JPH0321043A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0321043A
JPH0321043A JP15473489A JP15473489A JPH0321043A JP H0321043 A JPH0321043 A JP H0321043A JP 15473489 A JP15473489 A JP 15473489A JP 15473489 A JP15473489 A JP 15473489A JP H0321043 A JPH0321043 A JP H0321043A
Authority
JP
Japan
Prior art keywords
wiring
insulating film
metal
film
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15473489A
Other languages
Japanese (ja)
Inventor
Katsuhiko Hieda
克彦 稗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15473489A priority Critical patent/JPH0321043A/en
Publication of JPH0321043A publication Critical patent/JPH0321043A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To flatten the interlayer insulating film during multilayer wiring formation uniformly however wide the space of wiring may be by precipitating a silicon oxide film from in silica supersaturated solution and accumulating it only on an insulating film so as to fill the space between desired patterns of metal wiring. CONSTITUTION:The wiring of desired metal patterns is formed on an insulating film 13, which has a desired wiring connection hole, and a silicon oxide film 16 is precipitated from in silica saturated solution and is accumulated only on the insulating film 13 so as to fill the space between the desired patterns of the metal wiring 14. Since the silicon oxide film 16 is precipitated and accumulated selectively only on the interlayer insulating film 13 free of wiring patterns so as to fill the space between patterns, the interlayer insulating film can be flattened uniformly whether the space between wirings is wide or narrow.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は半導体装置の製造方法に係り、とくに、配線形
成工程時における絶縁膜の選択析出堆積による層間絶縁
膜の平坦化方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device, and in particular, to planarization of an interlayer insulating film by selective deposition of an insulating film during a wiring formation process. Regarding the method.

(従来の技術) 従来、半導体装置における多層配線の層間絶縁膜の形或
方法において、第3図(a)に示す様に集積回路の形成
された半導体基板101上の下層配線102又は半導体
面に接続する第lの配線104を形成した後、第3図(
b)に示すように、例えばプラズマ酸化膜105を全面
に堆積し、 その後レジスト膜106を回転塗布し、全
面を平坦化していた。プラズマ酸化膜は低温で形成でき
るというメリットがあるものの、ステップ・カバレッジ
が悪く、段差においてはオーバー・ハング゛形状となる
傾向かある。
(Prior Art) Conventionally, in the form or method of forming an interlayer insulating film of multilayer wiring in a semiconductor device, as shown in FIG. After forming the l-th wiring 104 to be connected, as shown in FIG.
As shown in b), for example, a plasma oxide film 105 is deposited on the entire surface, and then a resist film 106 is spin-coated to flatten the entire surface. Although plasma oxide films have the advantage of being able to be formed at low temperatures, they have poor step coverage and tend to have an overhang shape at step differences.

次に、全面をレジス1・膜106とプラズマ酸化膜10
5のエッチング速度が等しくなる様なエッチング条件で
反応性イオンエッチング(R I E)法を用いてエッ
チングしレジス1・膜106を除去した後、さらに全面
にプラズマ酸化膜107を堆積し、 第1の配線104
に接続する第2の配線108を形成していた。
Next, the entire surface is covered with the resist 1/film 106 and the plasma oxide film 10.
After removing the resist 1 and the film 106 by etching using a reactive ion etching (RIE) method under etching conditions such that the etching rates of the first and second films are equal, a plasma oxide film 107 is further deposited on the entire surface. wiring 104
A second wiring 108 was formed to connect to.

しかしながら、このレジストエッチバンク法を用いた層
間絶縁膜平坦化法には解決すへき問題がある。例えば、
プラズマ酸化膜のステップ・カバレッジが悪いため狭い
間隔の配線では空孔が残り、ここに次の配線材料が入り
込みショートの原因となるものである(第3図(C))
。なお、半導体基板の内部構造及び表面状態は、本発明
の要旨とは直接関係ないので、詳細な図示は省略した。
However, this method of planarizing an interlayer insulating film using the resist etch bank method has problems that cannot be solved. for example,
Due to the poor step coverage of the plasma oxide film, holes remain in narrowly spaced wiring, and the next wiring material enters into these holes, causing short circuits (Figure 3 (C)).
. Note that the internal structure and surface state of the semiconductor substrate are not directly related to the gist of the present invention, so detailed illustrations thereof are omitted.

