is connected to the tip of the supply pipe (18). This rod-shaped nozzle (
25) as the filter (10) in the indoor chamber (2)
The heat exchanger (4) is arranged at the rear side of the heat exchanger (4) and immediately before the user-side heat exchanger (4), and oxygen-enriched air is supplied to the air inlet side of the heat exchanger (4). In addition, if the outer diameter of the rod-shaped nozzle (25) is large and interferes with heat exchange of indoor air, a plurality of rod-shaped nozzles (25) with small diameters may be arranged to disperse the oxygen-enriched air. It is best to make it blow out. Further, in FIG. 3, (26) is a refrigerant flow pipe of the user-side heat exchanger (4) that passes through a large number of fins (27).

更に、前記室内吸入口(9)近くに配置した前記フィル
タ(10)には、酸素濃度を検出する酸素濃度センサ(
29)を取付けると共に、前記室外側室(3)の外部に
は制御部(30)を設け、前記酸素濃度センサ(29)
の検出する酸素濃度に基づいて酸素富化空気を室内に供
給できるようにしている。
Furthermore, the filter (10) disposed near the indoor intake port (9) is provided with an oxygen concentration sensor (10) for detecting oxygen concentration.
29), a control section (30) is provided outside the outdoor chamber (3), and the oxygen concentration sensor (29) is installed.
Oxygen-enriched air can be supplied indoors based on the oxygen concentration detected by the system.

しかして、以上のように前記制御部(30)を用いる場
合には、この前記制御部(30)において所定の酸素濃
度を設定するのであって、第4図に示した制御フロー図
のように、前記制御部(30)において前記酸素富化機
(19)のみの運転モード、空調機のみの運転モード及
び空調機●酸素富化機運転モードの三運転モードを選択
できるようにしている。しかして酸素富化機(19)の
みの運転モードを選択する場合、目標室内酸素濃度を設
定するのであって、前記酸素濃度センサ(29)が検出
する室内酸素濃度が前記目標室内酸素濃度設定値より低
いと、前記酸素富化機(19)と室内側送風機(5)が
運転される。又、前記室内酸素濃度が前記目標室内酸素
濃度設定値より高いと、前記酸素富化機(19)と室内
側送風機(5)が停止される。従って、例えば春や秋の
ような中間期において,冷暖房を行わないとき、前記酸
素濃度センサ(29)が検出する酸素濃度に基づいて、
前記制御部(30)の制御により酸素富化空気を室内に
供給できるのであって、前記真空ポンプ(22)や前記
分離膜用送風機(28)が駆動して前記酸素富化機(1
9)が駆動するときには前記室内側送風機(5)は必ず
駆動し、酸素富化空気が前記室内側室(2)に滞留する
ことなく室内に送風されるのである。
Therefore, when the control section (30) is used as described above, a predetermined oxygen concentration is set in the control section (30), as shown in the control flow diagram shown in FIG. In the control section (30), three operating modes can be selected: an operating mode of only the oxygen enricher (19), an operating mode of only the air conditioner, and an operating mode of the air conditioner/oxygen enricher. When selecting the operation mode of only the oxygen enricher (19), a target indoor oxygen concentration is set, and the indoor oxygen concentration detected by the oxygen concentration sensor (29) is the target indoor oxygen concentration set value. If it is lower, the oxygen enricher (19) and the indoor fan (5) are operated. Further, when the indoor oxygen concentration is higher than the target indoor oxygen concentration setting value, the oxygen enricher (19) and the indoor fan (5) are stopped. Therefore, for example, in intermediate seasons such as spring and autumn, when heating and cooling are not performed, based on the oxygen concentration detected by the oxygen concentration sensor (29),
Oxygen-enriched air can be supplied indoors under the control of the control unit (30), and the vacuum pump (22) and the separation membrane blower (28) are driven to supply the oxygen-enriched air (1).
9) is driven, the indoor side blower (5) is always driven, and the oxygen-enriched air is blown into the room without staying in the indoor side chamber (2).

