JPH03216263A - Manufacture of wear resistant parts inserting ferrous composite material as cast-in - Google Patents

Manufacture of wear resistant parts inserting ferrous composite material as cast-in

Info

Publication number
JPH03216263A
JPH03216263A JP16795789A JP16795789A JPH03216263A JP H03216263 A JPH03216263 A JP H03216263A JP 16795789 A JP16795789 A JP 16795789A JP 16795789 A JP16795789 A JP 16795789A JP H03216263 A JPH03216263 A JP H03216263A
Authority
JP
Japan
Prior art keywords
composite material
cast
manufacture
ferrous
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16795789A
Other languages
Japanese (ja)
Inventor
Toshiro Otani
敏郎 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP16795789A priority Critical patent/JPH03216263A/en
Publication of JPH03216263A publication Critical patent/JPH03216263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To employ a reinforced fiber as a composite material and to facilitate the handling by alternately laminating the reinforced fiber and ferrous super plastic material lined up to the same direction, slicedly cutting the composite material executing hot pressing at the right angle to the fiber and inserting this as cast-in to a position it is required. CONSTITUTION:By alternately laminating the reinforced fiber 2 and the ferrous super plastic material 3 lined up to the same direction, the hot pressing P is executed to manufacture a plate of the composite material 1. Successively, this plate of composite material 1 is slicedly cut to make small pieces 4, and this is set at tip part of a mold 5 for tooth 8 and the molten metal is poured to insert the small pieces 4 and the tooth 6 having sediment wear resistance is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強化繊維(長繊維)と、鉄系超塑性材とから
なる複合材料をスライスカソトして鋳包んだ耐摩耗性部
品の製造法に関する.(従来の技術) 従来、耐摩耗材には、相手材の硬度を上回る硬い材料と
、弾性限界内で応力を吸収させ、塑性変形を防ぐ比較的
軟らかい材料(例えば耐摩耗ゴム、ポリウレタンなど)
の二系統がある.建設機械部品の場合、耐衝撃性、摩擦
による温度上昇などを考慮し、前者の材料が用いられて
いる.具体的には高マンガン鋼、低合金鋼、高合金鋼を
加工、或いは熱処理などで硬化させ、使用している.ま
た時にはハードフェーシングとして硬化肉盛、溶射など
も用いられている.(発明が解決しようとする課題) しかし、合金元素の添加、熱処理などの従来の材質改善
法では、第7図の砂による引掻き試験結果に示すように
、SS41P(硬度約160HB)を1として、摩耗の
最も少ないSCM4l5(浸炭)(硬度約7008B)
でも摩耗比は0.6で耐摩耗性向上には限度がある.ま
た現在は必要な部分にのみ必要な力学的特性を与えると
いった部品設計ができないため、一番使用条件の厳しい
部分の要求品質を満足するような材質、加工方法、熱処
理が選定され、コスト高になっている.ほかに第1表で
示す極めて高い硬度を有するセラミック繊維で補強され
た鋼ベースの複合材料を耐摩耗材料として用いる方法が
ある. 第1表 しかしながら金属基複合材料を機械部品に適用するにあ
たり、解決すべき問題がある。現在製作されている金属
基複合材料はアルミニウムをベースにしたものが多く、
建設機械の耐摩耗材料としては摩擦による発熱を考慮す
ると、綱ベスが良いと思われるが綱ベースのものはほと
んどない。この理由は、金属基複合材料開発の目的が軽
量化、比強度改善のためで、綱ベースではこの目的が達
成されないことによるが、もう一つの理由として綱ベー
スの場合、複合化時の製造温度が高い為、強化材である
セラミソク繊維が損傷し、所定の力学的性質が確保でき
ないからである.さらにセラミック繊維は非常に高価で
使用法によっては良い製品ができても、非常に高価なも
のになってしまう。本発明はがかる問題点を解消するこ
とを目的としている.(課題を解決するための手段) 上記目的を達成するため、本発明は同一方向に並べた強
化繊維と、鉄系超塑性材とを交互に積み重ね、ホットプ
レス加工して製作した複合材料を繊維と直角方向にスラ
イスカットし、必要な部位に鋳包んだことを特徴とする
ものである. (作 用) 上記構成により、低温で成形出来る鉄系超塑性材を使用
することで、複合化時における強化繊維の損傷を招くこ
となく綱ベースの複合材料か製作でき、またスライスカ
ットされた綱ベスの複合材料を鋳包んだ耐摩耗材料が作
製可能である。
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to the production of wear-resistant parts made by slicing and casting a composite material consisting of reinforcing fibers (long fibers) and iron-based superplastic material. Regarding law. (Prior art) Conventionally, wear-resistant materials have been made of hard materials that exceed the hardness of the mating material, and relatively soft materials that absorb stress within their elastic limits and prevent plastic deformation (e.g. wear-resistant rubber, polyurethane, etc.).
There are two systems. In the case of construction machinery parts, the former material is used in consideration of impact resistance and temperature rise due to friction. Specifically, high-manganese steel, low-alloy steel, and high-alloy steel are used after being hardened by processing or heat treatment. Hardfacing, thermal spraying, etc. are also sometimes used as hardfacing. (Problem to be Solved by the Invention) However, with conventional material improvement methods such as adding alloying elements and heat treatment, as shown in the scratch test results with sand in Figure 7, when SS41P (hardness about 160HB) is 1, SCM4l5 (carburized) with the least wear (hardness approximately 7008B)
However, the wear ratio is 0.6, so there is a limit to the improvement in wear resistance. Furthermore, because it is currently not possible to design parts that give the necessary mechanical properties only to the necessary parts, materials, processing methods, and heat treatments must be selected to satisfy the required quality in the parts with the most severe usage conditions, resulting in high costs. It has become. Another method is to use steel-based composite materials reinforced with ceramic fibers with extremely high hardness as shown in Table 1 as wear-resistant materials. Table 1 However, there are problems that need to be solved when applying metal matrix composite materials to mechanical parts. Many of the metal matrix composite materials currently produced are based on aluminum.
Considering the heat generated by friction, rope base is considered to be a good wear-resistant material for construction machinery, but there are almost no rope-based materials. The reason for this is that the purpose of developing metal-based composite materials is to reduce weight and improve specific strength, and this purpose cannot be achieved with a steel-based material. This is because the ceramic fibers, which are the reinforcing material, are damaged and the specified mechanical properties cannot be maintained. Furthermore, ceramic fibers are very expensive, and even if good products can be made depending on how they are used, they can be very expensive. The present invention aims to solve these problems. (Means for Solving the Problems) In order to achieve the above object, the present invention uses a composite material produced by alternately stacking reinforcing fibers arranged in the same direction and iron-based superplastic material and hot-pressing the reinforcing fibers arranged in the same direction. It is characterized by being sliced in a direction perpendicular to the shape and cast in the required area. (Function) With the above configuration, by using iron-based superplastic material that can be formed at low temperatures, it is possible to produce a rope-based composite material without damaging the reinforcing fibers during compounding, and it is also possible to create a rope-based composite material without damaging the reinforcing fibers during compounding. It is possible to create a wear-resistant material by casting a composite material of Beth.

