JPH03189622A - Ferroelectric liquid crystal element - Google Patents

Ferroelectric liquid crystal element

Info

Publication number
JPH03189622A
JPH03189622A JP32741089A JP32741089A JPH03189622A JP H03189622 A JPH03189622 A JP H03189622A JP 32741089 A JP32741089 A JP 32741089A JP 32741089 A JP32741089 A JP 32741089A JP H03189622 A JPH03189622 A JP H03189622A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
pixel
liquid crystal
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32741089A
Other languages
Japanese (ja)
Inventor
Masaya Kondo
真哉 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP32741089A priority Critical patent/JPH03189622A/en
Publication of JPH03189622A publication Critical patent/JPH03189622A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow gradation display without increasing control parts by connecting plural pieces of electrodes via electric parts having the electric resistances different from each other to a common electrode driving circuit. CONSTITUTION:A scanning electrode consists of two pieces of the electrodes S1A, S1B having the same width in the Sa part where a picture element is formed at the intersected part of the electrodes. An Sb part to regulate the electric resistance is provided in this Sa part and the Sc part where the S1A and S1B are connected. The electrodes S1A and S1B are formed to the different widths. The voltage drops of different values are generated in this part so that the different voltages are applied with the S1A and S1B in the Sa part. Signal electrodes are made of the same constitution as the constitution of the scanning electrodes. The electrodes on upper and lower substrates 1, 2 are formed as a matrix. These electrode groups are connected to the common electrode driving circuit via the electric parts having the resistances different from each other. The gradation display is then possible without increasing the electronic parts for controlling writing signals.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、強誘電性液晶素子に関し、さらに詳しくは階
調表示を可能とする強誘電性液晶セルのセル構造に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ferroelectric liquid crystal element, and more particularly to a cell structure of a ferroelectric liquid crystal cell that enables gradation display.

〔従来の技術〕[Conventional technology]

強誘電性液晶はメモリー性やμ秒単位の高速応答性を有
することから大容量デイスプレィや高速液晶シャッター
などに実用化が期待されて(・る。
Because ferroelectric liquid crystals have memory properties and high-speed response on the microsecond scale, they are expected to be put to practical use in large-capacity displays and high-speed liquid crystal shutters.

従来この強誘電性液晶により光の透過を制御する場合は
、光を透過させるかまたは透過させないかの2値の制御
が一般的であった。これは、強誘電性液晶が光透過と光
不透過の2つの安定な配向状態をとるが、その遷移過程
は高速に動作するため、これを使って光の透過量を中間
段階に制御することが困難なことが原因である。
Conventionally, when controlling the transmission of light using this ferroelectric liquid crystal, binary control was generally used to either transmit the light or not transmit the light. This is because ferroelectric liquid crystal has two stable alignment states, one that transmits light and one that does not transmit light, but the transition process operates at high speed, so this can be used to control the amount of light transmission to an intermediate state. This is due to the difficulty of

そこで、中間段階に制御するために、たとえば、特開昭
63−37318号公報においては、各画素の光が透過
する部分の面積を制御することによって階調表示を行い
、また特開昭63−2023号公報においては画素内に
電圧勾配を与えること罠より光の透過量を制御している
。さらに、第4図のように1画素を構成する走査電極を
SIA、SIB又はS2A、82Bのように2本にし、
信号電極もDIA、DIB又はD2A、D2Bのように
それぞれ2本にし、たとえばSIA%SIBとDIA、
DIBで構成される画素G11が4つの小画素から成る
ようにして、各電極毎に設けられた駆動回路により、4
つの小画素の点灯を制御してその1画素の階調表示を行
っている例がある。
Therefore, in order to control the intermediate stage, for example, in Japanese Patent Application Laid-Open No. 63-37318, gradation display is performed by controlling the area of the portion of each pixel through which light passes. In Japanese Patent No. 2023, the amount of light transmitted is controlled by applying a voltage gradient within the pixel. Furthermore, as shown in FIG. 4, the scanning electrodes constituting one pixel are made into two such as SIA, SIB or S2A, 82B,
The signal electrodes are also two each like DIA, DIB or D2A, D2B, for example SIA%SIB and DIA,
The pixel G11 made up of DIB is made up of four small pixels, and the drive circuit provided for each electrode
There is an example of controlling the lighting of one small pixel to display gradation of that one pixel.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような従来の方法は、強誘電性液晶の階調表示は可
能なものの、セル構造が複雑になることや、1画素を構
成するための電極の本数が増えるために、それに対応し
て電極駆動回路数が増えるなどの欠点を有している。
Although such conventional methods can display gradation using ferroelectric liquid crystal, the cell structure becomes complicated and the number of electrodes to configure one pixel increases, so the number of electrodes must be adjusted accordingly. This has drawbacks such as an increase in the number of drive circuits.