第1,2図も同様である。The same applies to FIGS. 1 and 2.

(発明が解決しようとする課題) 以上のように、従来の多層配線形成時におけるエッチバ
ンク法を用いた層聞絶縁膜平坦化法では、ある程度配線
間のスペースが広い場合には良好な平坦化形状が得られ
るが、配線のスペースが1μmを切って狭くなってくる
と、配線間のショートの原因となるig孔による\V坦
化不良が増えると言う問題があった。
(Problems to be Solved by the Invention) As described above, in the conventional interlayer insulating film planarization method using the etch bank method when forming multilayer wiring, good planarization can be achieved when the space between wirings is wide to some extent. However, as the wiring space becomes narrower than 1 μm, there is a problem in that \V flattening defects due to the ig holes, which cause short circuits between the wirings, increase.

本発明は、この様な問題を解決して、広いスペスの配線
でも、狭いスペースの配線でも一様に多層配線形成時の
層間絶縁膜を平坦化できる半導体装置の製造方法を提供
することを1」的とする。
An object of the present invention is to provide a method for manufacturing a semiconductor device that can solve these problems and uniformly flatten an interlayer insulating film when forming multilayer wiring, whether it is a wide wiring or a narrow wiring. "Target."

〔発明の構戊〕[Structure of the invention]

(課題を解決するための手段) 本発明の第1の発明による磨間絶緑膜の平坦化方法は、
半導体装置の配線形成工程において、所望の配線接続孔
を有した絶縁膜」−に金属の所望のパターンの配線を形
成し、前記絶縁膜」一にのみシリコン酸化膜をシリカ飽
和溶液中から析出堆積させて前記金属の配線の所望のパ
ターン間を埋めることにより、前記シリコン酸化膜と金
属の配線とによって形成される表面を平坦化することを
特3 徴としている。
(Means for Solving the Problems) A method for flattening a wear-resistant green film according to the first invention of the present invention includes:
In the wiring formation process of a semiconductor device, a desired pattern of metal wiring is formed on an insulating film having desired wiring connection holes, and a silicon oxide film is precipitated and deposited from a silica saturated solution only on the insulating film. The present invention is characterized in that the surface formed by the silicon oxide film and the metal wiring is flattened by filling the spaces between the desired patterns of the metal wiring.

また本発明の第2の発明による層間絶縁膜の平坦化方法
は、半導体装置の配線形成工程において、所望の配線接
続孔を有した絶縁膜上に、第1の金属の所望のパターン
の配線を形成し、この第↓の金属の配線の上面及び側面
に第2の金属の1換を形成した後、前記絶縁膜」二にの
みシリコン酸化膜をシリカ過飽和溶液中から析出堆積さ
せて前記第土の金属の配線の所望のパターン間を埋める
ことにより、前記シリコン酸化膜と第1の金属の配線の
」二面、側面を覆った第2の金属の膜とによって形成さ
れる表面を平坦化することを特徴としている。
Further, in the method for planarizing an interlayer insulating film according to the second aspect of the present invention, a desired pattern of wiring of a first metal is formed on an insulating film having a desired wiring connection hole in a wiring forming process of a semiconductor device. After forming a second metal on the top and side surfaces of the second metal wiring, a silicon oxide film is precipitated and deposited from a silica supersaturated solution only on the second insulating film. flattening the surface formed by the silicon oxide film and a second metal film covering two and side surfaces of the first metal wiring; It is characterized by

(作用) 本発明によれば、配線パターンの焦い層間絶縁膜」二に
のみ選択的にシリコン酸化膜を析出堆積してパターン間
を埋めているため配線間スペースの広い、狭いにかかわ
らず−様に層間絶縁膜を平坦化できるので、この上の金
属配線の加工か容易となりいわゆる多層配線時の下地の
段差に関する歩留り低下を著しく改善できる。
(Function) According to the present invention, the silicon oxide film is selectively deposited only on the interlayer insulating film of the wiring pattern to fill the space between the patterns, regardless of whether the space between the wirings is wide or narrow. Since the interlayer insulating film can be planarized in a similar manner, it becomes easy to process the metal wiring thereon, and it is possible to significantly improve the yield loss caused by the step difference in the base in so-called multilayer wiring.