また、前記圧縮機(8)及び室内及び室外送風機(5)
(7)を駆動させて空調運転を行なう場合、つまり、前
記圧縮機(8)を駆動し、この圧縮機(8)から各熱交
換器(4)l)に冷媒を供給すると共に、前記室内及び
室外送風機(5)(7)を駆動し、室内側室(2)及び
室外側室(4)においてそれぞれ室内空気及び室外空気
を流通させると、室内空気は前記室内吸入口(9)から
フィルタ(10)を通過して前記室内側室(2)に入り
、前記利用側熱交換器(4)のフィン(27)の隙間を
通過して熱交換し、熱交換した後前記室内吹出口(11
)から室内に供給される一方、室外空気は前記室外吸入
口(12)から室外側室(3)に入り、前記熱源側熱交
換器(6)で熱交換して、前記室外吹出口(13)から
外部に吹き出すのである。このとき、前記酸素濃度セン
サ(29)が検出する酸素濃度が前記制御部(30)に
おいて設定した濃度より低い場合には、前記制御部(3
0)の指示により前記真空ポンプ(22)及び前記膜モ
ジュール用送風機(28)が駆動し、前記室外吸入口(
12)から室外側室(3)に入る室外空気は前記膜モジ
ュール用送風機(28)により前記ケース(20)内に
供給され、前記酸素富化膜(16)の内側に設ける二次
側空間に対し外側に供給される一方、前記真空ポンプ(
22)の駆動により前記酸素富化膜(16)の内側に設
ける二次側空間の圧力が外側、つまり、一次側圧力より
低くなっているから、前記酸素富化膜(16)の一次側
に供給された室内空気中の酸素分子や水蒸気分子が前記
酸素富化膜(16)を通過し、該富化膜(16)の二次
側空間に酸素富化空気が得られ、この酸素富化空気が前
記取出し口(21)から前記供給管(18)を経て、そ
の先端部に設けた前記棒状ノズル(25)の多数の前記
吹き出し口(24)・・・から前記熱交換器(4)の空
気入り口側に供給され、前記室内吸入口(9)からフィ
ルタ(10)を通過して前記室内側室(2)に入る室内
空気と合流し、前記利用側熱交換器(4)で熱交換した
後、前記室内吹出口(11)から室内に供給され、室内
の酸素濃度番向上させるのである。
In addition, the compressor (8) and the indoor and outdoor blower (5)
(7) to perform air conditioning operation, that is, the compressor (8) is driven, and refrigerant is supplied from the compressor (8) to each heat exchanger (4). When the indoor air and outdoor air blowers (5) and (7) are driven to circulate indoor air and outdoor air in the indoor chamber (2) and the outdoor chamber (4), respectively, the indoor air is passed through the indoor air intake port (9) through the filter ( 10) and enters the indoor chamber (2), passes through the gaps between the fins (27) of the user side heat exchanger (4) and exchanges heat, and after the heat exchange, enters the indoor air outlet (11).
), while outdoor air enters the outdoor room (3) from the outdoor intake port (12), exchanges heat with the heat source side heat exchanger (6), and is supplied to the outdoor air outlet (13). ) is blown out to the outside. At this time, if the oxygen concentration detected by the oxygen concentration sensor (29) is lower than the concentration set in the control section (30), the control section (30)
0), the vacuum pump (22) and the membrane module blower (28) are driven, and the outdoor suction port (
Outdoor air entering the outdoor room (3) from 12) is supplied into the case (20) by the membrane module blower (28), and is then supplied to the secondary space provided inside the oxygen enrichment membrane (16). On the other hand, the vacuum pump (
22), the pressure in the secondary space provided inside the oxygen-enriching membrane (16) is lower than the pressure on the outside, that is, the primary side. Oxygen molecules and water vapor molecules in the supplied indoor air pass through the oxygen enrichment membrane (16), and oxygen-enriched air is obtained in the secondary space of the enrichment membrane (16). Air passes from the outlet (21) through the supply pipe (18), and from the numerous outlets (24) of the rod-shaped nozzle (25) provided at its tip to the heat exchanger (4). The indoor air is supplied to the air inlet side of the room, passes through the filter (10) from the indoor air inlet (9), joins with the indoor air that enters the indoor room (2), and undergoes heat exchange in the user side heat exchanger (4). After that, it is supplied into the room from the indoor air outlet (11) to improve the oxygen concentration in the room.

そして、前記酸素濃度センサ(29)が検出する酸素濃
度が前記制御部(30)において設定した濃度より高い
場合には、前記制御部(30)の指示により前記真空ポ
ンプ(22)及び前記膜モジュール用送風機(28)の
駆動が停止される。
If the oxygen concentration detected by the oxygen concentration sensor (29) is higher than the concentration set in the control section (30), the vacuum pump (22) and the membrane module The drive of the air blower (28) is stopped.