(実施例) 本発明の実施例を図面に基づいて詳述する.セラミック
複合材料の耐摩耗性は第5図におけるAL合金のALz
Osの含有量と耐土砂摩耗にみるように、土砂に対して
極めてすぐれている.本発明では鉄系複合材料を製作し
て、第6図に示す建設機械作業機のバケ7}(7)のツ
ース(8)先端部に鋳包む方法について説明する.第1
図(a)に示すように、同一方向に並べた強化繊維(2
)と700〜800℃で超塑性を示す鉄系超塑性材(3
)を交互に積み重ね、ホットプレス加工(P)を行い、
第1図(b) に示す複合材料の(1)のプレートを製
作する.この複合材料(1)プレートを第2図に示すよ
うにスライスカノトし小片(4)を作り、第3図に示す
前記ツース(8)の鋳型(5)の先端部に設置して溶湯
を注入し、小片(4)を鋳包むと第4図に示す耐土砂摩
耗性のツース(6)が得られる.この際、鋳包み用溶湯
は耐摩耗性など機械的性質を必要としないので安価な材
料でよい (発明の効果) 本発明は以上説明したように構成されているので、次の
効果を奏する. ■強化繊維を直接取り扱うことなく複合材のプレートと
して取り扱うので、取扱いが容易である. ■製品には複合材を少量づつ使用するため、価格の上昇
をおさえた耐摩耗材を提供できる.■鋳包み用溶湯は耐
摩耗性など機械的性質を必要としないので、安価な材料
でよい。
(Example) An example of the present invention will be described in detail based on the drawings. The wear resistance of the ceramic composite material is determined by the ALz of the AL alloy in Figure 5.
It is extremely resistant to soil and sand, as seen in its Os content and soil and sand abrasion resistance. In the present invention, a method will be described in which a steel-based composite material is manufactured and cast into the tip of a tooth (8) of a bucket (7) of a construction machine shown in Fig. 6. 1st
As shown in Figure (a), reinforcing fibers (2
) and iron-based superplastic material (3
) are stacked alternately and hot pressed (P).
Manufacture plate (1) of the composite material shown in Figure 1(b). This composite material (1) plate is sliced into small pieces (4) as shown in Figure 2, which are placed at the tip of the mold (5) of the tooth (8) shown in Figure 3, and molten metal is injected. Then, by casting the small piece (4), a tooth (6) with soil and sand wear resistance as shown in Fig. 4 is obtained. In this case, the molten metal for casting does not require mechanical properties such as wear resistance, so an inexpensive material can be used (effects of the invention) Since the present invention is constructed as described above, it has the following effects. ■Easy to handle because the reinforcing fibers are handled as a composite plate rather than directly. ■Since we use small amounts of composite materials in our products, we can provide wear-resistant materials that keep costs down. ■Since the molten metal for casting does not require mechanical properties such as wear resistance, inexpensive materials can be used.

