JPH03204977A - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor

Info

Publication number
JPH03204977A
JPH03204977A JP1337346A JP33734689A JPH03204977A JP H03204977 A JPH03204977 A JP H03204977A JP 1337346 A JP1337346 A JP 1337346A JP 33734689 A JP33734689 A JP 33734689A JP H03204977 A JPH03204977 A JP H03204977A
Authority
JP
Japan
Prior art keywords
acceleration
acceleration sensor
mass
diffused
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1337346A
Other languages
Japanese (ja)
Inventor
Michiaki Yamagata
通昭 山県
Kazuhiro Takahashi
和宏 高橋
Toshio Saito
俊夫 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1337346A priority Critical patent/JPH03204977A/en
Publication of JPH03204977A publication Critical patent/JPH03204977A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To obtain a semiconductor acceleration sensor which is able to detect acceleration in parallel with a board by a method wherein a wiring pattern section formed on the surface of a mass section so as to connect the ends of a diffusion resistive element formed on each flexible section on a mass section side is provided. CONSTITUTION:In a semiconductor acceleration sensor, a part of a silicon semiconductor substrate 10 is removed to form two parallel cantilever-type flexible parts 12 and 13 which support a mass section 11, and the flexible parts 12 and 13 are rigid to acceleration in the directions of X and Z axes and flexible to acceleration in the direction of Y axis, so that diffusion resistive elements 14 and 15 are formed in the same direction along the direction of the Y axis. By this setup, when the flexible parts 12 and 13 are deflected, the diffusion resistors 14 and 15 formed on the flexible parts 14 and 15 respectively are changed to decrease or increase in resistance in the same polarity, so that acceleration in the direction of Y axis can be obtained basing on the quantity of the resistance change of these series resistors. In result, a semiconductor acceleration sensor, which is able to detect acceleration in a direction parallel to a board and comparatively simple in constitution, can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、半導体加速度センサに関するものであり、詳
しくは、基板と平行な方向の加速度の検出に適しなセン
サに間するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a semiconductor acceleration sensor, and more specifically, to a sensor suitable for detecting acceleration in a direction parallel to a substrate.

〈従来の技術〉 第7図は従来の半導体加速度センサの一例を示ず構成説
明図である。図において、半導体基板1の一部を除去す
ることにより、質量部2およびこの質量部2を支持する
1本の片持ち梁状のたわみ部3が形成されている。なお
、たわみ部3は肉厚か質量部2よつも薄くなるように裏
面か削られている。たわみ部3には拡散抵抗よりなるピ
エゾ抵抗素子4がコ字状に形成されている。ピエゾ抵抗
素子4の各端部は例えばアルミニウムよりなる配線パタ
ーン5を介してポンディングパッド6に接続されている
<Prior Art> FIG. 7 is a diagram illustrating the configuration of a conventional semiconductor acceleration sensor, without showing an example thereof. In the figure, by removing a portion of the semiconductor substrate 1, a mass portion 2 and a single cantilever-shaped flexible portion 3 that supports the mass portion 2 are formed. Note that the back surface of the flexible portion 3 is shaved so that the wall thickness is thinner than that of the mass portion 2. A piezoresistive element 4 made of a diffused resistor is formed in the bending portion 3 in a U-shape. Each end of the piezoresistive element 4 is connected to a bonding pad 6 via a wiring pattern 5 made of aluminum, for example.

〈発明が解決しようとする課題〉 しかし、このような構成によれば、Z軸方向の加速度は
検出できるものの、X、Y軸方向の加速度を検出するこ
とはできない。すなわち基板1やそのパターン面と平行
な方向の加速度を検出することができないので、同一基
板の一部ご除去することによつ、3軸方向め加速度セン
サを一体に形成することは難しい。したかって従来は第
7図のような加速度センサを個別に3個形成し、アルミ
の補遺体に位置決めするなどして3軸加速度センサそ製
作していた。このため3軸の位置決めか正確に行えない
という問題があった。
<Problems to be Solved by the Invention> However, with such a configuration, although acceleration in the Z-axis direction can be detected, acceleration in the X- and Y-axis directions cannot be detected. That is, since it is not possible to detect acceleration in a direction parallel to the substrate 1 or its pattern surface, it is difficult to integrally form an acceleration sensor in three axial directions by removing a portion of the same substrate. Therefore, in the past, a three-axis acceleration sensor was manufactured by individually forming three acceleration sensors as shown in FIG. 7 and positioning them on an aluminum support body. For this reason, there was a problem in that three-axis positioning could not be performed accurately.