4 本発明によれば、金属配線間の層間絶縁膜を低温(室温
程度)で形成できるので金属配線のヒロソクなどを防止
でき配線の信頼性、歩留り等を向上させることができる
4. According to the present invention, since the interlayer insulating film between the metal wirings can be formed at a low temperature (about room temperature), it is possible to prevent cracking of the metal wirings and improve the reliability, yield, etc. of the wirings.

本発明によれば、エッチバック法などを用いる必要がな
く、溶液中にひたすだけで良いため工程が著しく簡■と
なり製造工程が短縮できる。
According to the present invention, there is no need to use an etch-back method or the like, and it is only necessary to immerse the material in a solution, which greatly simplifies the process and shortens the manufacturing process.

また、本発明の第2の発明によれば、第1の金属の配線
を第2の金属の膜が覆っているので、第1の金属として
、シリカ過飽和溶液に腐食されやすいアルミニウムを主
体とする従来から使われている配線材料を用いることが
できるようになる。
Further, according to the second aspect of the present invention, since the first metal wiring is covered with the second metal film, the first metal is mainly aluminum, which is easily corroded by a silica supersaturated solution. It becomes possible to use conventional wiring materials.

そのため、表面を覆う第2の金属の抵抗値が高くてもそ
の影響を少なくすることができる。
Therefore, even if the second metal covering the surface has a high resistance value, its influence can be reduced.

(実施例) 次に、本発明の実施例について図面を参照して説明する
(Example) Next, an example of the present invention will be described with reference to the drawings.

第1図(a)〜(c)は、本発明の第1の実施例を説明
するための半導体装置の製造工程断面図である。
FIGS. 1A to 1C are cross-sectional views of a semiconductor device manufacturing process for explaining a first embodiment of the present invention.

?ず第1図(a)に示す様に、集積回路の形成された半
導体基板11表面の配線12又は半導体面に対する配線
接続孔を持ったCVD酸化膜やBPSG膜から或る層間
絶縁膜13を形成した後、例えばタングステン(W)を
使用して、所望のパターンを持った膜厚4000人程度
の金属配線14を形成する。このとき層間絶縁膜l3は
、通常のBPSG (ホウ・リン珪酸ガラス)等を用い
た高温メルト法によりなだらかに平坦化しておく。
? First, as shown in FIG. 1(a), an interlayer insulating film 13 is formed from a CVD oxide film or a BPSG film having a wiring connection hole to the wiring 12 on the surface of the semiconductor substrate 11 on which an integrated circuit is formed or to the semiconductor surface. After that, a metal wiring 14 having a desired pattern and a thickness of about 4,000 wafers is formed using, for example, tungsten (W). At this time, the interlayer insulating film l3 is smoothed and flattened by a high temperature melt method using ordinary BPSG (borophosphosilicate glass) or the like.

次に第1図(b)に示すように、半導体基板全面をシリ
カを過飽和させたケイ化水素酸水溶液中に浸し、層間絶
縁膜■3の上にのみ緻密なシリコン酸化膜16を例えば
膜厚4000λ程度析出堆積させる。
Next, as shown in FIG. 1(b), the entire surface of the semiconductor substrate is immersed in a hydrosilicic acid aqueous solution supersaturated with silica, and a dense silicon oxide film 16 is formed only on the interlayer insulating film 3 to a thickness of, for example, Precipitate and deposit about 4000λ.

シリカ過飽和溶液は、次のようにして作られる。A supersaturated silica solution is made as follows.

