JPH03208549A - Polishing method for structure observation test piece and polishing gage - Google Patents

Polishing method for structure observation test piece and polishing gage

Info

Publication number
JPH03208549A
JPH03208549A JP471590A JP471590A JPH03208549A JP H03208549 A JPH03208549 A JP H03208549A JP 471590 A JP471590 A JP 471590A JP 471590 A JP471590 A JP 471590A JP H03208549 A JPH03208549 A JP H03208549A
Authority
JP
Japan
Prior art keywords
polishing
polished
test piece
observation test
gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP471590A
Other languages
Japanese (ja)
Inventor
Hideji Yoshimuta
吉牟田 秀治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP471590A priority Critical patent/JPH03208549A/en
Publication of JPH03208549A publication Critical patent/JPH03208549A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To know a polishing quantity correctly and easily even while under polishing, by measuring the area or side length of a polishing gage exposed on the face to be polished of the material to be polished and polishing while measuring the polishing quantity of a structure observation test piece. CONSTITUTION:The area or side length of a polishing gage 2 exposed on the face to be polished of the material 4 to be polished is measured by using the material 4 to be polished which is made by imbedding the polishing gage 2 and a structure observation test piece 1 into a resin hardening body 3. Thus, polishing is performed while measuring the polishing quantity of the structure observation test piece.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は組縄観察試験片の研磨方法および研磨用ゲーシ
に関し,さらに詳しく言うと、たとえば核燃料分野に用
いられる金属ウランや酸化ウランの焼結体などの組織観
察試験片について正確かつ容易に所定量の研磨を行なう
ことのできる組織観察試験片の研磨方法と、たとえば組
織観察に必要な面の位置か定められている場合,あるい
は試論片端部からの研磨距離か定められている場合等に
、正確かつ容易に研磨距離等を知ることのできる研磨用
ゲーシとに関する. [従来技術および発明か解決しようとする課1i]たと
えば核燃料分野においては、核燃料材料の機械的性質、
物理的性質,化学的性質等の諸性質を知るために,金属
ウランや酸化ウランの焼結体などの核燃料材料の微視的
な組織観察を行なうことか重要である。また、他の分野
においても、金属組織,溶接部、接着部等の組縄観察を
行なう必要の生しる場合かある。 この微視的な組織Ill察の方法としては、検体てある
試料から切り出した試験片の取扱いを容易化するために
、試験片を合威樹脂に埋込んでなる埋込み試験片を調製
し、この埋込み試験片を鏡面状態に研磨し,その後,薬
品を用いて腐食させることにより試験片の組織を現出さ
せて、この組織について,たとえば光学顕微鏡や電子顕
微鏡で観察する方法か、一般に採用されている. そして、たとえば第4図(イ)および同図(ロ)に示し
たように、樹脂硬化体A中に埋込んだ試験片Bの溶接部
Cのルート間隔文の中央部CかII察面に定められた場
合、従来の方法では、試験片Bを埋込んた樹脂硬化体A
のはしめの高さと研磨中の高さとから、研磨距離Lを求
めなければならない。 しかしながら,この方法によると、樹脂硬化体Aにおけ
る被研磨面およびそれに対向する面か平行ではなかった
り、樹脂硬化体A中に埋込まれた試験片Bの中心軸と樹
脂硬化体Aの被研磨面とか垂直になるように研磨するこ
とか困難てあったりするので、研磨距離を正確に知るこ
とは非常に困鯉てあり,したかって、試験片Bについて
正確に所定量の研磨を行なうことか困難てある。 本発明は,前記の事情に基づいてなされたものてある. 本発明の目的は、組織観察試験片について正確かつ容易
に所定量の研磨を行なうことのできる組織111K試験
片の研磨方法.および正確かつ容易に研磨距離等を知る
ことのてきる研磨用ゲーシを提供することにある. [課題を解決するための手段コ 前記目的を達成するために本発明渚が鋭意検討を重ねた
結果,特定の研磨用ゲージを組織観東試拳片と共に樹脂
硬化体中に埋込んでなる被研磨材を用いる特定の方法に
よれば,たとえば核燃料分野に用いられる金属ウランや
酸化ウランの焼結体などの組1111M察試験片につい
て正確かつ容易に所定量の研磨を行ない得ること、およ
びこの特定の研磨用ゲーシにより,たとえば組織観察に
必要な面の位置か定められている場合、あるいは試験片
端部からの研磨距離が定められている場合等に,正確か
つ容易に研磨距離等を知り得ることを見い出して,本発
明に到達した。 請求項lの発明の構威は、研磨用ゲージと組織Ii寮試
験片とを樹脂硬化体中に埋込んでなる被研磨材を用い、
前記被研磨材の被研磨面に露出した前記研磨用ゲージの
面積または辺の長さを測定することにより、前記組織観
察試験片の研磨量を測定しつつ研磨することを特徴とす
る組織観V!試験片の研磨方法であり, 請求項2の発明の構成は、組織観察試験片と共に樹脂硬
化体中に埋込んで使用可能であることを特徴とする研磨
用ゲージである。 以下に、本発明の組織a察試験片の研磨方法と研磨用ゲ
ージとについて併せて詳述する.本発明の方法において
は,たとえば第1図に示すように、mma察試験片lと
研磨用ゲーシ2とを樹脂硬化体3中に埋込んでなる被研
磨材4を用いる。 被研磨材を形成する樹脂硬化体は、たとえばエボキシ樹
脂,ジアリルフタレート樹脂、フェノール捌脂、不飽和
ポリエステル樹脂、ボリイミトなどの熱碩化型樹脂また
は反応硬化型樹脂を硬化させてなるものであり、その形
威材料は硬化型の樹脂であれば特に制限はない. 本発明の方法において重要な点の一つは、前記硬化樹脂
中に組織観察試験片とともに前記研磨用ゲージを埋込む
ことにある. 使用に供される前記研磨用ゲージは、本発明の方法によ
って、たとえば前記被研磨材の被研磨面または前記組織
観察試験片の観察面に現出した面の面積あるいは辺の長
さを測定することにより.組織観察試論片の研磨量を検
知可能であるとともに、前記樹脂硬化体および前記組織
観察試験片とともに研磨可能な部材である。したがって
、前記研磨用ゲーシの形状については、前述の機能を発
揮し得る形状であれば、たとえば柱状、錐状、板状等の
いずれてもよく.特に制限はない.また、前記研磨用ゲ
ージの寸法は,本発明の方法によって研磨を行なう前記
組I&観察試験片の寸法に応して、適宜に選定すればよ
い。 このような作用乃至機能を有する前記研磨用ゲーシの形
威材料は、たとえば金属、プラスチック、セラミックな
どの中から前記組織観察試験片および前述の硬化型樹脂
の材質や性質に応して適宜に選択することかできる.た
だし、前記研磨用ゲーシの形成材料の選定においては、
■前記樹脂硬化体の形威に用いられる前述の硬化型樹脂
と反応しないこと,■前記樹脂硬化体か熱硬化型樹脂か
らなる場合には、前記被研磨材の成形に、通常、温間プ
レスかなされるので、その温度および圧力に耐え得るこ
とかできて、ほとんど変形かないこと,■前記組織観察
試験片よりも軟らかいことか好ましいこと,■研磨に用
いられる砥石かダイヤモンドからなる場合に、ダイヤモ
ンドの摩耗を少なくするためには、鉄系の材料よりも非
鉄系あるいは非金属系の材料か好ましいこと、等の点に
