JPH03194450A - Ink water content measuring instrument - Google Patents

Ink water content measuring instrument

Info

Publication number
JPH03194450A
JPH03194450A JP33257689A JP33257689A JPH03194450A JP H03194450 A JPH03194450 A JP H03194450A JP 33257689 A JP33257689 A JP 33257689A JP 33257689 A JP33257689 A JP 33257689A JP H03194450 A JPH03194450 A JP H03194450A
Authority
JP
Japan
Prior art keywords
ink
light
water content
ink surface
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33257689A
Other languages
Japanese (ja)
Inventor
Shohei Noda
野田 松平
Masahiro Kuroda
雅博 黒田
Kuniaki Wakusawa
邦章 涌沢
Osamu Yoritsune
頼経 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP33257689A priority Critical patent/JPH03194450A/en
Publication of JPH03194450A publication Critical patent/JPH03194450A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform one-line automatic control in a short time by photodetecting the intensity distribution of diffracted light of projection light on an ink surface by a detector composed of plural photodetector and calculating ink water content. CONSTITUTION:The beam 2 which is projected by a laser device 1 is collimated by a collimator 3 into a parallel beam 4, which irradiates the ink surface of a roller 5 at an angle theta to the normal 7 of the irradiated surface 8. Then on a plane containing the beam 4 and normal 7, a photodetector 10 is placed on a straight line which has the same angle theta with the normal 7 and on the same straight line with a focus lens 9 at its focal distance position on the opposite side of the beam 4. The detector consists of plural photodetector 10 and photodetects the intensity distribution of the projection light on the ink surface 6. A computing element 5 calculates the ink water content according to the output of the detector. Then the water content is controlled automatically in a short time on an on-line basis.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザ光を使用して、印刷機におけるインキ
含水率を計測するインキ含水率測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ink moisture content measuring device that uses laser light to measure ink moisture content in a printing press.

〔従来の技術〕[Conventional technology]

オフセット印刷機の構成を第4図に示す。 The configuration of the offset printing press is shown in Figure 4.

オフセット印刷においては、親油性画線部(インキの付
く部分)と親水性非画線部(インキの付かない部分)を
同一平面上に形成した版面に、インキ供給ローラ群より
油性インキを、また水供給ローラ群より湿し水をそれぞ
れバランスよく供給し、両者の界面化学的作用によって
画線部にインキが着肉し、それを−度ブランケットに転
写し、それから紙に印刷する方法が採用されており、イ
ンキの中に水が乳化した状態となって混合されてイル。
In offset printing, oil-based ink is applied from a group of ink supply rollers to a printing plate on which a lipophilic image area (the area where ink sticks) and a hydrophilic non-image area (the area where ink does not stick) are formed on the same plane. A method is adopted in which dampening water is supplied in a well-balanced manner from a group of water supply rollers, and ink is deposited on the image area due to the surface chemical action of both, which is then transferred to a blanket and then printed on paper. The water is mixed into the ink in an emulsified state.

つまり、インキの疎水性を利用し、この乳化した水をあ
らかじめ版の網点以外の部分に酪布することで、そこへ
のインキの付着を防いで(・る。
In other words, by making use of the hydrophobicity of ink and applying this emulsified water to areas other than the halftone dots of the plate in advance, this prevents ink from adhering to those areas.

したがって、オフセット印刷でインキと湿し水の量がア
ンバランスになると、汚れ等の印刷障害や。
Therefore, if the amount of ink and dampening water becomes unbalanced in offset printing, printing problems such as smearing may occur.

網点の再現性不良、濃度むら等の印刷品質低下を招く。This results in poor print quality such as poor halftone dot reproducibility and uneven density.

そのため、インキの含水率は重要な制御パラメータであ
るが、従来は試薬を使ったオフライン方式に・より含水
率を計測していた。すなわち、水を含んだインキを一部
サンプリングし、溶媒に入れた後、試薬を投入すると、
含水率に応じて色が変化することを利用した方法を採用
している。
Therefore, the moisture content of ink is an important control parameter, but conventionally it has been measured by an off-line method using reagents. In other words, if you take a sample of ink containing water, put it in a solvent, and then add a reagent,
The method uses the fact that the color changes depending on the moisture content.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述した従来の含水率計測は、試薬を使った人手による
オフライン方式のため、次のような問題点を有する。
The conventional moisture content measurement described above is a manual offline method using reagents, and therefore has the following problems.

(1)時間がかかる。(1) It takes time.

(2)人手を必要とする。(2) Requires manpower.