まず、40重量%のケイ弗化水素酸( H 2 S i
F G )水溶液を水で希釈して3モル/Qのケイ弗化
水素酸溶液を作り、これにシリカ(SiO■)を飽和さ
せる。
First, 40% by weight of hydrofluoric acid (H 2 Si
F G ) The aqueous solution is diluted with water to prepare a 3 mol/Q hydrofluorosilicic acid solution, and this is saturated with silica (SiO■).

この溶液にアルミ板(AQ)を浸し、シリカ過飽和溶液
を作る。ケイ弗化水素酸溶液の濃度はとくに実施例に限
定されるものではない。シリカが過飽?の溶液が出来れ
ば、任意の濃度のケイ弗化水素酸溶液を利用することが
できる。
An aluminum plate (AQ) is immersed in this solution to create a silica supersaturated solution. The concentration of the hydrofluorosilicic acid solution is not particularly limited to the examples. Is silica oversaturated? A hydrofluorosilicic acid solution of any concentration can be used as long as a solution of .

以上の反応式は次のとおりである。The above reaction formula is as follows.

H2SiF6+ 2H20→SiO■+61{F   
 ・・・■2A氾+61{F→2A悲F3+3H■  
   ・・・(2)0)式のHFを脚と反応させて消費
させることにより1{F濃度が低下し、Sin2膜の析
出速度が増加する。
H2SiF6+ 2H20→SiO■+61{F
... ■2A flood +61 {F → 2A sad F3 + 3H■
...(2)0) By reacting with the legs and consuming the HF, the 1{F concentration decreases and the deposition rate of the Sin2 film increases.

反応温度を上げる程(1)の反応は右へ進み、Sin2
の析出は増加する。この実施例では液温30℃の溶液を
用いたが、シリコン酸化膜の析出速度は、1000人/
時間程度であった。現状では、液温を35℃にすると析
出速度を800〜IOOOA/時間にすることができる
。液温20〜30゜Cでも析出速度をその程度にするこ
とは可能である。このシリコン酸化膜l6は、非常に緻
密であり、層間絶縁膜13に密着して形成される。
As the reaction temperature increases, the reaction (1) proceeds to the right, and Sin2
The precipitation of will increase. In this example, a solution with a liquid temperature of 30°C was used, but the deposition rate of the silicon oxide film was 1000 people/30°C.
It was about an hour. At present, when the liquid temperature is set to 35° C., the precipitation rate can be increased to 800 to IOOOA/hour. It is possible to achieve such a precipitation rate even at a liquid temperature of 20 to 30°C. This silicon oxide film l6 is very dense and is formed in close contact with the interlayer insulating film 13.

次に第工図(c)に示すように、全面に例えば低温(3
00℃程度)で堆積できるプラズマCVD酸化膜17を
膜厚4000人程度堆積し、レジストを用いた通常のり
ソグラフィ技術とRIE法を用いて、7 下層の金属配線層14に対する配線接続孔を開口し、A
Q−Si−Cuから成る金属配線18のパターンを形或
する。
Next, as shown in the construction drawing (c), the entire surface is coated with low temperature (3
A plasma CVD oxide film 17, which can be deposited at a temperature of about 0.0°C (approximately 100°C), is deposited to a thickness of about 4,000 yen, and a wiring connection hole is opened to the metal wiring layer 14 in the lower layer 7 using an ordinary lamination lithography technique using a resist and an RIE method. ,A
A pattern of metal wiring 18 made of Q-Si-Cu is formed.

第2図(a),(b)は本発明の第2の実施例を説明す
るための半導体装置の製造工程断面図である。
FIGS. 2(a) and 2(b) are cross-sectional views of a semiconductor device manufacturing process for explaining a second embodiment of the present invention.