本発明は、このような点に着目したものであり、その目
的は、基板と平行な方向の加速度が検出でさる半導体加
速度センサを提供することにある。
The present invention has focused on such points, and its purpose is to provide a semiconductor acceleration sensor that detects acceleration in a direction parallel to a substrate.

く課題を解決するための手段〉 本発明の半導体加速度センサは、 半導体基板ご部分的に除去することにより形成された質
量部およびこの質量部を支持する2本の平行な片持ち梁
状のたわみ部と、 これら各たわみ部の一部に非対称になるように形成され
た拡散抵抗素子と、 これら各たわみ部に形成された拡散抵抗素子の質量部側
の端部間を接続するように質量部の表面に形成された配
線パターン部、 とで構成されたことを特徴とする。
Means for Solving the Problems> The semiconductor acceleration sensor of the present invention includes a mass part formed by partially removing a semiconductor substrate, and two parallel cantilever-like deflections supporting this mass part. , a diffused resistance element formed asymmetrically in a part of each of these flexures, and a mass part connected between the end of the diffused resistance element formed in each of these flexures on the mass part side. A wiring pattern portion formed on the surface of the device.

さらに拡散抵抗素子を各たわみ部の同一符号の応力発生
部に形成してもよい。
Furthermore, a diffused resistance element may be formed in the stress generating portion of each bending portion having the same symbol.

く作用〉 平行に形成されている2本のたわみ部は、X。Effect〉 The two parallel flexures are X.

Z軸方向の加速度に対しては剛性を示すが基板と平行な
Y軸方向の加速度に対してはたわむことになる。
It exhibits rigidity in response to acceleration in the Z-axis direction, but bends in response to acceleration in the Y-axis direction parallel to the substrate.

これらたわみ部がたわむことにより各たわみ部に形成さ
れた拡散抵抗の抵抗値は同一極性方向に変化し、これら
直列抵抗の抵抗値の変化の大きさからY軸方向の加速度
を求めることができる。
As these flexible portions bend, the resistance values of the diffused resistors formed in each flexible portion change in the same polar direction, and the acceleration in the Y-axis direction can be determined from the magnitude of change in the resistance value of these series resistors.

〈実施例〉 以下、図面を用いて本発明の実施例を詳細に説明する。<Example> Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明に係る半導体加速度センサの第1の実
施例を示す構成斜視図である0図において、例えばシリ
コン半導体基板10の一部を除去することにより、質量
部11およびこの質量部11を支持する平行な2本の片
持ち梁状のたわみ部12.13が形成されている。なお
、これらたわみ部12.13の肉厚は質量部11と同じ
に保たれている。このような加工にあたっては、例えば
KOHのエツチングにより<100>面に垂直な厚みを
もつようにする。各たわみ部12.13の一部には非対
称になるように拡散抵抗素子14゜15が同一の工程で
形成されている。質量部11の表面には、これら各たわ
み部12.13に形成された拡散抵抗素子14.15の
質量部側の端部間を接続するようにアルミニウムなどの
配線パターン部16か形成されている。拡散抵抗素子1
4゜15のfl!1@には配線パターン16と同時にホ
ンティングパッド17.18が形成されている。これら
半導体基板10の残りの露出領域にはアイソレーション
のための拡散が行われている。
FIG. 1 is a perspective view of the configuration of a first embodiment of the semiconductor acceleration sensor according to the present invention. In FIG. Two parallel cantilever-like flexures 12 and 13 are formed to support the flexures 11 and 11. Note that the wall thicknesses of these flexible portions 12 and 13 are kept the same as that of the mass portion 11. In such processing, the thickness is made perpendicular to the <100> plane by, for example, KOH etching. Diffused resistance elements 14 and 15 are asymmetrically formed in a portion of each bending portion 12 and 13 in the same process. A wiring pattern portion 16 made of aluminum or the like is formed on the surface of the mass portion 11 so as to connect the ends of the diffused resistance elements 14.15 formed in each of these flexure portions 12.13 on the mass portion side. . Diffused resistance element 1
4°15 fl! Honing pads 17 and 18 are formed at the same time as the wiring pattern 16. The remaining exposed regions of the semiconductor substrate 10 are diffused for isolation.

