JPH03214661A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03214661A
JPH03214661A JP1019290A JP1019290A JPH03214661A JP H03214661 A JPH03214661 A JP H03214661A JP 1019290 A JP1019290 A JP 1019290A JP 1019290 A JP1019290 A JP 1019290A JP H03214661 A JPH03214661 A JP H03214661A
Authority
JP
Japan
Prior art keywords
polysilicon layer
high resistance
resistance region
polysilicon
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1019290A
Other languages
Japanese (ja)
Inventor
Yasuhiro Funakoshi
舟越 也寿宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1019290A priority Critical patent/JPH03214661A/en
Publication of JPH03214661A publication Critical patent/JPH03214661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent fluctuation of a high resistance value by providing a second polysilicon layer on an ultrahigh resistance region formed of a first polysilicon layer, so that it covers the first polysilicon layer completely with an interlayer insulation film interlaid. CONSTITUTION:An ultrahigh resistance region 3' and a low resistance region 2 are formed of a first polysilicon layer and the first polysilicon layer is covered with an oxide film 4 which is an interlayer insulation film formed by a CVD method. Moreover, a second polysilicon layer 5 is disposed so that it covers completely the ultrahigh resistance region 3' formed of the first polysilicon layer, with the interlayer insulation film 4 interlaid. In this way, the second polysilicon layer is so provided as to cover completely the ultrahigh resistance region formed of the first polysilicon. In processes after an ultrahigh resistance is formed, according to this constitution, invasion of oxygen or hydrogen upon the ultrahigh resistance region in oxidation or heat treatment, for instance, is prevented and fluctuation of an ultrahigh resistance value can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置に関し、特に半導体基板上に超高
抵抗ポリシリコン層を得るための構造に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a structure for obtaining an ultra-high resistance polysilicon layer on a semiconductor substrate.

〔従来の技術〕[Conventional technology]

第2図は従来の方法により形成された高抵抗ポリシリコ
ン層の断面図である。図において、1はシリコン基板、
2はポリシリコンの低抵抗領域、3はポリシリコンの高
抵抗領域、6はポリシリコンの酸化膜、7はスムースコ
ート等の絶縁膜、8はアルミ配線、9は保護膜としての
プラズマ窒化膜である。
FIG. 2 is a cross-sectional view of a high resistance polysilicon layer formed by a conventional method. In the figure, 1 is a silicon substrate,
2 is a low resistance region of polysilicon, 3 is a high resistance region of polysilicon, 6 is an oxide film of polysilicon, 7 is an insulating film such as a smooth coat, 8 is an aluminum wiring, and 9 is a plasma nitride film as a protective film. be.

以下、高抵抗ポリシリコン層の形成方法を説明する。ま
ず、厚膜酸化膜上に、CVD法によりポリシリコン層2
を形成し、次に、前記ポリシリコン層2に前記ポリシリ
コン層が所定の高抵抗値となるように、イオン注入法に
よりポロン及びリンを注入して高抵抗領域3を形成する
A method for forming a high resistance polysilicon layer will be described below. First, a polysilicon layer 2 is deposited on the thick oxide film using the CVD method.
Next, a high resistance region 3 is formed by implanting poron and phosphorus into the polysilicon layer 2 by ion implantation so that the polysilicon layer has a predetermined high resistance value.

その後、前記の低抵抗領域2及び高抵抗領域3を有する
ポリシリコン層を熱酸化法により熱酸化し、表面を酸化
膜6で覆う。さらに、CVD法により基板全面に厚膜の
層間絶縁膜7を形成する。
Thereafter, the polysilicon layer having the low resistance region 2 and high resistance region 3 is thermally oxidized by a thermal oxidation method, and the surface is covered with an oxide film 6. Furthermore, a thick interlayer insulating film 7 is formed over the entire surface of the substrate by CVD.