(3)  上記(II 、 T21により、オンライン
で含水率を制御することができない。
(3) Due to the above (II, T21), the moisture content cannot be controlled online.

〔課題を解決するだめの手段〕[Failure to solve the problem]

ローラ表面のインキ面に、平行レーザビームを照射する
。照射面における法線とレーザビームとを含む面内にあ
り、かつレーザビームと法線がなす角に等しい角度の位
置、すなわち正反射の方向で、その回折光、を集光レン
ズにより集光し、その集光レンズの焦点面においた複数
の受光素子により受光する。
A parallel laser beam is irradiated onto the ink surface of the roller surface. The diffracted light is focused by a condensing lens at a position that is in a plane that includes the normal to the irradiation surface and the laser beam and is at an angle equal to the angle between the laser beam and the normal, that is, in the direction of specular reflection. , the light is received by a plurality of light receiving elements placed on the focal plane of the condenser lens.

〔作 用〕 オフセット印刷機においては、第5図に示すように、イ
ンキは回転するローラ同士が接触してインキの供給が行
なわれるが、供給ローラとこれに接触する受ローラが回
転に伴い分離する領域で、インキは糸状に引き伸ばされ
突起(フィラメントが生ずる。インキの粘度は含水率に
より異なるがlO2〜103ポアズと高いため、引き伸
ばされたフィラメントが元の平たんな状態に戻るまでの
時間は、通常ローラの回転周期より10倍以上長い。従
ってローラ回転中は、フィラメントの痕跡が第6図に示
すように網目状に粒状の凹凸としてインキ表面に残る。
[Function] As shown in Figure 5, in an offset printing press, ink is supplied by rotating rollers that come into contact with each other, but the supply roller and the receiving roller that are in contact with it separate as they rotate. In the area where the ink is drawn, it is stretched into a string and protrusions (filaments are formed).The viscosity of the ink is high, 102 to 103 poise, although it varies depending on the water content, so it takes a long time for the stretched filaments to return to their original flat state. , which is at least 10 times longer than the normal rotation period of the roller.Therefore, during the rotation of the roller, traces of the filament remain on the ink surface as mesh-like granular irregularities as shown in FIG.

(これを便宜的に網状痕と呼ぶ)この網状痕の凹凸の粒
の大きさは膜厚と含水率により変化する。つまり膜厚が
一定で含水率が少なければ、インキの粘度が大きいため
、凹凸の粒の大きさは大きくなり、含水率が太きければ
粘度が小さ(なり網状痕の粒は小さくなる。また、含水
率が一定で膜厚が大きい場合は網状痕の凹凸の粒々は大
きくなり、膜厚が小さい場合は小さくなる。
(For convenience, this is referred to as a mesh mark.) The size of the uneven grains of the mesh mark changes depending on the film thickness and water content. In other words, if the film thickness is constant and the water content is low, the viscosity of the ink is high, so the size of the uneven grains will be large; if the water content is thick, the viscosity will be small (and the grains of the network marks will be small. When the water content is constant and the film thickness is large, the uneven grains of the network marks become large, and when the film thickness is small, they become small.

ところが、インキ膜厚は、インキの供給重量あるいは他
の公知の計測法によりこれを把握するこ) とができるので、網状痕の粒の大きがわかれば含水率を
計測できることになる。
However, the ink film thickness can be determined by the weight of the ink supplied or by other known measurement methods, so if the size of the grains of the mesh marks is known, the moisture content can be measured.

この網状痕に平行レーザビーム光を照射し、その回折光
を正反射の方向より集光レンズで集光し、その錬点面に
置いた複数の受光素子で受光すると、その複数個の受光
素子で得られる回折光強回分布により、インキ表面の網
状痕の粒の大きさがわかり、含水率か計測できる。
A parallel laser beam is irradiated onto this net-like mark, and the diffracted light is focused by a condensing lens in the direction of specular reflection and received by multiple photodetectors placed on the dot surface. The intensity distribution of the diffracted light obtained from this method allows us to determine the size of the grains in the network traces on the ink surface and measure the water content.

〔実施例〕〔Example〕

第1図において、1はレーザ装置、2はレーザビーム、
3はコリメータ、4は平行レーザビーム、5はローラ、
6はインキ面、7は法線、8は照射面、9は集光レンズ
、10は複数個の受光素子、1】は正反射光、12は回
折光、13は回折光と正反射光とのなす角度、14はA
/D 変換器、15は演算器である。
In FIG. 1, 1 is a laser device, 2 is a laser beam,
3 is a collimator, 4 is a parallel laser beam, 5 is a roller,
6 is an ink surface, 7 is a normal line, 8 is an irradiation surface, 9 is a condensing lens, 10 is a plurality of light receiving elements, 1] is specularly reflected light, 12 is diffracted light, 13 is diffracted light and specularly reflected light The angle formed by 14 is A
/D converter, 15 is an arithmetic unit.