■超塑性材をマトリックス金属として用いるので、複合
材製造時の製造温度が比較的低く強化繊維の損傷を招か
ない。
■Since a superplastic material is used as the matrix metal, the manufacturing temperature during composite manufacturing is relatively low and does not cause damage to the reinforcing fibers.

■超塑性材をマトリソクス金属として用いるので、成形
能がよく繊維と金属とがうま《接合した界面を得る事が
出来る。
■Since a superplastic material is used as the matrix metal, it has good formability and can create an interface where fibers and metal are well bonded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明実施例の強化繊維と鉄系超塑性材
を交互に積み重ねた説明図、(b)はホットプレスして
複合材料のブレードを製作した説明図、第2図は第1図
(b)をスライスカットした説明図、第3図は第2図の
スライスカソトした小片をツース鋳型に設置した説明図
、第4図は耐摩耗性の必要な面に複合材料小片を鋳包ん
だツースの斜視図、第5図はAL.(h AL合金のA
L203の含有量と耐土砂摩耗性を示す説明図、第6図
は建設機械バヶノトの斜視図、第7図は各種金属の砂に
ょる引掻試験結果である.・複合材料 ・セラミック繊維 ・鉄系超塑性材 ・複合材料小片 ・鋳型 ・ツース ・バケノト ・ホノトブレス加工
Figure 1 (a) is an explanatory diagram of reinforcing fibers and iron-based superplastic materials stacked alternately according to an embodiment of the present invention, (b) is an explanatory diagram of a composite material blade manufactured by hot pressing, and Figure 2 is an explanatory diagram of a composite material blade manufactured by hot pressing. Figure 1(b) is an explanatory diagram of slice cutting, Figure 3 is an explanatory diagram of the sliced small piece of Figure 2 placed in a tooth mold, and Figure 4 is an explanatory diagram of a small piece of composite material placed on the surface that requires wear resistance. A perspective view of the cast teeth, FIG. 5 is AL. (h A of AL alloy
An explanatory diagram showing L203 content and earth and sand abrasion resistance, Figure 6 is a perspective view of the construction machine Baganoto, and Figure 7 is the results of scratch tests on various metals in sand.・Composite materials・Ceramic fibers・Iron-based superplastic materials・Small pieces of composite materials・Molds・Tooths・Bakenoto・Honoto Brace processing