このような構成において、2本のたわみ部12゜13は
、X、Z軸方向の加速度に対しては削性と示すか、Y軸
方向の加速度に対してはたわむことになる。ここで、各
たわみ部12.13の一部には非対称になるように、す
なわち、たわみ部12゜13のY軸方向に沿った同一方
向に寄せて拡散抵抗素子14.1.5か形成されている
。これにより、たわみ部12.13かたわむことにより
各たわみ部12.13に形成された拡散抵抗14.15
の抵抗値は同一極性方向に増減変化し、これら直列抵抗
の抵抗値の変化の大きさからY軸方向の加速度を求める
ことかできる。
In such a configuration, the two bending portions 12 and 13 exhibit machinability in response to acceleration in the X and Z axis directions, or bend in response to acceleration in the Y axis direction. Here, a diffused resistance element 14.1.5 is formed in a part of each bending part 12.13 so as to be asymmetrical, that is, in the same direction along the Y-axis direction of the bending part 12.13. ing. As a result, the diffused resistance 14.15 formed in each flexible portion 12.13 by bending the flexible portion 12.13
The resistance values of the resistors increase and decrease in the same polar direction, and the acceleration in the Y-axis direction can be determined from the magnitude of change in the resistance values of these series resistors.

第2図は、第1図の等価回路図である。各たわみ部12
.13に形成された拡散抵抗素子14゜15は配線パタ
ーン16を介して直列接続されることになり、これら直
列接続された拡散抵抗素子14.15の抵抗値はホンテ
ィングパッド17゜18間から測定することができる。
FIG. 2 is an equivalent circuit diagram of FIG. 1. Each deflection part 12
.. The diffused resistance elements 14 and 15 formed in 13 are connected in series via the wiring pattern 16, and the resistance values of these series-connected diffused resistance elements 14 and 15 are measured from between the mounting pads 17 and 18. can do.

このように構成される加速度センサは、質量部11か2
本のたわみ部12.13で支持されているので、ねじれ
に対する剛性も高くなる。また強度的に強くなるので、
肩上時1組立て時の破損が少なく、製作が容易である。
The acceleration sensor configured in this way has mass parts 11 and 2.
Since it is supported by the flexures 12.13 of the book, its rigidity against torsion is also high. It also becomes stronger, so
It is easy to manufacture as there is less damage during the first assembly when it is mounted on the shoulder.

第3図は、第1図の加速度センサの応用例で、1枚の半
導体基板20そ部分的に除去することにより、第1図の
ように構成される2個の加速度セフサ2]、、22e直
交するX、Yの方向の加速度か検出でさるように形成す
るとともに、Z方向の加速度を検出するために従来から
公知の片持ち梁状のたわみ部で質量部か支持された加速
度センサ23を形成したものである。
FIG. 3 shows an application example of the acceleration sensor shown in FIG. 1, in which two acceleration sensors 2], 22e configured as shown in FIG. The acceleration sensor 23 is formed so as to detect acceleration in the orthogonal X and Y directions, and the mass part is supported by a conventionally known cantilever-shaped flexible part in order to detect acceleration in the Z direction. It was formed.