まず第2図(a)に示すように、例えばリンを1一一プ
された多結晶シリコン膜から或る下層の配線12又は、
半導体表面のN”,P十不純物層に対する配線接続孔を
持った、例えばC V D Sin2膜やBPSG膜の
積層構造で熱的にリフローされた、層間絶緑膜13を形
成した後,数重量パーセン1−のシリコンを不純物とし
てまぜたアルミニウム(i−Siと略す)を使用して、
所望のパターンを持った膜厚4000 A程度の第1の
金属の配線であるAQ−Si配線14を形成する。
First, as shown in FIG. 2(a), a certain lower wiring 12 or
After forming the thermally reflowed interlayer insulating film 13 with a layered structure of, for example, a C V D Sin2 film or a BPSG film, which has wiring connection holes for the N'' and P impurity layers on the semiconductor surface, several weight Using aluminum (abbreviated as i-Si) mixed with 1% silicon as an impurity,
An AQ-Si wiring 14 having a desired pattern and a film thickness of about 4000 A is formed as a first metal wiring.

さらにこのAQ−Sj表面に選択的にタングステン膜1
5を500人程度堆積する。このときWF6と112ガ
スを用いたhot−wall型のLPGVD炉を使用し
たが、他の装置によっても良い。
Furthermore, a tungsten film 1 is selectively applied to this AQ-Sj surface.
About 500 people will accumulate 5. At this time, a hot-wall type LPGVD furnace using WF6 and 112 gas was used, but other equipment may also be used.

次に第2図(b)に示すように、第工の実施例と8 同じように基板全面をシリカを過飽和させたケイ弗化水
素酸水溶液中に浸し、層間絶縁膜l3の上のみシリコン
酸化膜■6を例えば約450O A析出堆積させる。水
溶液の条件は第1の実施例の場合と同じで良い。
Next, as shown in FIG. 2(b), the entire surface of the substrate was immersed in an aqueous solution of hydrofluoric acid supersaturated with silica in the same manner as in Example 8 of Step 8, and silicon was oxidized only on the interlayer insulating film l3. Film 16 is deposited, for example, at about 450 OA. The conditions for the aqueous solution may be the same as in the first embodiment.

これにより第1の金属配線及びその表面を覆うタングス
テン膜でできた段差4500 Aは完全に平坦化される
。なお、シリコン酸化膜の析出はタングステン膜などの
表面にはないという特徴をもっている。以下、第1図(
c)で述べたような工程をへて層間絶縁膜17,第2層
目の金属配線18を得ることができる。
As a result, the step 4500A formed by the first metal wiring and the tungsten film covering its surface is completely flattened. Note that a silicon oxide film is not deposited on the surface of a tungsten film or the like. Below, Figure 1 (
The interlayer insulating film 17 and the second layer metal wiring 18 can be obtained through the steps described in c).

本発明は上記実施例に限られない。The present invention is not limited to the above embodiments.

例えば実施例では、2層金属配線の場合について説明し
たが、3層,4層・・・N層金属配線の場合にも同様な
工程をくり返すことにより安定した多層配線を実現でき
る。
For example, in the embodiment, the case of two-layer metal wiring has been described, but stable multilayer wiring can be realized by repeating the same process in the case of three-layer, four-layer, . . . N-layer metal wiring.

また第2の実施例では、第l層のi−Si配線の表面を
覆うのにCVD法によるタングステン膜の選択或長法を
用いたが、モリブデン(Mo)膜を用いでもよいし、A
Q−Si配線に適当な前処理を行なった後に無電解メッ
キを行ない,例えば亜鉛(Zn)等を被膜させても良い
In addition, in the second embodiment, a CVD method was used to select or lengthen the tungsten film to cover the surface of the i-Si wiring in the first layer, but a molybdenum (Mo) film may also be used.
After the Q-Si wiring is subjected to appropriate pretreatment, electroless plating may be performed to coat it with, for example, zinc (Zn).

さらに亜鉛の上に烈電解メッキによりニッケル(Nj)
を被膜させても良い。
Furthermore, nickel (Nj) is applied by electrolytic plating on top of zinc.
It may be coated with.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、配線スペースの絶縁膜上
のみ選択的にシリコン酸化膜を析出堆積して配線パター
ン間を埋めているため、層間絶縁膜を容易に平坦化でき
、その結果、金属配線の段差をなくすことができ、配線
の段差が原因となる製品の歩留り低下を著しく改善でき
る。
As explained above, in the present invention, the silicon oxide film is selectively deposited only on the insulating film in the wiring space to fill the spaces between the wiring patterns, so the interlayer insulating film can be easily flattened, and as a result, the interlayer insulating film can be easily flattened. It is possible to eliminate the level difference in the wiring, and it is possible to significantly improve the reduction in product yield caused by the level difference in the wiring.