従って、室内の酸素濃度を不必要に高くして無駄に電力
を消費することを避けることができる。
Therefore, it is possible to avoid wasting power by increasing the oxygen concentration in the room unnecessarily.

又,前記酸素富化膜(16)は空気を酸素富化空気と窒
素富化空気とを分離し、かつ、水蒸気を通過させる一方
、塵、雑菌類を通過させない特性を有するものであるか
ら、酸素富化空気の湿度は窒素富化空気の分離に伴い上
昇することになり、加湿器を設けることなく室内空気を
加湿することができ、空気力1特に乾燥する冬期等にお
いては、室内に吹き出す室内空気の湿度低下による不快
感を招くことはないし、また、酸素富化空気中への塵、
雑菌の混入がなく、清浄な空気を室内に供給できるので
衛生的である。しかも、前記真空ポンプ(22)により
常時前記酸素富化膜(16)の二次側圧力を一次側圧力
より低圧として圧力差を生じさせることにより、酸素富
化空気を連続的に得られるから、従来のゼオライトを用
いた酸素富化機のように、ゼオライトの一次側圧力と二
次側圧力との圧力差を逆にする弁装置は必要としなく、
全体として構造が簡単になる。
In addition, the oxygen enrichment membrane (16) has the property of separating air into oxygen enriched air and nitrogen enriched air, and allowing water vapor to pass through, while preventing dust and germs from passing through. The humidity of the oxygen-enriched air increases as the nitrogen-enriched air is separated, making it possible to humidify indoor air without installing a humidifier. It does not cause any discomfort due to a decrease in the humidity of the indoor air, and it also prevents dust from entering the oxygen-enriched air.
It is hygienic because it can supply clean air into the room without contaminating bacteria. In addition, oxygen-enriched air can be obtained continuously by using the vacuum pump (22) to constantly set the pressure on the secondary side of the oxygen-enriched membrane (16) to be lower than the pressure on the primary side to create a pressure difference. Unlike conventional oxygen enrichment machines using zeolite, there is no need for a valve device to reverse the pressure difference between the primary and secondary pressures of the zeolite.
The overall structure becomes simpler.

また、前記供給管(18)を前記利用側熱交換器(4)
の直前に開口させて、前記利用側熱交換器(4)で熱交
換させて空調した酸素富化空気を室内に供給しているか
ら、酸素富化空気が前記真空ポンプ(22)により60
″C程度に加熱されていても、特に冷房運転時には酸素
富化空気が前記利用側熱交換器(4)により冷却される
から、冷却された酸素富化空気を室内に供給することに
より室内の温度を上昇させることはなく好都合であるし
、湿度の高い酸素富化空気の余分の水分は前記利用側熱
交換器(4)で凝縮してドレンとなり前記ドレン受皿(
14)から前記ドレン排水管(15)を経て外部に排出
され処理できる。
Further, the supply pipe (18) is connected to the user side heat exchanger (4).
Since the air is opened just before the vacuum pump (22) and oxygen-enriched air is supplied into the room after being heat-exchanged and conditioned by the user-side heat exchanger (4), the oxygen-enriched air is supplied to the room by the vacuum pump (22).
Even if the air is heated to about 100°F, the oxygen-enriched air is cooled by the user-side heat exchanger (4) especially during cooling operation, so by supplying the cooled oxygen-enriched air indoors, This is convenient because the temperature does not increase, and excess moisture in the humid oxygen-enriched air is condensed in the user-side heat exchanger (4) and becomes drain in the drain tray (
14) through the drain pipe (15) and can be discharged to the outside for treatment.

以上室内側室(2)と室外側室(3)とを備えた一体形
空気調和装置について説明したが、第5図に示したよう
にセパレート型にしてもよい。
Although an integrated air conditioner including an indoor chamber (2) and an outdoor chamber (3) has been described above, it may be of a separate type as shown in FIG.

室内に配設した室内ユニット(31)と室外に配設した
室外ユニット(32)とは液冷媒管(33)、ガス冷媒
管(34)により接続すると共に、これら冷媒管(33
)(34)に沿わせて前記供給管(18)を配管してい
る。
The indoor unit (31) arranged indoors and the outdoor unit (32) arranged outdoors are connected by liquid refrigerant pipes (33) and gas refrigerant pipes (34), and these refrigerant pipes (33)
) (34), the supply pipe (18) is arranged along it.