第3図のように構成することにより集積回路製造プロセ
スで3軸方向の加速度か検出できる1チ・ツブの加速度
センサが実現でき、量産化に有利である。
By configuring as shown in FIG. 3, a one-chip acceleration sensor capable of detecting acceleration in three axial directions can be realized in the integrated circuit manufacturing process, which is advantageous for mass production.

また3軸方向の位置決めは結晶方向で決まるので原理的
に高精度となる。
Furthermore, since positioning in three axial directions is determined by the crystal direction, it is theoretically highly accurate.

よな3軸加速度センサのリード線取出しご同一面−Fで
行えるので、実装上も便利である。
Since the lead wires of the 3-axis acceleration sensor can be taken out from the same surface -F, it is convenient for mounting.

第4図は本発明に係る半導体加速度センサの第2の実施
例で、実用性ご向上したものと示す動作説明図である。
FIG. 4 is a second embodiment of the semiconductor acceleration sensor according to the present invention, and is an operational explanatory diagram showing improved practicality.

第1図と同様、半導体基板30の一部を除去することに
より、同一の厚みの質量部31、固定部32.たわみ部
33.34か形成されている。半導体基板30上の斜線
部は拡散抵抗か形成され、質量部31の表面の拡散抵抗
37および端子部の表面の拡散抵抗38.39は、たわ
み部33.34の表面の拡散抵抗35.36よりも濃度
を小さくし大幅に小さい拡散抵抗値としている6第4図
はこのような加速度センサに加速度αか印加されて、た
わみ部33.34がたわんだ状態を示している。この状
態で拡散抵抗35.36には矢印が示すように、中立点
A(伸び縮みの黒い箇所)の左側には張力が発生し、右
側には圧縮力か発生する。このときの拡散抵抗35.3
6の中立点Aの左側の抵抗値をそれぞれ抵抗値RA1’
R、中立点Aの右側の抵抗値をそれぞれR8□1 RD2とすると、抵抗値RA1とRB2、RolとRD
2はそれぞれ変動分の符号が逆となって打消し合う。
Similar to FIG. 1, by removing a part of the semiconductor substrate 30, a mass part 31, a fixing part 32, and a fixed part 32. Flexures 33, 34 are formed. The shaded area on the semiconductor substrate 30 is formed with a diffused resistor, and the diffused resistor 37 on the surface of the mass part 31 and the diffused resistor 38, 39 on the surface of the terminal part are larger than the diffused resistor 35, 36 on the surface of the flexible part 33, 34. FIG. 4 shows a state in which the bending portions 33 and 34 are bent when an acceleration α is applied to such an acceleration sensor. In this state, as shown by the arrows in the diffusion resistors 35 and 36, a tension force is generated on the left side of the neutral point A (black area of expansion and contraction), and a compressive force is generated on the right side. Diffusion resistance at this time: 35.3
The resistance value on the left side of the neutral point A of 6 is the resistance value RA1'.
R, the resistance values on the right side of the neutral point A are respectively R8□1 RD2, then the resistance values RA1 and RB2, Rol and RD
2, the signs of the fluctuations are opposite and cancel each other out.

加速度センサの感度が無くならないように、ここでは中
立点Aの右側の拡散抵抗値は低く抑えて、中立点Aの左
側の変形のみを利用している。
In order to avoid loss of sensitivity of the acceleration sensor, here, the diffusion resistance value on the right side of neutral point A is kept low, and only the deformation on the left side of neutral point A is used.

第5図は本発明に係る半坤体加速度センサの第3の実施
例で、感度を向上したものを示す構成斜視図である。第
4図と異なるのは、たわみ部33゜34の表面において
、中立点Aの右側の拡散抵抗41.43を、中立点Aの
左側の拡散抵抗40゜42と反対側に寄せて形成し、中
立点Aの位置において両者ご接続するように構成した点
である645は固定部、44は質量部31の表面に形成
さnた拡散抵抗である。
FIG. 5 is a perspective view showing a structure of a third embodiment of the half-body acceleration sensor according to the present invention, which has improved sensitivity. The difference from FIG. 4 is that on the surface of the bending portion 33° 34, the diffused resistors 41 and 43 on the right side of the neutral point A are formed on the opposite side from the diffused resistors 40° and 42 on the left side of the neutral point A. 645, which is a point configured to connect the two at the neutral point A, is a fixed part, and 44 is a diffused resistor formed on the surface of the mass part 31.