同図において、レーザ装置1より出射されたビーム2を
コリメータ3で直径3〜2Drrrm程度の平行ビーム
4とする。その平行ビーム4をローラ5(第4図に示す
対象ローラ)の表面のインキ面6に、その照射面8の法
線7とある角度θをもって照射する。そして、平行ビー
ム4と法線7とを含む平面上で、かつ、平行ビーム4の
反対側で法線7と同じ角度θを持つ直線上に、集光レン
ズ9と、同一直線上でかつその無点位置に置いた多重リ
ング状受光素子10とを配置して、受光する。
In the figure, a beam 2 emitted from a laser device 1 is converted into a parallel beam 4 with a diameter of about 3 to 2 Drrrm by a collimator 3. The parallel beam 4 is irradiated onto the ink surface 6 on the surface of the roller 5 (target roller shown in FIG. 4) at a certain angle θ with respect to the normal 7 of the irradiated surface 8. Then, on the plane including the parallel beam 4 and the normal line 7, and on the opposite side of the parallel beam 4, on a straight line having the same angle θ as the normal line 7, attach the condenser lens 9 on the same straight line and on the same line as the normal line 7. Multiple ring-shaped light receiving elements 10 placed at pointless positions are arranged to receive light.

この場合、インキ表面6の平滑な部分すなわちインキの
網状痕がない部分によって反射された光11は、正反射
光なので、集光レンズ9によりその焦点に集光され、多
重リング受光素子10の中心部にて受光される。
In this case, the light 11 reflected by the smooth part of the ink surface 6, that is, the part without the ink trace, is specularly reflected light, so it is condensed to its focal point by the condensing lens 9, and is focused at the center of the multi-ring light-receiving element 10. The light is received at the

一方、インキ表面6の網状痕の粒々により回折された光
12は、同様に集光レンズ9を通って受光素子10上に
到達するが、この回折光12は正反射光11とある角度
13をなしている(この角度を回折角という)ので受光
素子10上においては、その回折角の大きさに比例した
半径の位置に到達する。これを式で表すと S=f・ψ  ・・・・・・・・・・・・(1)S:受
光素子上での半径 f:凸レンズ9の焦点距離 ψ:散乱角13 となる。
On the other hand, the light 12 diffracted by the particles of the net-like marks on the ink surface 6 similarly passes through the condenser lens 9 and reaches the light receiving element 10, but this diffracted light 12 forms a certain angle 13 with the specularly reflected light 11. (this angle is called a diffraction angle), so on the light receiving element 10 it reaches a position with a radius proportional to the size of the diffraction angle. This can be expressed as follows: S=f·ψ (1) S: Radius on the light receiving element f: Focal length ψ of the convex lens 9: Scattering angle 13.

したがって多重リング受光素子10の中心部を除いた各
リングの強閾分布より、回折光の強度分布をモニタでき
る。
Therefore, the intensity distribution of the diffracted light can be monitored from the strong threshold distribution of each ring excluding the center of the multi-ring light receiving element 10.

ところで、インキ表面6の粒々の大きさと、受光素子1
0上の強度分布とには次の式の関係がある。
By the way, the size of the particles on the ink surface 6 and the light receiving element 1
The intensity distribution on 0 has the following relationship.

■(S)■2(Jl(X))2/X ・・・・・・・・
・(2)X=に−a−8/f K=2・π/2 λ・・・レーザ光波長 a・・・粒の半径 S、f・・・同上記(前は−ジ記載) Jl・・1次ベッセル関数 これを第2図に示す。
■(S)■2(Jl(X))2/X ・・・・・・・・・
・(2) ...Linear Bessel function This is shown in Figure 2.

同図より明らかなように、インキ表面の網状痕の粒々の
大きさによって分布が異なる。
As is clear from the figure, the distribution differs depending on the size of the particles of the network marks on the ink surface.

なお、図は半径が10.50,100μmの粒の各1個
の場合であり、実際の場合は粒の大きさが異なったもの
が多数あるが、受光素子10の出力はそれらの総和にな
るため、その総和値は粒の大きさの平均値を示すことに
なる。
Note that the figure shows the case of one grain each with a radius of 10.50 μm and 100 μm; in reality, there are many grains with different sizes, but the output of the light receiving element 10 is the sum of them. Therefore, the total value indicates the average value of the grain size.