前記室外ユニッ} (32)には、第6図に示したよう
に、圧縮機(8)、熱源側熱交換器(6)及び室外送風
機(7)を配設して、前記液冷媒管(33)を前記熱源
側熱交換器(6)に、また、前記ガス冷媒管(34)を
前記圧縮機(8)の吸入側に接続すると共に、吸入ガス
管(35)を介して前記圧縮機(8)と前記熱交換器(
6)とを接続している。
As shown in FIG. 6, the outdoor unit (32) is equipped with a compressor (8), a heat source side heat exchanger (6), and an outdoor blower (7), and the liquid refrigerant pipe ( 33) to the heat source side heat exchanger (6), and the gas refrigerant pipe (34) to the suction side of the compressor (8), and connect the gas refrigerant pipe (34) to the suction side of the compressor (8). (8) and the heat exchanger (
6) is connected.

更に第6図に示した前記室外ユニット(32)には、加
圧式の酸素富化機(19)を配設している。この酸素富
化機(19)は、前記した分離膜モジュール(17)と
同様、所定厚さをもつ枠組状フレーム(図示しない)の
厚さ方向前後外面にシリコン系或は弗素系の高分子樹脂
フィルムから成る酸素富化膜(16)を張り付けて箱状
の分離膜モジュール(17)を形成して、該分離膜モジ
ュール(17)を、第7図に示したように密閉状の箱形
ケース(37)内に平行状に間隔を置いて多数揃えて配
置すると共に、前記分離膜モジェ−ル(17)の枠形フ
レームの一側には、該分離膜モジュール(17)におけ
る前記各酸素富化膜(16)の内側に設ける二次側空間
と連通ずる酸素富化空気の取出し口(21)を設けて、
該取出し口(21)に前記供給管(18)を接続してい
る。
Further, the outdoor unit (32) shown in FIG. 6 is provided with a pressurized oxygen enricher (19). This oxygen enrichment machine (19), like the above-mentioned separation membrane module (17), has a frame-like frame (not shown) having a predetermined thickness, and has a silicon-based or fluorine-based polymer resin on the front and back outer surfaces in the thickness direction. A box-shaped separation membrane module (17) is formed by pasting an oxygen enrichment membrane (16) made of film, and the separation membrane module (17) is placed in a sealed box-shaped case as shown in FIG. (37) are arranged parallel to each other at intervals, and on one side of the frame of the separation membrane module (17), each of the oxygen-rich cells in the separation membrane module (17) is arranged. An oxygen-enriched air outlet (21) communicating with the secondary space provided inside the chemical membrane (16) is provided,
The supply pipe (18) is connected to the outlet (21).

また、密閉状とした前記ケース(37)の一つの側壁に
は、室外空気を前記ケース(37)内へ導入する加圧空
気導入管(39)を開口させて、この加圧空気導入管(
39)には前記圧力手段を構成する加圧ポンプ(36)
を介装している。
Further, a pressurized air introduction pipe (39) for introducing outdoor air into the case (37) is opened in one side wall of the sealed case (37).
39) includes a pressurizing pump (36) constituting the pressure means.
is interposed.

しかして、該加圧ポンプ(38)の運転により、前記ケ
ース(37)内を加圧し前記酸素富化膜(16)内側に
設ける二次側空間に対し外側の圧力、即ち、一次側圧力
を高くして、一次側圧力と二次側圧力との間に圧力差を
生じさせて、前記加圧ポンプ(36)により供給される
室外空気を酸素富化空気と窒素富化空気とに分離させる
のである。
By operating the pressurizing pump (38), the inside of the case (37) is pressurized and the outside pressure, that is, the primary side pressure is applied to the secondary space provided inside the oxygen enriched membrane (16). The pressure is increased to create a pressure difference between the primary pressure and the secondary pressure, and the outdoor air supplied by the pressurizing pump (36) is separated into oxygen-enriched air and nitrogen-enriched air. It is.

又、前記加圧空気導入管(39)を接続した前記ケース
(37)の一側壁に対向する反対側の壁には、窒素富化
空気を前記室外ユニッ} (32)の外部に排出する排
風配管(40)を接続している。尚、(41)はフィル
タである。
Further, on the wall opposite to one side wall of the case (37) to which the pressurized air introduction pipe (39) is connected, there is an exhaust for discharging nitrogen-enriched air to the outside of the outdoor unit (32). A wind pipe (40) is connected. Note that (41) is a filter.