留意するのか望ましい. 第2図(イ)〜(二)に前記研磨用ゲーシの一例を示す
。 たとえば第2図(イ)、同図(ロ)に示したのは、それ
ぞれ研磨距離かaと定められた場合に好適に用いること
のてきる研磨用ゲージ2の一例である。 この研磨用ゲージを,前記被研磨材の研磨する側の端面
において、前記組織観察試験片の端面と研磨用ゲージの
端面とか一致するように前記樹脂硬化体中に埋込み、こ
の被研磨材を研磨していけば、第2図(イ)、同図(ロ
)に示したように、被研磨面に現出した研磨用ゲージの
面積か変化するのて、研磨距離aを、正確にかつ容易に
知ることか可能てある。 また、第2図(ハ)、同図(二〉に示したのは,それぞ
れ研磨距離を無段階に連続して知るのに好適に用いるこ
とのできる研磨用ゲージの一例である。 すなわち,この研磨用ゲーシを、前記組織観察試験片と
ともに前記樹脂硬化体中に埋込んでなる前記被研磨材を
研磨していけば、被研磨面に現出した研磨用ゲージの辺
の長さか無段階に連続して変化するのて、この変化量か
ら前記被研磨材、すなわち前記組縄観寮試験片の研磨量
を、正確にかつ容易に知ることかてきる. そして,本発明の方法においては、前記樹脂硬化体中に
複数の前記研磨用ゲージを埋込むことか好ましい. すなわち、本発明の方法においては,同時に研磨される
複数の前記研磨用ゲージを用いれば、研磨工程中で、そ
れぞれの研磨用ゲージにつき前記被研磨材の被研磨面に
現出した前記研磨用ゲージの面積あるいは辺の長さを測
定することにより,前記組織観察試験片の中心軸と被研
磨面との垂直度を、容易にかつ正確に知ることかできる
のて、研磨工程中に,この垂直度の補正が可能になるか
らてある. 前記研磨用ゲーシとともに前記樹脂硬化体中に埋込まれ
る前記組織観寮試験片については、特に制限はなく、た
とえば金属ウラン、酸化ウランの焼結体等の金属片や各
種セラミックス等について、本発明の研磨方法を好適に
適用することかてきる. 本発明の方法において、前記被研磨材の研磨処理に用い
ることのできる研磨材については、特に制限はなく、た
とえば従来より用いられている種々の砥石の中から前記
組織l!察試験片の性質等に応して適宜に選択して使用
すればよい.いずれにせよ、研磨処理においては、前記
被研磨材の被研磨面に現出する前記研磨用ゲージの面積
あるいは辺の長さを測定することにより、前記組織観察
試験片の研磨量を正確にかつ容易に、しかも連続的に認
識することが可能である.その測定方法としては、たと
えば光学的な測定方法を好適に用いることかできる。具
体的には、フォトトランジスターを用いて測定面からの
反射光量の強弱を測定する方法、ブラウン管画面上の画
像処理により測定する方法等か挙げられる。また,この
ような光学的な測定方法に限らず,a械的な測定方法を
用いることも可能てある.本発明の方法により、研磨処
理(粗研磨、精密研磨等)を行なった前記組縄観察試験
片は、その後、たとえば化学薬品を用いて組織を現出さ
せた状態て、光学顕微鏡,電子顕微鏡等による観察に供
することかできる。
[Industrial Field of Application] The present invention relates to a polishing method and a polishing gage for observation test pieces, and more specifically, the present invention relates to structure observation test pieces such as sintered bodies of metallic uranium and uranium oxide used in the nuclear fuel field. A polishing method for a specimen for microstructural observation that can accurately and easily polish a predetermined amount of polishing material, and a method for polishing specimens for microstructural observation, for example, when the position of the surface required for microstructural observation is determined, or when the polishing distance from the edge of the specimen is determined. This invention relates to a polishing gauge that allows you to accurately and easily determine the polishing distance, etc. [Prior Art and Invention Problem 1i] For example, in the field of nuclear fuel, mechanical properties of nuclear fuel materials,
In order to understand various properties such as physical and chemical properties, it is important to observe the microscopic structure of nuclear fuel materials such as sintered bodies of uranium metal and uranium oxide. In addition, in other fields, there are cases where it is necessary to observe the metal structure, welded parts, bonded parts, etc. In order to facilitate the handling of a test piece cut out from a sample, a method for microscopic microstructural observation is to prepare an embedded test piece by embedding the test piece in a resin. The embedded test piece is polished to a mirror-like state, then corroded using chemicals to reveal the structure of the test piece, and this structure is observed using, for example, an optical microscope or an electron microscope. There is. For example, as shown in FIGS. 4(a) and 4(b), the center part C of the root spacing of the welded part C of the test piece B embedded in the cured resin body A is In the specified case, in the conventional method, the cured resin body A in which the test piece B is embedded is
The polishing distance L must be determined from the height of the stop and the height during polishing. However, according to this method, the surface to be polished of the cured resin body A and the surface opposite thereto are not parallel to each other, or the central axis of the test piece B embedded in the cured resin body A and the surface to be polished of the cured resin body A are not parallel to each other. Since it is sometimes difficult to polish the surface perpendicularly, it is extremely difficult to know the polishing distance accurately. It's difficult. The present invention has been made based on the above circumstances. An object of the present