第6図は上記構成の加速度センサに加速度αか印加され
、質量部31の質量MによりMαの力か加わって変形し
た状態を示している。この状態で、中立点Aの両側の拡
散抵抗は矢印が示すようにいずれも張力を受けているの
で、このときの拡散抵抗40.41.42.43の各抵
抗値RA1.RB1゜RC1’ RDlの、第5図に示
した非変形時の各抵抗値RAo、R8o、Roo、R9
oに対する変動分か全て同一符号となって加算され、イ
ンピーダンス増加となって現れる。逆方向に加速度が印
加された場合には、各拡散抵抗40〜43は圧縮力を受
けるので、同一符号の変動分か加算され、インビータン
スか減少する。
FIG. 6 shows a state in which an acceleration α is applied to the acceleration sensor configured as described above, and a force Mα is applied by the mass M of the mass portion 31, causing deformation. In this state, the diffused resistors on both sides of the neutral point A are under tension as shown by the arrows, so the respective resistance values RA1. of the diffused resistors 40, 41, 42, 43 at this time. RB1゜RC1'RDl's resistance values RAo, R8o, Roo, R9 when not deformed shown in FIG.
The fluctuations relative to o are all added with the same sign and appear as an increase in impedance. When acceleration is applied in the opposite direction, each of the diffused resistors 40 to 43 receives a compressive force, so that fluctuations of the same sign are added together, and the impedance decreases.

このような構成の加速度センサによれば、たわみ部表面
の同一符号の応力発生部に拡散抵抗を形成することによ
り、第4図のものより感度を大きくすることができる。
According to the acceleration sensor having such a configuration, the sensitivity can be made greater than that of the one shown in FIG. 4 by forming a diffused resistor in the stress generating portion of the same sign on the surface of the bending portion.

なお上記の各実施例では歪みゲージとして拡散抵抗を用
いなか、これに限らず、薄膜抵抗等を用いることもでき
る。
In each of the above embodiments, a diffused resistor is used as a strain gauge, but the present invention is not limited to this, and a thin film resistor or the like may also be used.

また第4図および第5図の場合も第3図のように3軸加
速度センサを1チツプで構成できることは同様である。
Also in the cases of FIGS. 4 and 5, the three-axis acceleration sensor can be configured with one chip as shown in FIG. 3.

〈発明の効果〉 以上説明したように、本発明によれば、基板と平行な方
向の加速度が検出できる半導体加速度センサか比較的簡
単な構成で実現できる。
<Effects of the Invention> As described above, according to the present invention, a semiconductor acceleration sensor capable of detecting acceleration in a direction parallel to the substrate can be realized with a relatively simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す構成斜視図、第2
図は第1図の等価回路図、第3図は第1図のセンサの応
用例を示す構成説明図、第4図は本発明の第2の実施例
を示す動作説明図、第5図は本発明の第3の実施例を示
す構成斜視図、第6図は第5図の動作説明図、第7図は
従来のセンサの一例を示す構成説明図である。 10.20.30・・・半揮体基板、11.31・・・
質量部、12.13,33.34・・・たわみ部、14
、 15. 35. 36. 40. 41. 42.
43・・・拡散抵抗、16・・・配線パターン、17.
18゜第 図 第 図
Fig. 1 is a perspective view of the configuration of the first embodiment of the present invention;
1 is an equivalent circuit diagram of FIG. 1, FIG. 3 is a configuration explanatory diagram showing an application example of the sensor of FIG. 1, FIG. 4 is an operational explanatory diagram showing a second embodiment of the present invention, and FIG. FIG. 6 is an explanatory view of the operation of FIG. 5, and FIG. 7 is an explanatory view of the configuration of an example of a conventional sensor. 10.20.30...Semi-volatile substrate, 11.31...
Mass part, 12.13, 33.34... Deflection part, 14
, 15. 35. 36. 40. 41. 42.
43... Diffused resistance, 16... Wiring pattern, 17.
18° Diagram Diagram

