JPH03215693A - Laminated material having salt water corrosion resistance - Google Patents

Laminated material having salt water corrosion resistance

Info

Publication number
JPH03215693A
JPH03215693A JP858790A JP858790A JPH03215693A JP H03215693 A JPH03215693 A JP H03215693A JP 858790 A JP858790 A JP 858790A JP 858790 A JP858790 A JP 858790A JP H03215693 A JPH03215693 A JP H03215693A
Authority
JP
Japan
Prior art keywords
alloy
base material
corrosion resistance
salt water
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP858790A
Other languages
Japanese (ja)
Inventor
Masato Asai
真人 浅井
Hideo Suda
須田 英男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP858790A priority Critical patent/JPH03215693A/en
Publication of JPH03215693A publication Critical patent/JPH03215693A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a laminated material excellent in salt water corrosion resistance by coating the surface of a base material with Zn-Ni alloy layer under specific conditions, carrying out diffusion treatment by heating, and forming a diffusion joining layer of specific thickness. CONSTITUTION:The surface of a base material (copper, copper alloy, or ferrous alloy) is coated with a Zn-Ni alloy layer of 5-30wt.% Ni content to 0.5-50mu thickness. Subsequently, diffusion treatment by heating is carried out, by which a diffusion joining layer of 0.1-30mu thickness is formed between the base material and the Zn-Ni alloy coating layer. By this method, the laminated material with salt water corrosion resistance capable of use in seawater and in a solution with high Cl<-> concentration can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は海水中或いは塩水中で使用されるかまたは海浜
地区で使用されるのに好通な耐塩水性の複合材料に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a saltwater-resistant composite material suitable for use in seawater or saltwater or for use in beach areas.

[従来の技術] 従来海水用金属製鋼や構造材或いは海浜地区で使用され
る耐塩害性材料としては亜鉛めっき鋼材、鋼材、キュブ
ロニノケル材、ナイロン等の高分子材等が使用されてい
るがいずれも種々の用途に対してその要求特性を満足し
ていないのが現状である。
[Prior art] Conventionally, galvanized steel, steel, Cubroninokel material, polymeric materials such as nylon, etc. have been used as salt damage resistant materials used in seawater metal steel, structural materials, and coastal areas, but none of them have been used. At present, they do not satisfy the required characteristics for various uses.

即ち亜鉛めっき鋼材では海水中で微生物が付着し易く、
使用寿命が短い。ナイロン等の高分子材ではその特徴で
あるフレキシブル性を生かし、養殖用網には適している
が、構造材としては不適当である。また通常の鋼材では
腐食が著しく、海水中或いは海浜地区での使用は適切で
はない。さらにキュプロニンケル材は構成元素のNi量
が増えるに従い耐食性は向上するが製造が困難となりコ
ストパフォーマンスが低下すると共に種々の用途に適し
た強度と耐蝕性を自在に得ることが難しい。
In other words, galvanized steel materials tend to attract microorganisms in seawater;
Short service life. Polymer materials such as nylon are suitable for aquaculture nets due to their flexibility, but are unsuitable as structural materials. In addition, ordinary steel materials are subject to severe corrosion and are not suitable for use in seawater or coastal areas. Furthermore, as the content of Ni as a constituent element increases, the corrosion resistance of Cuproninkel material improves, but it becomes difficult to manufacture, the cost performance decreases, and it is difficult to freely obtain strength and corrosion resistance suitable for various uses.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記従来技術の持つ種々の欠点を克服し、海水
中或いは海浜地区での長期の使用に耐える材料を開発せ
んとして鋭意研究′されたものである. 〔課題を解決する為の手段〕 即ち本発明は、母材の表面ムこ、Ni含有率5〜30w
t%のZn−Ni合金層を0.5 〜50I!mの厚さ
に被覆した後、加熱拡散処理により母材とZn−Ni合
金被覆層との間に厚さ0.1〜30μmの拡散結合層を
設けた事を特徴とする耐塩水性複合材料である。
The present invention is the result of extensive research aimed at overcoming the various drawbacks of the prior art described above and developing a material that can withstand long-term use in seawater or on beaches. [Means for Solving the Problems] That is, the present invention provides surface roughness of the base material and Ni content of 5 to 30 w.
t% Zn-Ni alloy layer from 0.5 to 50I! A saltwater-resistant composite material characterized in that a diffusion bonding layer with a thickness of 0.1 to 30 μm is provided between the base material and the Zn-Ni alloy coating layer by heat diffusion treatment after coating the Zn-Ni alloy to a thickness of be.