本発明はこのような問題点を解決して、セル構造が簡単
で書き込み信号を制御するための電子部品を増やすこと
なく、階調表示が可能である強誘電性液晶素子を提供す
ることを目的とする。
An object of the present invention is to solve these problems and provide a ferroelectric liquid crystal element that has a simple cell structure and can display gradations without increasing the number of electronic components for controlling write signals. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、対向面にそれぞ
れ走査電極と信号電極を有する2枚の基板間に強誘電性
液晶を挾持し、走査電極と信号電極の交差部に形成され
る画素を、走査電極および信号電極の少なくとも一方を
複数の電極にして、複数の小画素に分割し、これらの電
極に接続される電極駆動回路により、小画素毎に点灯、
非点灯の制御をして、階調表示をする強誘電性液晶素子
において、1画素に対応する複数本の電極を互いに異な
る電気抵抗を有する電極部分を介して、共通の電極駆動
回路に接続し、複数本の電極が共通の駆動信号により制
御できるようにした事を特徴としている。
In order to achieve the above object, the present invention sandwiches a ferroelectric liquid crystal between two substrates each having a scanning electrode and a signal electrode on opposing surfaces, and a pixel is formed at the intersection of the scanning electrode and the signal electrode. is divided into a plurality of small pixels by using at least one of the scanning electrode and the signal electrode as a plurality of electrodes, and an electrode drive circuit connected to these electrodes lights up each small pixel.
In a ferroelectric liquid crystal device that controls lighting and displays gradation, multiple electrodes corresponding to one pixel are connected to a common electrode drive circuit through electrode portions that have different electrical resistances. , is characterized in that multiple electrodes can be controlled by a common drive signal.

〔作用〕[Effect]

本発明は第4図に示される従来例のように、1画素内を
小画素に分割して、各分割された小画素毎に光の透過、
不透過の制御をするものであるが、各画素の小画素を形
成する電極構成が従来例とは異なる構成になっている。
In the present invention, as in the conventional example shown in FIG. 4, one pixel is divided into small pixels, and light transmission and
Although opacity is controlled, the structure of the electrodes forming the small pixels of each pixel is different from that of the conventional example.

1画素をmXn個の小画素から成るようにするためには
、1画素に対応してm本の上又は下基板電極とn本の下
又は上基板電極を設ければ、その交差部m X n個の
小画素が形成され1画素ができる。ここで、従来例では
m本、n本の電極毎に駆動回路を設けて駆動する構成に
なっている。しかし、本発明では、m本の電極をそれぞ
れ異なる電気抵抗を有する電極部分を介して、共通の電
極駆動回路に接続するようにし、n本の電極についても
同様な構成にしている。
In order to make one pixel consist of mXn small pixels, if m upper or lower substrate electrodes and n lower or upper substrate electrodes are provided corresponding to one pixel, their intersection m One pixel is formed by forming n small pixels. Here, in the conventional example, a drive circuit is provided for each of m and n electrodes to drive them. However, in the present invention, the m electrodes are connected to a common electrode drive circuit through electrode portions each having a different electrical resistance, and the n electrodes are also configured in the same manner.