次にコンタクト孔10を形成し、さらに、該コンタクト
孔を埋めるようにアルミ配線を形成する。
Next, a contact hole 10 is formed, and further, an aluminum wiring is formed so as to fill the contact hole.

そして最後に基板表面全面に保護膜としてプラズマ窒化
膜を形成する。
Finally, a plasma nitride film is formed as a protective film over the entire surface of the substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら従来の半導体装置では、上述の方法により
形成された高抵抗ポリシリコン層3は、その後の酸化及
び熱処理により膜厚あるいは膜質が大きく変化し、特に
保護膜としてのプラズマ窒化膜9中に含まれる水素イオ
ンにより大きく高抵抗値が変動することがよく知られて
いる。この高抵抗値の変化によりこの高抵抗値を用いた
デバイスの特性が変化し、特性の制御において大きな問
題が生じている。また、デバイス特性の向上とともに、
高抵抗を超高抵抗へ、さらに高度な制御技術がますます
要求されてくるが、従来の構造ではその対応が困難であ
った。
However, in conventional semiconductor devices, the high-resistance polysilicon layer 3 formed by the above-mentioned method changes greatly in film thickness or film quality due to subsequent oxidation and heat treatment. It is well known that the high resistance value fluctuates greatly due to hydrogen ions. Changes in this high resistance value change the characteristics of devices using this high resistance value, creating a major problem in controlling the characteristics. In addition, along with improvements in device characteristics,
More and more advanced control technology is required to turn high resistance into ultra-high resistance, but it has been difficult to meet these demands with conventional structures.

この発明は、これらの問題点を解消するためになされた
もので、高抵抗値の変動を防止でき、よりよい制御が可
能である半導体装置を得ることを目的とする。
The present invention has been made to solve these problems, and aims to provide a semiconductor device that can prevent high resistance value fluctuations and that can be better controlled.

〔課題を解決するための手段〕 本発明に係る半導体装置は、基板上に形成した第1層目
のポリシリコン層上に眉間絶縁膜を形成し、さらにその
上に上記第1層目のポリシリコンを完全に覆うように第
2層目のポリシリコン層を配置したものである。
[Means for Solving the Problems] A semiconductor device according to the present invention includes a glabella insulating film formed on a first polysilicon layer formed on a substrate, and further a glabella insulating film formed on the first polysilicon layer. A second polysilicon layer is placed so as to completely cover the silicon.

〔作用〕[Effect]

本発明においては、前述のように第2層目ポリシリコン
層を、第1層目ポリシリコンで形成される超高抵抗領域
を完全に覆うように設けるようにしたので、超高抵抗を
形成した後の工程において、例えば酸化,熱処理中にお
ける酸素あるいは水素の超高抵抗領域への侵入が防止さ
れ、超高抵抗値の変動を防止することが可能となる。
In the present invention, as described above, the second polysilicon layer is provided to completely cover the ultra-high resistance region formed by the first polysilicon layer, thereby forming an ultra-high resistance region. In subsequent steps, for example, during oxidation and heat treatment, oxygen or hydrogen is prevented from entering the ultra-high resistance region, making it possible to prevent fluctuations in the ultra-high resistance value.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による半導体装置において、
超高抵抗を形成した場合の断面図を示している。図にお
いて、1はシリコン基板、2は基板1上に形成した第1
層目ポリシリコン層の低抵抗領域、3“は第1層目ポリ
シリコン層の超高抵抗領域、4は眉間絶縁膜、5は2層
目ポリシリコン、6はポリシリコンの酸化膜、7はスム
ースコート等の絶縁膜、8はアルミ配線、9は保護膜と
てしてのプラズマ窒化膜、10はコンタクト孔である。
FIG. 1 shows a semiconductor device according to an embodiment of the present invention.
A cross-sectional view of a case where an ultra-high resistance is formed is shown. In the figure, 1 is a silicon substrate, and 2 is a first silicon substrate formed on the substrate 1.
3" is a low resistance region of the first polysilicon layer, 4 is an insulating film between the eyebrows, 5 is a second polysilicon layer, 6 is a polysilicon oxide film, and 7 is a low resistance region of the first polysilicon layer. An insulating film such as a smooth coat, 8 an aluminum wiring, 9 a plasma nitride film as a protective film, and 10 a contact hole.