母材としては銅又は銅合金或いは鉄合金が好適に使用さ
れる特に限定されるものではない。
The base material is not particularly limited, but copper, copper alloy, or iron alloy is preferably used.

この材料は海水中または高(1一濃度を有する溶液中や
海浜地区の構造物に使用されるのに好適な材料である. 〔作用〕 本発明においてZn−Ni合金被覆層を母材表面に設け
た理由はZn−Ni合金は極めて優れた耐食性を有し同
時に微生物が付着し難く、耐摩耗性も良好であるからで
ある. そしてその効果はZn−Ni合金においてNi5〜30
w t9A残部Znであるとき最も著しく、Niが5w
t%未溝のものでは耐食性が充分でなくまたNiが30
wt%を超えるものでは製造が困難でありまた耐食性も
飽和乃至は劣化するからである。
This material is suitable for use in seawater or in solutions with high (1-1) concentrations and for structures in coastal areas. [Function] In the present invention, a Zn-Ni alloy coating layer is applied to the surface of the base material The reason for this is that the Zn-Ni alloy has extremely excellent corrosion resistance, is difficult for microorganisms to adhere to it, and has good wear resistance.
w t9A The balance is Zn, most significantly when Ni is 5w
t% non-grooved ones do not have sufficient corrosion resistance, and the Ni content is 30%.
This is because if it exceeds wt%, it is difficult to manufacture and the corrosion resistance is saturated or deteriorated.

Zn−Ni合金被覆層の厚さは0.5〜30−であるこ
とが望ましいがこれは0.5μ未満では耐食性向上の効
果が乏し<30μを超えるとコスト高となる割合には耐
食性が向上しないからである。
The thickness of the Zn-Ni alloy coating layer is preferably 0.5 to 30-30 mm, but if it is less than 0.5 μm, the effect of improving corrosion resistance is poor, and if it exceeds <30 μm, the corrosion resistance will be improved at a rate that increases the cost. Because they don't.

Zn−Ni合金被覆層と母材とは拡散結合していること
が被覆層と母材とを強固に結合させるために不可欠であ
るが、この拡散結合の層は同時に耐食性をも向上させる
ものである。
Diffusion bonding between the Zn-Ni alloy coating layer and the base material is essential for strongly bonding the coating layer and the base material, but this diffusion bonding layer also improves corrosion resistance. be.

この拡散結合層の厚さは製造条件及び用途により変化す
るが0.1〜30μmのときはその特性が優れている。
The thickness of this diffusion bonding layer varies depending on manufacturing conditions and uses, but when it is 0.1 to 30 μm, its properties are excellent.

0.1n未満では被覆層と母材との結合力が弱< 30
tmを超えると製造上コスト高となり更には、全体の強
度低下を招くからである。
If it is less than 0.1n, the bonding force between the coating layer and the base material is weak < 30
This is because if it exceeds tm, manufacturing costs will increase and furthermore, the overall strength will decrease.

母材に関しては入手のしやすさ、被覆層、拡散層の形成
のしやすさ及び用途等の要求特性により選択されるもの
であるが、銅、銅合金及び鉄合金はこれらの特性につい
て優れているものである.〔実施例〕 次に本発明の実施例を以下に述べる. 先ず、第1表に示されるようなZn−Ni被覆層及び拡
散層を0.5謹厚の無酸素銅条(O F C)、C u
  O.47wt%S n −0.2ht%C r−0
.15wt%Zn銅条及び普通鋼SPCl上に形成せし
めた後に、塩水噴霧サイクル試験及び塩水浸漬試験を行
った.尚、被覆層の形成には、電気めっき法を用い、、
めっき液及び条件を変えて行った.更に拡散層の形成は
、電気めっき法による被覆層の形成後、不活性雰囲気,
・中で、温度及び時間と変化させて所定の拡散層厚にな
るように拡散処理を行った.導水噴霧サイクル試.験は
rlo%N a C 1 15min噴霧−40℃, 
 100%R H30sin →80℃、30%RH6
0min Jを1サイクルとして、60サイクル経過し
た後の供試材を平均腐食深さを測定した.塩水浸漬試験
については、lO%NaCit溶液中に1440時間(
60日)浸漬し、その後塩水噴霧試験と同様にその平均
腐食深さを測定した。
The base material is selected based on the required properties such as ease of availability, ease of forming the coating layer and diffusion layer, and the intended use. Copper, copper alloys, and iron alloys are superior in these properties. It is something that exists. [Example] Next, an example of the present invention will be described below. First, a Zn-Ni coating layer and a diffusion layer as shown in Table 1 were coated with a 0.5-thick oxygen-free copper strip (OFC), Cu
O. 47wt%S n -0.2ht%C r-0
.. After forming on a 15wt% Zn copper strip and common steel SPCl, a salt spray cycle test and a salt water immersion test were conducted. In addition, electroplating is used to form the coating layer.
The plating solution and conditions were changed. Furthermore, the diffusion layer is formed in an inert atmosphere after the coating layer is formed by electroplating.
・Diffusion treatment was performed inside the chamber by varying the temperature and time so that a predetermined diffusion layer thickness was achieved. Water conduction spray cycle test. The experiment was rlo%N a C 1 15 min spray at -40°C,
100%RH30sin →80℃, 30%RH6
The average corrosion depth of the sample material was measured after 60 cycles, with 0 min J being one cycle. For the salt water immersion test, 1440 hours (
60 days), and then the average corrosion depth was measured in the same manner as in the salt spray test.