invention is to provide a method for polishing a 111K texture specimen, which can accurately and easily polish a predetermined amount of the texture observation specimen. Another object of the present invention is to provide a polishing gauge that allows accurate and easy determination of polishing distance, etc. [Means for solving the problem] In order to achieve the above-mentioned object, the present invention was developed by Nagisa, who has made extensive studies and developed a coating in which a specific polishing gauge is embedded in a hardened resin body together with a texture-viewing test piece. According to a specific method using an abrasive material, it is possible to accurately and easily abrade a predetermined amount of a 1111M observation specimen, such as a sintered body of metallic uranium or uranium oxide used in the nuclear fuel field, and this specific method. For example, when the position of a surface necessary for microstructural observation is determined by the polishing gauge, or when the polishing distance from the end of the specimen is determined, the polishing distance etc. can be accurately and easily determined. The present invention was achieved by discovering the following. The structure of the invention of claim 1 uses a material to be polished in which a polishing gauge and a texture Ii test piece are embedded in a cured resin body,
Structure observation V characterized in that polishing is performed while measuring the amount of polishing of the structure observation test piece by measuring the area or length of the side of the polishing gauge exposed on the surface to be polished of the material to be polished. ! This is a method for polishing a test piece, and the invention according to claim 2 is a polishing gauge that can be used by being embedded in a cured resin body together with a tissue observation test piece. Below, the method for polishing a specimen for microstructural analysis of the present invention and the polishing gauge will be described in detail. In the method of the present invention, for example, as shown in FIG. 1, a material to be polished 4 is used, which is formed by embedding an mma test piece 1 and a polishing gauge 2 in a cured resin body 3. The cured resin that forms the material to be polished is made by curing a thermally curing type resin or a reaction curing type resin, such as epoxy resin, diallyl phthalate resin, phenol resin, unsaturated polyester resin, and polyimite. There are no particular restrictions on the material as long as it is a hardening resin. One of the important points in the method of the present invention is to embed the polishing gauge together with the microstructure observation specimen in the cured resin. The polishing gauge to be used measures, for example, the area or length of the side of the surface appearing on the polished surface of the material to be polished or the observation surface of the structure observation test piece, according to the method of the present invention. By the way. The member is capable of detecting the amount of polishing of the microstructure observation specimen and can be polished together with the cured resin body and the microstructure observation specimen. Therefore, the shape of the polishing gauge may be any shape, such as a column, a cone, or a plate, as long as it can perform the above-mentioned function. There are no particular restrictions. Further, the dimensions of the polishing gauge may be appropriately selected depending on the dimensions of the Group I and observation test piece to be polished by the method of the present invention. The shape material of the polishing gate having such an action or function is appropriately selected from among metals, plastics, ceramics, etc., depending on the material and properties of the microstructure observation test piece and the hardening resin. I can do something. However, in selecting the material for forming the polishing gate,