以下、本実施例を製造工程に従って説明する。This example will be described below according to the manufacturing process.

図に示すように第1層目のポリシリコン層にて超高抵抗
領域3“と低抵抗領域2を形成する。尚、本実施例では
、超高抵抗値を得る方法として、第1層目のポリシリコ
ン層の薄膜化により対応している。その他の方法として
は、高抵抗長,11,あるいはポリシリコン層への不純
物注入量の変更等により対応が可能である。また、第1
層目ポリシリコン層の超高抵抗領域3゛と、低抵抗領域
2はイオン注入量の差により形成する方法が一般的であ
る。
As shown in the figure, an ultra-high resistance region 3'' and a low-resistance region 2 are formed in the first polysilicon layer.In this example, as a method of obtaining an ultra-high resistance value, This can be addressed by making the polysilicon layer thinner. Other methods include increasing the resistance length, changing the amount of impurity implanted into the polysilicon layer, etc.
The ultra-high resistance region 3' and the low resistance region 2 of the second polysilicon layer are generally formed by using a difference in the amount of ion implantation.

このようにして形成した第1層目のポリシリコン層をC
VD法により形成した層間絶縁膜である酸化膜4により
覆う。さらにこの層間絶縁膜4を介して、第1層目ポリ
シリコン層にて形成した超高抵抗領域3“を完全に覆う
ように第2層目ボリシリコン層5を配置する。この第2
層目ポリシリコン層5の不純物濃度は比較的低濃度が望
ましい。
The first polysilicon layer formed in this way is
It is covered with an oxide film 4 which is an interlayer insulating film formed by the VD method. Further, a second polysilicon layer 5 is disposed via this interlayer insulating film 4 so as to completely cover the ultra-high resistance region 3'' formed of the first polysilicon layer.
The impurity concentration of the second polysilicon layer 5 is preferably relatively low.

それは、ポリシリコンのダレインの成長をおさえること
が、水素イオンの第1層目ポリシリコンにて形成される
超高抵抗領域への侵入を防止する効果が大きいためであ
る。また、超高抵抗領域3″を完全に覆うように配置し
た第2層目ポリシリコン層5の電位はある一定の電位に
固定することが望ましい。もちろん、この超高抵抗領域
3゛を完全に覆・うように配置された第2層目ポリシリ
コン層5はデバイスとしての配線の一部であってもよい
This is because suppressing the growth of dalein in polysilicon has a great effect in preventing hydrogen ions from entering the ultra-high resistance region formed by the first layer of polysilicon. Furthermore, it is desirable to fix the potential of the second polysilicon layer 5, which is placed so as to completely cover the ultra-high resistance region 3'', to a certain constant potential. The second polysilicon layer 5 placed over and over may be part of the wiring as a device.

その後、第2層目ポリシリコン層5を熱酸化法又はCV
D法により形成された眉間酸化膜6.7で覆う。この熱
酸化及びCVD酸化膜9形成時の酸素の侵入及び熱処理
に対しても、第2層目ポリシリコン層5は、第1層目に
より形成した超高抵抗領域3′の防御膜としての役割り
を果たしておりその効果は大きい。これにより、超高抵
抗値の変動は防止される。
Thereafter, the second polysilicon layer 5 is formed by thermal oxidation or CV
Cover with glabellar oxide film 6.7 formed by method D. The second polysilicon layer 5 also plays a role as a protective film for the ultra-high resistance region 3' formed by the first layer against oxygen intrusion and heat treatment during thermal oxidation and CVD oxide film 9 formation. The effect is significant. This prevents fluctuations in the extremely high resistance value.