Claims (1)

【特許請求の範囲】[Claims] 同一方向に並べた強化繊維(長繊維)と鉄系超塑性材と
を交互に積み重ね、ホットプレス加工して製作した複合
材料を繊維と直角方向にスライスカットし、必要な部位
に鋳包んだことを特徴とする鉄系複合材料を鋳包んだ耐
摩耗性部品製造法。
Composite material produced by hot-pressing reinforcing fibers (long fibers) and iron-based superplastic material arranged in the same direction alternately, then sliced in the direction perpendicular to the fibers, and cast into the required areas. A manufacturing method for wear-resistant parts by casting iron-based composite materials.
JP16795789A 1989-06-29 1989-06-29 Manufacture of wear resistant parts inserting ferrous composite material as cast-in Pending JPH03216263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16795789A JPH03216263A (en) 1989-06-29 1989-06-29 Manufacture of wear resistant parts inserting ferrous composite material as cast-in

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16795789A JPH03216263A (en) 1989-06-29 1989-06-29 Manufacture of wear resistant parts inserting ferrous composite material as cast-in

Publications (1)

Publication Number Publication Date
JPH03216263A true JPH03216263A (en) 1991-09-24

Family

ID=15859181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16795789A Pending JPH03216263A (en) 1989-06-29 1989-06-29 Manufacture of wear resistant parts inserting ferrous composite material as cast-in

Country Status (1)

Country Link
JP (1) JPH03216263A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896911A (en) * 1996-03-29 1999-04-27 Caterpillar Inc. Process for making a selectively reinforced ground engaging tool component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896911A (en) * 1996-03-29 1999-04-27 Caterpillar Inc. Process for making a selectively reinforced ground engaging tool component

Similar Documents

Publication Publication Date Title
CN102242314B (en) Multiple alloy toughened and wear-resistant middle-manganese steel and preparation technology thereof
DE69013901D1 (en) WEAR-RESISTANT STEEL CASTING.
CN113924182A (en) Cutting element for a saw chain and method for producing the same
CN100467626C (en) Surface aging treatment process of enhancing high manganese steel initial wear-resisting performance
JPH03216263A (en) Manufacture of wear resistant parts inserting ferrous composite material as cast-in
JPS62183995A (en) Cobalt base alloy as padding material for guide rail of chain saw
SE463809B (en) Laminated case law
US4099988A (en) Composite material having wear- and impact-resisting surface and process for producing same
CN102384264B (en) Cast iron ring carrier used for aluminum piston and manufacturing method thereof
Brondz The Effect of Surface Roughness on the Wear and Effective Strengthening by Prior Plastic Deformation of the Titanium Alloy VT 6
JPH0754381A (en) Compound material tooth and manufacture thereof
Chernyak et al. Influence of Hardening Treatments on the Fatigue Strength of High-Manganese Steels
JP4150945B2 (en) Mold outer frame and manufacturing method thereof
US4710244A (en) Dredger teeth
JPH10280097A (en) Steel plate or shape steel for high toughness and high strength bolting splice plate, easy of cutting and bolthole punching
JPS62252638A (en) Production of molding tool
CN114411156A (en) Preparation method of wear-resistant casting for complex conditions and wear-resistant casting
Zhukov et al. Nitrided Economically Alloyed Maraging Steel 10 Kh 5 N 8 Yu 2 F.(Translation)
JPS59218255A (en) Wear-resistant casting parts
Beeley Cast Tools--Their Qualities and Potential
JPS63286239A (en) Resin mold
JPS6469704A (en) Valve for internal combustion engine and manufacture thereof
James et al. Residual Stress State of Laser Melted Surfaces
JPH10176241A (en) Steel plate with high toughness and high strength for bolting splice plate, easy of cutting and bolthole punching, and splice plate using this steel plate
Foerster et al. Physical and Technological Characteristics of Fiber-Strengthened Composite Materials With a Well- Defined Intermetallic Intermediate Layer