■It does not react with the above-mentioned hardening resin used for the shape of the cured resin, and ■When the cured resin is made of a thermosetting resin, warm press is usually used to form the material to be polished. (1) It must be softer than the above-mentioned microstructure observation specimen, and (2) It must be softer than the above-mentioned microstructure observation specimen. In order to reduce wear, it is desirable to pay attention to the following points: non-ferrous or non-metallic materials are preferable to ferrous materials. An example of the polishing gate is shown in FIGS. 2(A) to 2(2). For example, FIGS. 2A and 2B show examples of polishing gauges 2 that can be suitably used when the polishing distance is determined to be a. This polishing gauge is embedded in the cured resin body so that the end face of the polishing side of the material to be polished matches the end face of the microstructure observation test piece and the end face of the polishing gauge, and the material to be polished is polished. As shown in Figure 2 (A) and Figure 2 (B), as the area of the polishing gauge appearing on the surface to be polished changes, the polishing distance a can be adjusted accurately and easily. Is it possible to know? Furthermore, Figures 2 (c) and 2 (2) show examples of polishing gauges that can be suitably used to continuously and steplessly determine the polishing distance. By polishing the material to be polished in which the polishing gauge is embedded in the cured resin together with the microstructure observation test piece, the length of the side of the polishing gauge appearing on the surface to be polished becomes stepless. Since it changes continuously, it is possible to accurately and easily know the amount of polishing of the material to be polished, that is, the Kuminowa Kanryo test piece, from this amount of change.In the method of the present invention, It is preferable to embed a plurality of the polishing gauges in the cured resin body. That is, in the method of the present invention, if a plurality of polishing gauges are used that are polished at the same time, each polishing gauge can be polished during the polishing process. By measuring the area or length of the side of the polishing gauge that appears on the polished surface of the material to be polished using the polishing gauge, the perpendicularity between the central axis of the microstructure observation test piece and the polished surface can be determined. This is because the perpendicularity can be easily and accurately determined, making it possible to correct the perpendicularity during the polishing process. There are no particular restrictions on the polishing method of the present invention, and the polishing method of the present invention can be suitably applied to metal pieces such as sintered bodies of uranium metal and uranium oxide, and various ceramics. There are no particular restrictions on the abrasive that can be used for polishing the material to be polished, and for example, it can be selected from among various conventionally used grindstones depending on the properties of the microstructure examination specimen. In any case, in the polishing process, the structure observation test is performed by measuring the area or side length of the polishing gauge appearing on the polished surface of the polished material. It is possible to accurately, easily, and continuously recognize the amount of polishing of a piece.For example, an optical measurement method can be suitably used.Specifically, a phototransistor Examples include a method of measuring the intensity of the amount of reflected light from a measuring surface using It is also possible to use a method.The above-mentioned braided rope observation test piece that has been subjected to polishing treatment (rough polishing, precision polishing, etc.) according to the method of the present invention is then subjected to, for example, a chemical treatment to reveal the structure. Depending on the condition, it can be subjected to observation using an optical microscope, an electron microscope, etc.