その後、第1層目ポリシリコン層の低抵抗領域2へのコ
ンタクト孔10を形成し、さらにアルミ層により配線8
を形成する。
Thereafter, a contact hole 10 to the low resistance region 2 of the first polysilicon layer is formed, and a wiring 8 is formed using an aluminum layer.
form.

その後、デバイスの保護膜として、基板全面にプラズマ
窒化膜9を形成する。その後、一般的には前記プラズマ
窒化膜9を形成してからは、形成時のダメージの低下及
びストレスの低下を目的として、低温(350〜400
℃程度)の熱処理を行うことが多い。そしてこの熱処理
により、プラズマ窒化膜9中の水素イオンがもっとも大
きく超高抵抗値を変動させることが往々にしてあるが、
本実施例ではこの水素イオンに対しても、第2層目のポ
リシリコン層5により、その下層の超高抵抗領域である
第1層ポリシリコン層3“へ水素イオンが侵入するのを
防止でき、超高抵抗値の変動を防止できる。
Thereafter, a plasma nitride film 9 is formed over the entire surface of the substrate as a protective film for the device. After that, generally after forming the plasma nitride film 9, the plasma nitride film 9 is heated at a low temperature (350-400°C) for the purpose of reducing damage and stress during formation.
Heat treatment is often performed at a temperature of around 30°F. Due to this heat treatment, hydrogen ions in the plasma nitride film 9 often cause the ultra-high resistance value to fluctuate the most.
In this embodiment, the second polysilicon layer 5 can prevent hydrogen ions from penetrating into the first polysilicon layer 3'', which is an ultra-high resistance region underneath. , it is possible to prevent fluctuations in ultra-high resistance values.

なお、本実施例においては、超高抵抗を第1層目ポリシ
リコン31にて、その防御膜を第2層目のポリシリコン
5にて形成しているが、超高抵抗を第2層目のポリシリ
コンにて、その防御膜を第3層目のポリシリコンにて形
成してもよく、この場合においても上記実施例と同様の
効果を奏する。
In this embodiment, the ultra-high resistance is formed by the first layer of polysilicon 31, and the protective film thereof is formed by the second layer of polysilicon 5, but the ultra-high resistance is formed by the second layer of polysilicon 5. The protective film may be formed of a third layer of polysilicon, and in this case, the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、第1層目ポリシリコン層
により形成された超高抵抗領域上に、層間絶緑膜を介し
て第1層目のポリシリコン層を完全に覆うように第2層
目ポリシリコン層を設けるようにしたので、超高抵抗形
成以降の工程、例えば酸化,熱処理工程における酸素あ
るいは水素の超高抵抗層への侵入を防止でき、超高抵抗
値の変動を防止でき、超高抵抗値を精度よく制御できる
効果がある。
As described above, according to the present invention, a layer is formed on the ultra-high resistance region formed by the first polysilicon layer so as to completely cover the first polysilicon layer through the interlayer insulation film. By providing a second polysilicon layer, it is possible to prevent oxygen or hydrogen from entering the ultra-high resistance layer during the steps after ultra-high resistance formation, such as oxidation and heat treatment, thereby preventing fluctuations in the ultra-high resistance value. This has the effect of accurately controlling ultra-high resistance values.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による半導体装置の超高抵
抗部の断面図、第2図は従来方法による半導体装置の高
抵抗部の断面図である。 1・・・Si基板、2・・・低抵抗領域、3・・・高抵
抗領域、3′・・・超高抵抗領域、4・・・第1層目ポ
リシリコン層一第2層目ポリシリコン層間の眉間絶縁膜
、5・・・第2層目ポリシリコン層、6・・・ポリシリ
コンの酸化膜、7・・・スムースコート等の絶縁膜、8
・・・アルミ配線、9・・・プラズマ窒化膜、10はコ
ンタクト孔。 なお図中同一符号は同一又は相当部分を示す。
FIG. 1 is a sectional view of an ultra-high resistance portion of a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a sectional view of a high resistance portion of a semiconductor device according to a conventional method. DESCRIPTION OF SYMBOLS 1...Si substrate, 2...Low resistance region, 3...High resistance region, 3'...Ultra high resistance region, 4...First layer polysilicon layer - second layer polysilicon layer Insulating film between the eyebrows between silicon layers, 5... Second polysilicon layer, 6... Polysilicon oxide film, 7... Insulating film such as smooth coat, 8
. . . aluminum wiring, 9 . . . plasma nitride film, 10 contact hole. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上に高抵抗のポリシリコン層を有する
半導体装置において、 前記基板上に形成された第1層目のポリシリコン層と、 該第1層目のポリシリコン層上に形成された絶縁膜と、 該絶縁膜上に前記第1層目のポリシリコン層形成領域を
覆うように形成した第2層目のポリシリコン層とを備え
たことを特徴とする半導体装置。
(1) In a semiconductor device having a high-resistance polysilicon layer on a semiconductor substrate, a first layer of polysilicon layer formed on the substrate, and a layer of polysilicon layer formed on the first layer of polysilicon layer. A semiconductor device comprising: an insulating film; and a second polysilicon layer formed on the insulating film so as to cover a region where the first polysilicon layer is formed.
JP1019290A 1990-01-18 1990-01-18 Semiconductor device Pending JPH03214661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1019290A JPH03214661A (en) 1990-01-18 1990-01-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1019290A JPH03214661A (en) 1990-01-18 1990-01-18 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03214661A true JPH03214661A (en) 1991-09-19