母材とZn−Ni合金被覆層との密着性に関しては、Z
n−Ni合金被覆層が外側になる様にして180゜密着
曲げ試験を行い、曲げ部表面を実体顕微鏡(20X)で
観察して、Zn−Ni合金被覆層の剥離の有無により判
定した。
Regarding the adhesion between the base material and the Zn-Ni alloy coating layer, Z
A 180° close bending test was conducted with the n-Ni alloy coating layer on the outside, and the surface of the bent portion was observed with a stereomicroscope (20X) to determine whether or not the Zn-Ni alloy coating layer peeled off.

製造性に関しては、製造中の欠陥の発生(割れ、破断等
)の有無の多少により判断した。尚、従来材として用い
た亜鉛めっき鋼は、市販の普通鋼SPC1にZn電気め
っきを54施したものを用いた. これらの試験結果も第1表に合わせて示す。
Manufacturability was judged based on the presence or absence of defects (cracks, breaks, etc.) during manufacturing. The galvanized steel used as the conventional material was commercially available ordinary steel SPC1 with 54 Zn electroplating applied. These test results are also shown in Table 1.

また第2表に第1表に示した本発明材Nα1,32 6と従来材No.1.#の機械的特性及び電気的特性を
示す。
Table 2 also shows the inventive material Nα1,326 shown in Table 1 and the conventional material No. 1. The mechanical and electrical properties of # are shown.

第 2 表 第1表から明らかなように、本発明材は、塩水中及び塩
水飛沫雰囲気中等の高腐食環境で極めて優れた耐食性を
有する事がわかる。又使用目的に合った母材を適時選択
する事により、優れた特性を有する耐塩水性材料を容易
に提供する事が可能である。
Table 2 As is clear from Table 1, the materials of the present invention have extremely excellent corrosion resistance in highly corrosive environments such as salt water and salt water splash atmospheres. Furthermore, by appropriately selecting a base material suitable for the purpose of use, it is possible to easily provide a salt water resistant material with excellent properties.

更に第2表より明らかなように本発明材は母材の特性を
ほとんど損なっていない事がわかる。
Furthermore, as is clear from Table 2, it can be seen that the materials of the present invention hardly impair the properties of the base material.

〔発明の効果] 以上述べた如く本発明耐塩水性複合材料は従ぶ用いられ
て来たキュプロニンケル材等の海水中感いは海浜用の材
料に比較してより優れた耐食性を有し、種々の用途に通
したものであり工業上顕著な効果を奏するものである。
[Effects of the Invention] As described above, the saltwater resistant composite material of the present invention has superior corrosion resistance in seawater texture compared to the conventionally used cuproninkel materials, and It can be used in a variety of applications and has significant industrial effects.