このような電極構成にして、1つの画素に共通の駆動回
路から小画素を形成する各電極を駆動した時、電極毎に
途中での電圧降下が異なり、各小画素部分では異なる電
圧になる。従って、各小画素毎に光の透過、不透過の制
御ができる。すなわち、従来例のように各小画素に対応
する電極毎に駆動回路を持たなくても、1画素に共通す
る駆動回路により各小画素の制御ができる。
With such an electrode configuration, when each electrode forming a small pixel is driven from a drive circuit common to one pixel, the voltage drop in the middle of each electrode is different, resulting in a different voltage at each small pixel portion. Therefore, transmission or non-transmission of light can be controlled for each small pixel. In other words, each small pixel can be controlled by a common drive circuit for one pixel, without having to provide a drive circuit for each electrode corresponding to each small pixel as in the conventional example.

〔実施例〕〔Example〕

以下図面により本発明の一実施例を詳述する。 An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の液晶セルの基板上の透明電極の構成図
である。
FIG. 1 is a configuration diagram of a transparent electrode on a substrate of a liquid crystal cell of the present invention.

第1図において、1は上基板、2は下基板で、Slから
SNは上基板上の下基板と対面する側に形成された走査
電極、DlからDNは下基板上の上基板と対面する側に
形成された信号電極である。
In FIG. 1, 1 is an upper substrate, 2 is a lower substrate, SL to SN are scanning electrodes formed on the side of the upper substrate facing the lower substrate, and Dl to DN are scanning electrodes formed on the lower substrate facing the upper substrate. This is a signal electrode formed on the side.

そして、各電極の交差部に画素が形成される。A pixel is then formed at the intersection of each electrode.

走査電極は、たとえばSlに示されたように、画素が形
成されるSc部分では同じ幅の2本の電極SIA、SI
Bから成っており、このSc部分とSIAとSIBが連
結されるSc部分との間に電極抵抗を調整するsb部分
を設け、SIAとSIBの電極の幅を異なる幅にして、
この部分で異なる値の電圧降下を生じさせ、Sc部分で
SIAとSIBに異なる電圧がかかるようにしである。
For example, as shown in Sl, the scanning electrodes are two electrodes SIA and SI of the same width in the Sc part where pixels are formed.
An sb part for adjusting electrode resistance is provided between this Sc part and the Sc part where SIA and SIB are connected, and the widths of the electrodes of SIA and SIB are made different.
Different values of voltage drops are generated in this portion, and different voltages are applied to SIA and SIB in the Sc portion.

信号電極も走査電極と同じように、Dlに示されるよう
に、DIAとDIBの2本の電極から成り、Da部分で
は同じ幅でDb部分では異なる幅になっており、Dc部
分において連結されている。
Similar to the scanning electrode, the signal electrode is made up of two electrodes, DIA and DIB, as shown by Dl.The Da part has the same width, the Db part has different widths, and they are connected in the Dc part. There is.

本実施例では、Sa部、Da部における電極の幅を25
0μm、Sb部、Db部はともに幅の広い方を250μ
m、狭い方を5μmにした。
In this example, the width of the electrode in the Sa part and the Da part is 25
0μm, Sb part and Db part are both 250μm wide.
m, the narrower one was 5 μm.

このような形状で形成した透明電極上に有機配向膜を塗
布し、ラビング処理を行った後に、それぞれ基板上の電
極がマ) IJクス状になるように重ね合わせた。上下
基板の電極の交差部には画素が形成される。たとえば、
走査電極S1と信号電極Dlの交差部には画素G11が
形成される。ここでG11は4つの小画素G11a、0
11b。
An organic alignment film was coated on the transparent electrodes formed in such a shape, and after a rubbing treatment was performed, the electrodes on the respective substrates were stacked so as to form an IJ pattern. Pixels are formed at intersections between the electrodes of the upper and lower substrates. for example,
A pixel G11 is formed at the intersection of the scanning electrode S1 and the signal electrode Dl. Here, G11 is composed of four small pixels G11a, 0
11b.