【実施例] TIGm接を行なったステンレス (SIIS 304
)からなるとともに、第3図(イ)および同図(ロ)に
示すように、溶按部IrJのルート間隔文の中央かII
I寮面に定められた組織観察試験片lを、フッソ樹脂か
らなる2個の研磨用ゲージとともに、それぞれの端面か
一致するようにダイス内に置き.フェノール樹脂粉末を
充壕してから温間プレスを行なって、第4図(イ)に示
すように、組織a察試験片lと2個の研磨用ゲーシ2と
を樹脂硬化体3中に埋込んでなり、研磨距離がしてある
被研磨材4を作製した。なお、この被研磨材4において
研磨距離かLに達したことは、それぞれの研磨用ゲーシ
2の現出面における辺の長さかL。になることにより知
ることかてきる。 この被研磨材4について,ダイヤモントディスクを用い
て研磨を行ないつつ、その被研磨面に現出した2個の研
磨用ゲーシ2のそれぞれの辺の長さを測定し、第4[A
(ロ)に示すように、その長さか同時にLoになった時
点で研磨を停止した.2個の研磨用ゲージ2のそれぞれ
の辺の長さか同時にL0になったことから,組織lI東
試験片lの被研磨面と中心軸との垂直度か保たれており
、したかって、この研磨処理により被研磨材(の被研磨
面に現出した組轟観察試験片lの面は所定の観察面であ
ることを確認した. 【発明の効果] 本発明によると、 (】)  研磨用ゲーシと組織観察試験片とを樹脂硬化
体中に埋込んでなる被研磨材を用い、組織観察試験片と
研磨用ゲーシとを同時に研磨するので、被研磨材の被研
磨面に現出した研磨用ゲーシの面積または辺の長さを測
定することCより、研磨中であっても研磨量を正確かつ
容易に知ることか可能であり、組織観察試験片における
所定の観察面を確実に現出させることかてきるという利
点を有する工業的に有用な組織観察試験片の研磨方法を
提供することかてきるとともに、 (2)  このような利点を有する組織観察試験片の研
磨方法において好適に使用することができて,工業的に
膚用な研磨用ゲージを提供することかできる。
[Example] Stainless steel with TIGm welding (SIIS 304
), and as shown in Figure 3 (a) and (b), the center or II of the root interval sentence of the melting part IrJ
Place the microstructure observation test piece L, which is set on the surface of I, along with two polishing gauges made of fluorocarbon resin, in a die so that their end surfaces are aligned. After filling the trench with phenol resin powder, warm pressing is performed to embed the tissue inspection specimen L and two polishing gauges 2 in the cured resin body 3, as shown in FIG. 4(A). A material to be polished 4 was prepared, which was complicated and had a certain polishing distance. Note that the fact that the polishing distance L has been reached in this material to be polished 4 means that the length of the side of each polishing gauge 2 on the exposed surface is L. You can come to know by becoming. While polishing the material 4 to be polished using a diamond disk, the length of each side of the two polishing gauges 2 that appeared on the surface to be polished was measured.
As shown in (b), polishing was stopped when the length reached Lo at the same time. Since the length of each side of the two polishing gauges 2 became L0 at the same time, the perpendicularity between the surface to be polished and the central axis of the texture lI east specimen l was maintained, and therefore, this polishing It was confirmed that the surface of the assembly observation test piece l that appeared on the polished surface of the material to be polished by the treatment was the predetermined observation surface. [Effects of the Invention] According to the present invention, ( ) Since the texture observation test piece and the polishing gauge are polished at the same time using a material to be polished in which the texture observation test piece and the texture observation test piece are embedded in a hardened resin, the polishing material that appears on the polished surface of the polishing material is polished at the same time. By measuring the area or length of the sides of the mesh, it is possible to accurately and easily know the amount of polishing even during polishing, and it is possible to reliably reveal the predetermined observation surface in the microstructure observation specimen. The present invention provides an industrially useful method for polishing a specimen for microstructural observation, which has the advantage of reducing the number of microstructures; Therefore, it is possible to provide an industrially suitable abrasive gauge for skin.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法における被研磨材の一例を示す断
面説明図、第2図(イ)〜(二)はそれぞれ本発明の研
磨用ゲージの一例を示す説明図、第3図(イ)は本発明
の方法における被研磨材の他の一例を示す平面図、同図
(ロ)はその垂直断面図、第4図(イ)は従来の方法に
おける被研磨材の一例を示す断面説明図、同図(ロ)は
その垂直断面図てある。 1・・・組織観察試験片、2・・・研磨用ゲーシ、3・
・・樹脂硬化体、4・・・被研磨材(イ) 第1図 第2図 (D) (ハ) (二)
FIG. 1 is an explanatory cross-sectional view showing an example of a material to be polished in the method of the present invention, FIGS. ) is a plan view showing another example of the material to be polished in the method of the present invention, FIG. 4(b) is a vertical sectional view thereof, and FIG. Figures 1 and 2 (b) are vertical cross-sectional views. 1...Tissue observation test piece, 2...Polishing gauge, 3.
...Resin cured body, 4... Material to be polished (A) Figure 1 Figure 2 (D) (C) (2)