Claims (5)

【特許請求の範囲】[Claims] (1)母材の表面に、Ni含有率5〜30wt%のZn
−Ni合金層を0.5〜50μmの厚さに被覆した後、
加熱拡散処理により母材とZn−Ni合金被覆層との間
に厚さ0.1〜30μmの拡散結合層を設けた事を特徴
とする耐塩水性複合材料。
(1) Zn with a Ni content of 5 to 30 wt% on the surface of the base material
- After coating the Ni alloy layer to a thickness of 0.5 to 50 μm,
A saltwater-resistant composite material characterized in that a diffusion bonding layer with a thickness of 0.1 to 30 μm is provided between a base material and a Zn-Ni alloy coating layer by heat diffusion treatment.
(2)母材が銅又は銅合金であることを特徴とする請求
項1記載の耐塩水性複合材料。
(2) The salt water resistant composite material according to claim 1, wherein the base material is copper or a copper alloy.
(3)母材が鉄合金であることを特徴とする請求項1記
載の耐塩水性複合材料。
(3) The salt water resistant composite material according to claim 1, wherein the base material is an iron alloy.
(4)海水中または高Cl^−濃度を有する溶液中で使
用されることを特徴とする請求項1記載の耐塩水性複合
材料。
(4) The saltwater-resistant composite material according to claim 1, characterized in that it is used in seawater or in a solution with a high Cl^- concentration.
(5)海浜地区の構造物に使用されることを特徴とする
請求項1記載の耐塩水性複合材料。
(5) The saltwater-resistant composite material according to claim 1, which is used for structures in coastal areas.
JP858790A 1990-01-18 1990-01-18 Laminated material having salt water corrosion resistance Pending JPH03215693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP858790A JPH03215693A (en) 1990-01-18 1990-01-18 Laminated material having salt water corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP858790A JPH03215693A (en) 1990-01-18 1990-01-18 Laminated material having salt water corrosion resistance

Publications (1)

Publication Number Publication Date
JPH03215693A true JPH03215693A (en) 1991-09-20

Family

ID=11697130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP858790A Pending JPH03215693A (en) 1990-01-18 1990-01-18 Laminated material having salt water corrosion resistance

Country Status (1)

Country Link
JP (1) JPH03215693A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1405934A2 (en) * 2002-09-23 2004-04-07 United Technologies Corporation Zinc-diffused alloy coating for corrosion/heat protection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1405934A2 (en) * 2002-09-23 2004-04-07 United Technologies Corporation Zinc-diffused alloy coating for corrosion/heat protection
EP1405934A3 (en) * 2002-09-23 2006-02-01 United Technologies Corporation Zinc-diffused alloy coating for corrosion/heat protection

Similar Documents

Publication Publication Date Title
CN109252125A (en) A kind of hot galvanizing almag coating and its preparation method and application
US7291401B2 (en) Non-hexavalent-chromium type corrosion resistant coating film structure having a resin layer and a metal layer that is superior in terms of adhesion to the resin layer
JP5983277B2 (en) Electrogalvanized steel sheet for high-definition paint base with excellent corrosion resistance and enamel hair resistance after painting and method for producing the same
JP7186301B2 (en) Plated steel material with excellent plating adhesion and corrosion resistance, and method for producing the same
JP3253945B2 (en) Coated steel
JPH03215693A (en) Laminated material having salt water corrosion resistance
JP2005272922A (en) HOT DIP Zn-Al-BASED ALLOY COATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND BENDING WORKABILITY AND METHOD FOR MANUFACTURING THE SAME
Shibli et al. Studies on the influence of metal oxides on the galvanic characteristics of hot-dip zinc coating
JPS61183475A (en) Improved dip plating method
CN113699475A (en) Hot-dip galvanizing method for steel
JPS60165387A (en) Thin-film corrosion-resistant laminate plated steel pipe
KR101332301B1 (en) Plating method using the ni-free three element alloys plating and tri-valent chromium plating
JP3057372B2 (en) Method for producing Zn-Al alloy-plated steel wire excellent in corrosion resistance and fatigue resistance
JP2954555B2 (en) Heat and corrosion resistant multi-layer plated steel
JP3386581B2 (en) Early patina-generating exterior material and method for producing the same
JP3810743B2 (en) Post-treated plated steel sheet
Law et al. Protective treatments for gold-flashed contact finishes with a nickel substrate
JPS61272389A (en) Steel sheet coated with al-si by hot dipping and having high corrosion resistance
JPH07305725A (en) Double layer sliding material
خالد عبدالله et al. Effect of Process Time in the Deposition and Corrosion Resistance of Ni-Zn-P Coating Formed on Mild Steel Surface
JPS6244564A (en) Manufacture of one side hot dip aluminum coated steel sheet
JPS59219483A (en) Method for providing solderability to stainless steel article
JP2004204244A (en) Post-treatment liquid for plated steel sheet, post-treated plated steel sheet with the use of it, and manufacturing method therefor
JPS63179083A (en) Multi-ply alloy plated steel sheet having superior corrosion resistance and workability
JP2004204243A (en) Post-treated plated steel sheet