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板を部分的に除去することにより形成さ
れた質量部およびこの質量部を支持する2本の平行な片
持ち梁状のたわみ部と、 これら各たわみ部の一部に非対称になるように形成され
た拡散抵抗素子と、 これら各たわみ部に形成された拡散抵抗素子の質量部側
の端部間を接続するように質量部の表面に形成された配
線パターン部、 とで構成されたことを特徴とする半導体加速度センサ。
(1) A mass part formed by partially removing the semiconductor substrate and two parallel cantilever-shaped flexure parts that support this mass part, and a portion of each of these flexure parts is asymmetrical. and a wiring pattern portion formed on the surface of the mass portion to connect the ends of the diffused resistance elements formed in each of these flexure portions on the mass portion side. A semiconductor acceleration sensor characterized by:
(2)拡散抵抗素子を各たわみ部の同一符号の応力発生
部に形成した請求項1記載の半導体加速度センサ。
(2) The semiconductor acceleration sensor according to claim 1, wherein the diffused resistance element is formed in the stress generating portion having the same symbol of each bending portion.
JP1337346A 1989-10-12 1989-12-26 Semiconductor acceleration sensor Pending JPH03204977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337346A JPH03204977A (en) 1989-10-12 1989-12-26 Semiconductor acceleration sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26601489 1989-10-12
JP1-266014 1989-10-12
JP1337346A JPH03204977A (en) 1989-10-12 1989-12-26 Semiconductor acceleration sensor

Publications (1)

Publication Number Publication Date
JPH03204977A true JPH03204977A (en) 1991-09-06

Family

ID=26547268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337346A Pending JPH03204977A (en) 1989-10-12 1989-12-26 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JPH03204977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006024A1 (en) * 1992-09-04 1994-03-17 Murata Manufacturing Co., Ltd. Acceleration sensor
JP2006294892A (en) * 2005-04-12 2006-10-26 Dainippon Printing Co Ltd Uniaxial semiconductor acceleration sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006024A1 (en) * 1992-09-04 1994-03-17 Murata Manufacturing Co., Ltd. Acceleration sensor
JP2006294892A (en) * 2005-04-12 2006-10-26 Dainippon Printing Co Ltd Uniaxial semiconductor acceleration sensor

Similar Documents

Publication Publication Date Title
US6512364B1 (en) Testing sensor
US7578162B2 (en) Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing this apparatus
US5035148A (en) Force detector using resistance elements
JPH10177033A (en) Acceleration measuring instrument
JP3391841B2 (en) Semiconductor acceleration sensor
WO2019009368A1 (en) Strain gauge and multiple axis force sensor
JP6611762B2 (en) Strain gauge and multi-axis force sensor
CN100334453C (en) Acceleration transducer
JPH05312576A (en) Angular velocity sensor
JP2006177823A (en) Acceleration sensor
JP2654602B2 (en) Semiconductor dynamic quantity sensor
JP2003042861A (en) Solid type strain sensor
JP6611761B2 (en) Strain gauge and multi-axis force sensor
JP3330074B2 (en) 3-axis acceleration sensor
JPH03204977A (en) Semiconductor acceleration sensor
JP3265641B2 (en) Semiconductor acceleration sensor
JP2006098323A (en) Semiconductor-type three-axis acceleration sensor
JP6767559B2 (en) Strain gauge and multi-axial force sensor
JPH08248060A (en) Semiconductor acceleration detector
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JP3265792B2 (en) Angular velocity sensor
JPS6394690A (en) Device for detecting force
JP2001153735A (en) Load cell
JP4466344B2 (en) Acceleration sensor
JPH10104097A (en) Load detector