Claims (2)

【特許請求の範囲】[Claims] (1)研磨用ゲージと組織観察試験片とを樹脂硬化体中
に埋込んでなる被研磨材を用い、前記被研磨材の被研磨
面に露出した前記研磨用ゲージの面積または辺の長さを
測定することにより、前記組織観察試験片の研磨量を測
定しつつ研磨することを特徴とする組織観察試験片の研
磨方法。
(1) Using a material to be polished in which a polishing gauge and a microstructure observation test piece are embedded in a cured resin body, the area or length of the side of the polishing gauge exposed on the polished surface of the material to be polished. A method for polishing a microstructure observation test piece, comprising: polishing the microstructure observation test piece while measuring the polishing amount of the microstructure observation test piece.
(2)組織観察試験片と共に樹脂硬化体中に埋込んで使
用可能であることを特徴とする研磨用ゲージ。
(2) A polishing gauge characterized in that it can be used by being embedded in a cured resin body together with a tissue observation test piece.
JP471590A 1990-01-12 1990-01-12 Polishing method for structure observation test piece and polishing gage Pending JPH03208549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP471590A JPH03208549A (en) 1990-01-12 1990-01-12 Polishing method for structure observation test piece and polishing gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP471590A JPH03208549A (en) 1990-01-12 1990-01-12 Polishing method for structure observation test piece and polishing gage