(発明の効果) 以上のごとく、本発明によれば、利用側熱交換器(4)
を収容する室内側室(2)と、熱源側熱交換器(6)を
収容する室外側室(3)とを備えた空気調和装置であっ
て、前記室外側室(3)に、大気を酸素富化空気と窒素
富化空気とに分離する酸素富化膜(16)をもった分離
膜モジュール(17)と、前記酸素富化膜(16)の一
次側圧力と二次側圧力との間に圧力差を生じさせる圧力
手段及び前記酸素富化膜(16)の二次側から酸素富化
空気を取り出す酸素富化空気供給管(18)とをもった
酸素富化機(19)を配設する一方、前記酸素富化空気
供給管(18)の先端部を前記室内側室(2)内に開口
させたから、空気を酸素富化空気と窒素富化空気とに分
離し、かつ、水蒸気を通過させるが、塵、雑菌類を通過
させない特性を有する酸素富化膜(16)の二次側から
連続的に、しかも塵、雑菌が混入しない清浄な酸素富化
空気を取り出すこ吉ができ、この酸素富化空気を、酸素
富化空気供給管(18)を介して室内側室(2)に供給
でき、室内の酸素濃度を向上できる。
(Effect of the invention) As described above, according to the present invention, the user side heat exchanger (4)
An air conditioner comprising an indoor chamber (2) accommodating a heat source side heat exchanger (6), and an outdoor chamber (3) accommodating a heat source side heat exchanger (6), the air conditioner comprising: between a separation membrane module (17) having an oxygen-enriched membrane (16) that separates enriched air and nitrogen-enriched air, and the primary and secondary pressures of the oxygen-enriched membrane (16); An oxygen enrichment machine (19) is provided which has a pressure means for creating a pressure difference between the oxygen enrichment membrane (16) and an oxygen enriched air supply pipe (18) for taking out oxygen enriched air from the secondary side of the oxygen enrichment membrane (16). At the same time, since the tip of the oxygen-enriched air supply pipe (18) is opened into the indoor chamber (2), the air can be separated into oxygen-enriched air and nitrogen-enriched air, and water vapor can be removed. It is possible to continuously extract clean oxygen-enriched air that is free from dust and bacteria from the secondary side of the oxygen-enriching membrane (16), which has the property of allowing dust and bacteria to pass through, but not allowing dust and bacteria to pass through. This oxygen-enriched air can be supplied to the indoor chamber (2) via the oxygen-enriched air supply pipe (18), thereby improving the oxygen concentration in the room.

また、酸素富化空気の湿度は窒素富化空気との分離に伴
い上昇するから、冬期においては、加湿器を設けること
なく室内空気を加湿する加湿作用に寄与できるし、又、
酸素富化空気中への塵、雑菌の混入がないから、清浄な
空気を室内に供給できる。
In addition, since the humidity of oxygen-enriched air increases as it is separated from nitrogen-enriched air, it can contribute to the humidification effect of humidifying indoor air in winter without installing a humidifier.
Since there is no dust or germs mixed into the oxygen-enriched air, clean air can be supplied indoors.

また、前記真空ポンプ(22)により常時前記酸素富化
膜(16)の二次側圧力を一次側圧力より低圧として圧
力差を生じさせることにより、酸素富化空気を連続的に
得られるから、従来のゼオライトを用いた酸素富化機の
ように、ゼオライトの一次側圧力と二次側圧力との圧力
差を逆にする弁装置は必要としなく、全体として構造が
簡単になる。
In addition, oxygen-enriched air can be obtained continuously by using the vacuum pump (22) to constantly set the pressure on the secondary side of the oxygen-enriched membrane (16) to be lower than the pressure on the primary side to create a pressure difference. Unlike conventional oxygen enrichment machines using zeolite, there is no need for a valve device to reverse the pressure difference between the primary and secondary pressures of the zeolite, and the overall structure is simplified.