又、本発明は、金属配線間の層間絶縁膜を低温で形或で
きるので、金属配線のヒロツク発生を防止でき、配線の
信頼性,歩留りを向上させる。
Further, since the present invention can form an interlayer insulating film between metal wirings at a low temperature, it is possible to prevent the occurrence of hillocks in the metal wirings, thereby improving the reliability and yield of the wirings.

又、本発明によれば、多層配線の層間膜平坦化にレジス
トを用いたエッチパンク法を用いる必要がなく、工程を
著しく簡単にすることができ、製造工程が短縮する。
Further, according to the present invention, there is no need to use an etch-puncture method using a resist to planarize the interlayer film of multilayer wiring, and the process can be significantly simplified and the manufacturing process can be shortened.

又、本発明の第2の発明の第工の金属として比較的エッ
チングの容易な材料であるAQ−S」を用いて、微細な
配線を形或し、その」二面及び側面を第2の金属により
被覆した構造のものを低温で形成した絶縁膜で覆う事に
よりエレクトロ・マイグレーションや熱履歴により発生
するボイドに対する耐性を高くする事ができる。
In addition, AQ-S, which is a material that is relatively easy to etch, is used as the first metal of the second invention of the present invention to form fine wiring, and the second and side surfaces of the metal are By covering a metal-coated structure with an insulating film formed at a low temperature, it is possible to increase the resistance to voids generated by electromigration and thermal history.

又、リングラフィで決まる第工の金属の配線の配線幅や
スペースにとらわれず、第2の金属の膜を用いて第1の
金属の配線を被膜できるため配線抵抗を効果的に減らす
事が可能である。
In addition, it is possible to effectively reduce wiring resistance because the first metal wiring can be coated with the second metal film, regardless of the wiring width and space of the first metal wiring determined by phosphorography. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(.)〜(c)は、本発明の第lの実施例を説明
するための工程断面図、第2図(a)〜(c)は、本発
明の第2の実施例を説明するための工程断面図および第
3図(a)〜(c)は、従来技術を説明するための工程
断面図である。 II, 101  半導体基板 12, 1.02・下
層配線13, 1.7, 103, 105, 107
・・層間絶縁膜+4. 1.04・第1層目金属配線 15・・・第2の金属膜 l6・析出シリコン酸化膜1
1 1.8, 108・・・第2層目金属配線一12
FIGS. 1(.) to (c) are process sectional views for explaining the first embodiment of the present invention, and FIGS. 2(a) to (c) are process sectional views for explaining the second embodiment of the present invention. A process sectional view for explaining the process and FIGS. 3(a) to 3(c) are process sectional views for explaining the prior art. II, 101 Semiconductor substrate 12, 1.02・Lower wiring 13, 1.7, 103, 105, 107
...Interlayer insulating film +4. 1.04・First layer metal wiring 15...Second metal film l6・Precipitated silicon oxide film 1
1 1.8, 108...Second layer metal wiring -12

Claims (2)