Publications (1)

Publication Number Publication Date
JPH03208549A true JPH03208549A (en) 1991-09-11

Family

ID=11591581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP471590A Pending JPH03208549A (en) 1990-01-12 1990-01-12 Polishing method for structure observation test piece and polishing gage

Country Status (1)

Country Link
JP (1) JPH03208549A (en)

Similar Documents

Publication Publication Date Title
US10961614B1 (en) Method of modifying surface biocompatibility of a titanium medical implant
US5303574A (en) Evaluation of the extent of wear of articles
Mandell et al. A microdebonding test for in situ assessment of fibre/matrix bond strength in composite materials
Yu et al. An elastic-plastic indentation model and its solutions
Kane et al. Characterization of solid surfaces
Vander Voort Microindentation hardness testing
Ma et al. Measurement of residual stresses in sapphire fiber composites using optical fluorescence
CN103713002B (en) A kind of method measuring auto-exhaust catalyst coating thickness
Kang et al. Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests
Yoshida et al. Evaluation of sinking-in and cracking behavior of soda-lime glass under varying angle of trigonal pyramid indenter
JPH03208549A (en) Polishing method for structure observation test piece and polishing gage
Chandler Introduction to hardness testing
Revankar Introduction to hardness testing
Duncan et al. Measurement Good Practice Guide No. 72
George et al. Low-load Vickers microindentation
Dareh Baghi et al. Nano-mechanical characterization of SLM-fabricated Ti6Al4V alloy: Etching and precision
Fujisaki et al. Observation of three‐dimensional internal structure of steel materials by means of serial sectioning with ultrasonic elliptical vibration cutting
JP3135143U (en) Material testing platen, material testing machine and hardness tester
Barros et al. Candida albicans adhesion on 3D-printed and thermopolymerizable polymethyl methacrylate for removable prostheses
US2361441A (en) Hardness testing indenter
Scott et al. Principles and Practice of Metallography
CN107907434B (en) Micro-nano heterogeneous material interface phase morphology judgment method
Carrizo Application of Metallographic Techniques to Studies in Ancient Metals
RU2284499C1 (en) Method of determining rigidity of wedge-shaped tool
RU18309U1 (en) DEFECTOSCOPY MEASURES