更に、前記酸素富化空気供給管(18)の先端部を前記
利用側熱交換器(4)に対し室内空気の循環方向前部に
開口させることにより、酸素富化空気を前記利用側熱交
換器(4)で熱交換してから室内に送風するようにした
場合、酸素富化空気は前記真空ポンプ(22)により6
06C程度に加熱されていても、冷房運転時には酸素富
化空気が前記利用側熱交換器(4)により冷却されるか
ら、冷却された酸素富化空気を室内に供給することによ
り室内の温度を上昇させることはなく好都合である。
Further, by opening the tip of the oxygen-enriched air supply pipe (18) toward the front of the user-side heat exchanger (4) in the direction of indoor air circulation, the oxygen-enriched air is transferred to the user-side heat exchanger (4). When the oxygen-enriched air is exchanged with the chamber (4) and then blown into the room, the oxygen-enriched air is pumped into the chamber (6) by the vacuum pump (22).
Even if the air is heated to about 0.6C, the oxygen-enriched air is cooled by the user-side heat exchanger (4) during cooling operation, so supplying the cooled oxygen-enriched air indoors can reduce the indoor temperature. It is convenient because it does not raise the temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る酸素富化機材空気調和装置の一実
施例を示す概略説明図、第2図は真空式分離膜モジュー
ルの斜視図、第3図は棒状ノズルと利用側熱交換器との
関係を示す説明図、第4図は制御フロー図、第5図は別
の実施例を示す概略説明図、第6図は第5図に示した実
施例における室外ユニットの概略説明図、第7図は加圧
式分離膜モジュールの斜視図、第8図及び第9図は従来
例を示す説明図である。 (2)・・・・・・・・・・・・・・・・・・室内側室
(3)・・・・・・・・・・・・・・・・・・室外側室
(4)・・・・・・・・・・・・・・・・・・利用側熱
交換器(6)・・・・・・・・・・・・・・・・・・熱
源側熱交換器(16)・・・・・・・・・・・・・・・
酸素富化膜(17)・・・・・・・・・・・・・・・分
離膜モジュール(18)・・・・・・・・・・・・・・
・酸素富化空気供給管(19)・・・・・・・・・・・
・・・・酸素富化機第1図 lク :角1−【鰺1モ.シ一−−シ /8 : l!lltlt4成気1#鱈管l9゛輌tt
化機 22:*贋12シア 2q:MiI斥で冫寸 第2図 第3図 it 27 第5図
Fig. 1 is a schematic explanatory diagram showing an embodiment of the oxygen enrichment air conditioner according to the present invention, Fig. 2 is a perspective view of a vacuum separation membrane module, and Fig. 3 is a rod-shaped nozzle and a heat exchanger on the user side. 4 is a control flow diagram, FIG. 5 is a schematic explanatory diagram showing another embodiment, and FIG. 6 is a schematic explanatory diagram of the outdoor unit in the embodiment shown in FIG. FIG. 7 is a perspective view of a pressurized separation membrane module, and FIGS. 8 and 9 are explanatory views showing conventional examples. (2)・・・・・・・・・・・・・・・Indoor chamber (3)・・・・・・・・・・・・・・・・・・Outdoor chamber (4)・・・・・・・・・・・・・・・Use side heat exchanger (6)・・・・・・・・・・・・・・・Heat source side heat exchanger ( 16)・・・・・・・・・・・・・・・
Oxygen enrichment membrane (17)・・・・・・・・・・・・Separation membrane module (18)・・・・・・・・・・・・・・・
・Oxygen-enriched air supply pipe (19)・・・・・・・・・・・・
...Oxygen enrichment machine Diagram 1: Corner 1 - [Mackerel 1 mo. C1--C/8: l! lltlt4 seiki 1# cod tube l9゛tt
Transformation Machine 22: *Fake 12 Shea 2q: MiI Repulsion and Destruction Figure 2 Figure 3 It 27 Figure 5

Claims (1)