したがって、受光素子10の各リングの化力をアンプ・
A/D 変換器14を通して演算器15に入力し、解析
・表示を行なうことにより、インキ表面の網状痕の粒々
の大きさがわかり、ひいては含水率を計測できる。
Therefore, the power of each ring of the light receiving element 10 is amplified.
By inputting the data to the arithmetic unit 15 through the A/D converter 14, analyzing and displaying the data, the size of the particles of the net-like marks on the ink surface can be determined, and the water content can be measured.

第3図に実際のインキ表面にて計測した結果を示す。受
光素子のリング数は(9)で、最も内側が腐1で、最も
外側が/1630であり、第3図の横軸はそのリング屑
となっている。図の縦軸は各リングの出力すなわち光強
要となっている。第3図の(、)はインキの含水率が小
で、(b)が含水重大の場合である。
Figure 3 shows the results measured on the actual ink surface. The number of rings in the light-receiving element is (9), the innermost ring is 1 and the outermost ring is /1630, and the horizontal axis in FIG. 3 is the ring waste. The vertical axis in the figure is the output of each ring, that is, the optical force. In FIG. 3, (,) shows the case where the water content of the ink is small, and (b) shows the case where the water content is serious.

第3図(−)は、含水率が小さいため表面の網状痕の粒
々が大きいので、半径小のリングの出力が太き(なり、
(b)はその逆となっている。
In Figure 3 (-), since the moisture content is small and the grains of the mesh marks on the surface are large, the output of the ring with a small radius is thick (becomes thick).
(b) is the opposite.

〔発明の効果〕〔Effect of the invention〕

本発明によるインキ含水率測定装置は、レーザ装置とコ
リメータとからなりローラ表面のインキ面に平行レーザ
光を投射するレーザ光投射装置と、その投射光のインキ
面による正反射光の方向に配した集光レンズと、同集光
レンズの焦点面に置いた複数個の受光素子から構成され
投射光のインキ面による回折光の強度分布を受光する検
出器と、同検出器からの出力に基づいてインキ含水率を
算出する演算器と、からなることKより、次の効果を有
する。
The ink moisture content measuring device according to the present invention includes a laser beam projection device that projects a parallel laser beam onto the ink surface of the roller surface, which is composed of a laser device and a collimator, and a laser beam projection device that projects a parallel laser beam onto the ink surface of the roller surface, and a laser beam projection device that is arranged in the direction of regular reflection of the projected light by the ink surface. A detector consisting of a condensing lens and a plurality of light-receiving elements placed on the focal plane of the condensing lens receives the intensity distribution of the diffracted light by the ink surface of the projected light, and a detector based on the output from the detector. Since the present invention is comprised of a calculator for calculating the ink moisture content, the following effects are obtained.

fil  容易にインキ含水率を計測することができ、
かつ応答性が良い。
fil You can easily measure the ink moisture content,
And responsiveness is good.

(2)従って、オンラインでインキ含水率を制御するこ
とができ、印刷機の性能向上及び省力化を達成すること
ができる。
(2) Therefore, it is possible to control the ink moisture content online, and it is possible to improve the performance of the printing press and save labor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係るインキ含水率測定装置の
構成図、第2図はインキ表面網状痕の粒の大ぎさと散乱
光の関係を示す図、第3図は本装置によるインキ含水率
の計測結果を示し、(a)はインキ含水率が小、(b)
はインキ含水率が大の場合を示す。第4図はオフセット
印刷機の構成図、第5図はフィラメントが生じる状態の
説明図、第6図は網状痕の外観概略図である。 1・・・レーザ装置   3・・・コリメータ6・・・
インキ面    9・・・集光レンズ10・・・受光素
子    15・・・演算器代 理 人
Fig. 1 is a diagram showing the configuration of an ink moisture content measuring device according to an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between the particle size of the ink surface traces and scattered light, and Fig. 3 is a diagram showing the relationship between the ink moisture content measurement device and the scattered light by this device. The measurement results of the moisture content are shown, (a) the ink moisture content is low, (b)
indicates the case where the ink moisture content is high. FIG. 4 is a block diagram of an offset printing press, FIG. 5 is an explanatory diagram of a state in which filaments are produced, and FIG. 6 is a schematic diagram of the appearance of a mesh mark. 1...Laser device 3...Collimator 6...
Ink surface 9... Condensing lens 10... Light receiving element 15... Arithmetic unit agent