【特許請求の範囲】[Claims] (1)半導体装置の配線形成工程において、所望の配線
接続孔を有した絶縁膜上に金属の所望のパターンの配線
を形成する工程と、前記絶縁膜上にのみシリコン酸化膜
をシリカ過飽和溶液中から析出堆積させて前記金属の配
線の所望のパターン間を埋めることにより、前記シリコ
ン酸化膜と金属の配線とによって形成される表面を平坦
化する工程とを備えたことを特徴とする半導体装置の製
造方法。
(1) In the wiring formation process of a semiconductor device, there is a step of forming a desired metal wiring pattern on an insulating film having a desired wiring connection hole, and a step of forming a silicon oxide film only on the insulating film in a silica supersaturated solution. a step of flattening the surface formed by the silicon oxide film and the metal wiring by depositing the silicon oxide film and filling the spaces between the desired patterns of the metal wiring. Production method.
(2)半導体装置の配線形成工程において、所望の配線
接続孔を有した絶縁膜上に第1の金属の所望のパターン
の配線を形成する工程と、該配線の上面及び側面に第2
の金属の膜形成を行なう工程と、前記層間絶縁膜上にの
みシリコン酸化膜をシリカ過飽和溶液中から析出堆積さ
せて前記第1の金属の配線の所望のパターン間を埋める
ことにより、前記シリコン酸化膜と第1の金属の配線の
上面、側面を覆った第2の金属の膜とによって形成され
る表面を平坦化する工程とを備えたことを特徴とする半
導体装置の製造方法。
(2) In the wiring formation process of a semiconductor device, a process of forming a wiring of a desired pattern of a first metal on an insulating film having a desired wiring connection hole, and a process of forming a wiring of a desired pattern of a first metal on the top and side surfaces of the wiring.
forming a metal film, and depositing a silicon oxide film from a silica supersaturated solution only on the interlayer insulating film to fill the spaces between the desired patterns of the first metal wiring. A method for manufacturing a semiconductor device, comprising the step of flattening a surface formed by the film and a second metal film covering the top and side surfaces of the first metal wiring.
JP15473489A 1989-06-19 1989-06-19 Manufacture of semiconductor device Pending JPH0321043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15473489A JPH0321043A (en) 1989-06-19 1989-06-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15473489A JPH0321043A (en) 1989-06-19 1989-06-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0321043A true JPH0321043A (en) 1991-01-29

Family

ID=15590769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15473489A Pending JPH0321043A (en) 1989-06-19 1989-06-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0321043A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175635A (en) * 1989-12-04 1991-07-30 Nec Corp Multilayered interconnection structure of semiconductor device
US5376176A (en) * 1992-01-08 1994-12-27 Nec Corporation Silicon oxide film growing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175635A (en) * 1989-12-04 1991-07-30 Nec Corp Multilayered interconnection structure of semiconductor device
US5376176A (en) * 1992-01-08 1994-12-27 Nec Corporation Silicon oxide film growing apparatus

Similar Documents

Publication Publication Date Title
US6503830B2 (en) Method of manufacturing a semiconductor device
US8956972B2 (en) Method for manufacturing semiconductor thick metal structure
JPH0682759B2 (en) Method of forming conductive stud
KR0185230B1 (en) Metal interconnection and semiconductor device
KR100499557B1 (en) method for fabricating the wire of semiconductor device
US20030170975A1 (en) Method for forming a metal extrusion free via
JPH0321043A (en) Manufacture of semiconductor device
KR100495856B1 (en) Copper metal wiring formation method of semiconductor device
JPH07135186A (en) Manufacture of semiconductor device
JPH03244126A (en) Manufacture of semiconductor device
KR100286253B1 (en) Selective deposit method of metal thin film using n2 plasma and it's application to multi-level metal interconnection
KR100475529B1 (en) Method for forming a diffusion barrier layer and method for forming a metal line using the same in semiconductor device
CN105826206B (en) It is used to form the method that storehouse metallic contact is electrically connected with aluminum steel in semiconductor crystal wafer
US6440841B2 (en) Method of fabricating vias
JPS58162051A (en) Semiconductor device and manufacture thereof
KR20040029865A (en) Semiconductor device and fabrication method thereof
KR100826784B1 (en) Fabricating method of metal line in semiconductor device
US6309963B1 (en) Method for manufacturing semiconductor device
JPS6113375B2 (en)
KR20040009789A (en) Semiconductor device and fabrication method thereof
JPH0590425A (en) Formation of multilayer wiring
JPH01272139A (en) Forming method of multilayer interconnection
KR100253338B1 (en) Method for forming wire of semiconductor device
KR101005739B1 (en) Method for forming metal wires in a semiconductor device
JPH0453233A (en) Manufacture of semiconductor device