【特許請求の範囲】 1)利用側熱交換器(4)を収容する室内側室(2)と
、熱源側熱交換器(6)を収容する室外側室(3)とを
備えた空気調和装置であって、前記室外側室(3)に、
大気を酸素富化空気と窒素富化空気とに分離する酸素富
化膜(16)をもった分離膜モジュール(17)と、前
記酸素富化膜(16)の一次側圧力と二次側圧力との間
に圧力差を生じさせる圧力手段及び前記酸素富化膜(1
6)の二次側から酸素富化空気を取り出す酸素富化空気
供給管(18)とをもった酸素富化機(19)を配設す
る一方、前記酸素富化空気供給管(18)の先端部を前
記室内側室(2)内に開口させたことを特徴とする酸素
富化機材空気調和装置。 2)酸素富化空気供給管(18)の先端部を、前記室内
側室(2)に収容した前記利用側熱交換器(4)に対し
室内空気の循環方向前部に開口させた請求項1記載の酸
素富化機材空気調和装置。
[Claims] 1) An air conditioner comprising an indoor chamber (2) that accommodates a user-side heat exchanger (4) and an outdoor chamber (3) that accommodates a heat source-side heat exchanger (6). In the outdoor chamber (3),
A separation membrane module (17) having an oxygen-enriched membrane (16) that separates the atmosphere into oxygen-enriched air and nitrogen-enriched air, and the primary and secondary pressures of the oxygen-enriched membrane (16). pressure means for creating a pressure difference between the oxygen enriched membrane (1
An oxygen enricher (19) having an oxygen enriched air supply pipe (18) for taking out oxygen enriched air from the secondary side of the oxygen enriched air supply pipe (18) is installed. An oxygen-enriching equipment air conditioner characterized in that a tip portion is opened into the indoor chamber (2). 2) Claim 1, wherein the distal end of the oxygen-enriched air supply pipe (18) is opened toward the front in the indoor air circulation direction with respect to the user-side heat exchanger (4) housed in the indoor chamber (2). Oxygen enrichment equipment air conditioner as described.
JP2013936A 1990-01-24 1990-01-24 Air conditioner equipped with oxygen enriching device Pending JPH03217731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013936A JPH03217731A (en) 1990-01-24 1990-01-24 Air conditioner equipped with oxygen enriching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013936A JPH03217731A (en) 1990-01-24 1990-01-24 Air conditioner equipped with oxygen enriching device

Publications (1)

Publication Number Publication Date
JPH03217731A true JPH03217731A (en) 1991-09-25

Family

ID=11847083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013936A Pending JPH03217731A (en) 1990-01-24 1990-01-24 Air conditioner equipped with oxygen enriching device

Country Status (1)

Country Link
JP (1) JPH03217731A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039480A1 (en) * 2002-10-31 2004-05-13 Matsushita Electric Industrial Co., Ltd. Gas enriching device and blower with the device
KR100468919B1 (en) * 2002-05-29 2005-02-02 삼성전자주식회사 Air Conditioner Having Oxygen Generator
JP2005090934A (en) * 2003-09-15 2005-04-07 Lg Electronics Inc Air cleaner and method of controlling its operation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468919B1 (en) * 2002-05-29 2005-02-02 삼성전자주식회사 Air Conditioner Having Oxygen Generator
WO2004039480A1 (en) * 2002-10-31 2004-05-13 Matsushita Electric Industrial Co., Ltd. Gas enriching device and blower with the device
KR100701863B1 (en) * 2002-10-31 2007-03-30 마쯔시다덴기산교 가부시키가이샤 Air conditioner
JP2005090934A (en) * 2003-09-15 2005-04-07 Lg Electronics Inc Air cleaner and method of controlling its operation
JP4511198B2 (en) * 2003-09-15 2010-07-28 エルジー エレクトロニクス インコーポレイティド Air purifier and operation control method thereof

Similar Documents

Publication Publication Date Title
US20090044555A1 (en) Desiccant dehumidifier
CN101883954B (en) Humidity control system
JP2008020137A (en) Humidifier
JP2008249211A (en) Air conditioner
KR101311548B1 (en) Humidity controller
JP2007044116A (en) Pressure-fluctuation adsorption type oxygen concentrator
KR101957240B1 (en) Air conditioner
JPH06257805A (en) Air conditioner equipped with moistening function
JPH03217731A (en) Air conditioner equipped with oxygen enriching device
JP3873945B2 (en) Air conditioner
JPH03217732A (en) Air conditioner equipped with oxygen enriching device
KR20180093770A (en) Dehumidification system with membrane installed in duct
JP3642022B2 (en) Humidity control equipment
JP2003202136A (en) Humidification unit for air conditioner
JP2005188915A (en) Humidity controller
JPH02136631A (en) Air conditioner with air composition varying function
JP2005233549A (en) Air conditioner
JP2004361024A (en) Air conditioner
JP3264120B2 (en) Air conditioner
JPH0375423A (en) Air conditioner with oxygen enrichment device
JP5413880B2 (en) Oxygen concentrator
JP4547831B2 (en) Air conditioner
JP4066984B2 (en) Oxygen enrichment device and air conditioning device
JPH06193909A (en) Humidity conditioner
JP6746434B2 (en) Air conditioner