Claims (1)

【特許請求の範囲】[Claims] レーザ装置とコリメータとからなりローラ表面のインキ
面に平行レーザ光を投射するレーザ光投射装置と、その
投射光のインキ面による正反射光の方向に配した集光レ
ンズと、同集光レンズの焦点面に置いた複数個の受光素
子から構成され投射光のインキ面による回折光の強度分
布を受光する検出器と、同検出器からの出力に基づいて
インキ含水率を算出する演算器と、からなることを特徴
とするインキ含水率測定装置。
A laser beam projection device consisting of a laser device and a collimator projects parallel laser light onto the ink surface of the roller surface, a condenser lens disposed in the direction of specular reflection of the projected light by the ink surface, and a condenser lens arranged in the direction of specular reflection of the projected light by the ink surface a detector comprising a plurality of light-receiving elements placed on a focal plane and receiving the intensity distribution of the diffracted light by the ink surface of the projected light; and a calculator that calculates the ink moisture content based on the output from the detector. An ink moisture content measuring device comprising:
JP33257689A 1989-12-25 1989-12-25 Ink water content measuring instrument Pending JPH03194450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33257689A JPH03194450A (en) 1989-12-25 1989-12-25 Ink water content measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33257689A JPH03194450A (en) 1989-12-25 1989-12-25 Ink water content measuring instrument

Publications (1)

Publication Number Publication Date
JPH03194450A true JPH03194450A (en) 1991-08-26

Family

ID=18256469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33257689A Pending JPH03194450A (en) 1989-12-25 1989-12-25 Ink water content measuring instrument

Country Status (1)

Country Link
JP (1) JPH03194450A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149911A (en) * 2010-01-25 2011-08-04 Nec Corp Wetting detector and wetting detection method
KR101056145B1 (en) * 2011-03-25 2011-08-10 한국기계연구원 Apparatus and method for visualizing ink transfer
CN111929319A (en) * 2020-10-14 2020-11-13 天津文洲机械有限公司 Indirect high-precision silk screen damage visual detection machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149911A (en) * 2010-01-25 2011-08-04 Nec Corp Wetting detector and wetting detection method
KR101056145B1 (en) * 2011-03-25 2011-08-10 한국기계연구원 Apparatus and method for visualizing ink transfer
CN111929319A (en) * 2020-10-14 2020-11-13 天津文洲机械有限公司 Indirect high-precision silk screen damage visual detection machine
CN111929319B (en) * 2020-10-14 2021-04-09 天津文洲机械有限公司 Indirect high-precision silk screen damage visual detection machine

Similar Documents

Publication Publication Date Title
US4677298A (en) Method of monitoring ink-water balance on a lithographic printing press
US6832550B2 (en) Ink and dampening solution determination in offset printing
JPS5987307A (en) Measuring device of thickness of surface film
DE3732934C2 (en)
JPH0360312B2 (en)
US3960451A (en) Dampening system on an offset printing press with a device for regulating the amount of water on the plate
JPH03194450A (en) Ink water content measuring instrument
JP2910596B2 (en) Particle size distribution analyzer
EP0640812B1 (en) Method for fluorescent measuring the volumetric capacity of a cell-engraved surface
DE10214106A1 (en) Method and device for detecting overhead transparencies
Kawasaki et al. Investigation into the cause of print mottle in halftone dots of coated paper: effect of optical dot gain non-uniformity
JPH0798396B2 (en) Automatic control method for quantitative balance of ink and fountain solution in offset printing machine
EP0488910B1 (en) Method and apparatus for regulating the water-ink balance on a printing plate of an offset printing machine
JP2575833B2 (en) Method for measuring the degree of emulsification of ink on printing press
JP3552388B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP2903634B2 (en) Film thickness measuring device using white light and ink supply amount controlling device using the same
JPH058965B2 (en)
JPS60232956A (en) Method of monitoring balance of ink and water on lithographic press
JP2000177263A (en) Method and apparatus for manufacturing printing base sheet for thermal stencil
JPH0651404B2 (en) Measuring device for lithographic printing plate condition during printing
JPH0413637Y2 (en)
JPS63118602A (en) Ink film thickness measuring instrument
AU2001237144B2 (en) Ink and dampening solution determination in offset printing
JPH0854353A (en) Method and device for monitoring printing state
Silvennoinen et al. Diffractive glossmeter for measurement of dynamic gloss of prints