Family

ID=11743426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1019290A Pending JPH03214661A (en) 1990-01-18 1990-01-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03214661A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112410A (en) * 1992-08-12 1994-04-22 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
KR100258493B1 (en) * 1995-10-25 2000-06-15 가네꼬 히사시 Semiconductor device having pesistor element and method of fabricating same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112410A (en) * 1992-08-12 1994-04-22 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
US5956592A (en) * 1992-08-12 1999-09-21 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having polysilicon resistors with a specific resistance ratio resistant to manufacturing processes
KR100258493B1 (en) * 1995-10-25 2000-06-15 가네꼬 히사시 Semiconductor device having pesistor element and method of fabricating same

Similar Documents

Publication Publication Date Title
US5256894A (en) Semiconductor device having variable impurity concentration polysilicon layer
JPS6010773A (en) Method of forming 1-element fet-memory capacitor circuit
JPH0297027A (en) Semiconductor device and manufacture thereof
JPH0752772B2 (en) Manufacturing method of semiconductor device
US4879253A (en) Method for fabricating a semiconductor device using a BPSG layer containing high concentrations of phosphorus and boron
JPH0794503A (en) Oxidizing method for silicon substrate
JP3231645B2 (en) Semiconductor device and method of manufacturing the same
JPH03214661A (en) Semiconductor device
JPH03227516A (en) Manufacture of semiconductor device
JPS59200418A (en) Manufacture of semiconductor device
JPH0368133A (en) Solid phase diffusion
JPS5848438A (en) Semiconductor integrated circuit device
JPH0528501B2 (en)
JPH01298758A (en) Manufacture of semiconductor device
JPH06196689A (en) Insulated gate field-effect semiconductor device and manufacture thereof
JPH0225072A (en) Manufacture of semiconductor device
JPH04100238A (en) Manufacture of semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPH01238144A (en) Manufacture of semiconductor device
JPH0370170A (en) Method of making semiconductor element
JPS61181148A (en) Manufacture of semiconductor device
JPS61225870A (en) Manufacture of mis transistor
JPS60192363A (en) Manufacture of schottky barrier junction
JPH03265132A (en) Semiconductor device
JPH03280425A (en) Wiring formation process