G11c、G11dから成る。Consists of G11c and G11d.

第2図は第1の液晶セルをAA’断面でみた断面図であ
る。上基板1、下基板2の対向面にSIA、SIB、D
IA等で示される透明電極があり、その上に配向膜3が
設けられている。側基板はスペーサ6を介して重ね合わ
せられており、シール4で囲まれたセル内に強誘電性液
晶5が封入されている。
FIG. 2 is a cross-sectional view of the first liquid crystal cell taken along the line AA'. SIA, SIB, D on the opposing surfaces of the upper substrate 1 and lower substrate 2.
There is a transparent electrode indicated by IA or the like, and an alignment film 3 is provided thereon. The side substrates are stacked on top of each other with a spacer 6 in between, and a ferroelectric liquid crystal 5 is sealed in a cell surrounded by a seal 4.

第3図はこのような構成の液晶セルの電極に印加する電
圧波形とその時の1画素内における小画素の点灯状態を
示したものである。
FIG. 3 shows the voltage waveform applied to the electrodes of a liquid crystal cell having such a structure and the lighting state of small pixels within one pixel at that time.

上段が走査電極に印加する電圧波形で、左欄が信号電極
に印加する電圧波形である。交差部の電圧波形が各小画
素にかかる電圧波形である。
The upper row shows the voltage waveform applied to the scanning electrode, and the left column shows the voltage waveform applied to the signal electrode. The voltage waveform at the intersection is the voltage waveform applied to each small pixel.

尚、ここで、V o  V +  V 2は各小画素毎
に値が異なり、各波形の右に点灯、非点灯のしきい値電
圧vthを基準にした大小を示しである。
Here, V o V + V 2 has a different value for each small pixel, and the magnitude is shown on the right of each waveform based on the threshold voltage vth for lighting and non-lighting.

第3図において、(a)は走査電極に波高値Vsの正負
パルスを、信号電極に波高値VRの正負パルスを印加し
て、G 11 aからG11dまでのすべての小画素を
非点灯状態にすることを示している。
In FIG. 3, (a) applies a positive and negative pulse with a peak value Vs to the scanning electrode and a positive and negative pulse with a peak value VR to the signal electrode, thereby turning all the small pixels from G11a to G11d into a non-lighting state. It shows that.

(b)は信号電極にVDIの波高値で、リセットの時と
180°位相の異なる電圧を印加した時、第1図におけ
るSb、Db部分の電極抵抗の低い電極により構成され
る小画素G11aのみ、しきい値電圧vthを越える書
込み電圧VIがかかり点灯する。
(b) shows the peak value of VDI when a voltage with a phase 180° different from that at the time of reset is applied to the signal electrode, and only the small pixel G11a constituted by the electrodes with low electrode resistance in the Sb and Db portions in Fig. 1 is shown. , a write voltage VI exceeding the threshold voltage vth is applied and the light is turned on.

その他の小画素は非点灯状態のままである。更に、信号
電極にVDIより高い電圧のVD2のパルスを印加する
と、第1図におけるsb部分とDb部分のいずれか一方
が電極抵抗の低い小画素に、しきい値電圧vthを越え
る書込み電圧■2がかかり、新たに、011bとG11
cが点灯する。
Other small pixels remain in the non-lighted state. Furthermore, when a pulse of VD2, which is higher than VDI, is applied to the signal electrode, either the sb portion or the Db portion in FIG. , new 011b and G11
c lights up.

このように、1画素を構成する複数の電極を共通の信号
で駆動しても、電極の途中における電圧降下により、各
小画素では異なる電圧がかかり、小画素毎の点灯、非点
灯の制御ができ、面積による階調表示が可能となる。
In this way, even if multiple electrodes that make up one pixel are driven with a common signal, a different voltage is applied to each subpixel due to voltage drop in the middle of the electrode, making it difficult to control whether each subpixel turns on or off. This makes it possible to display gradations based on area.

尚、本実施例では信号電極の電圧レベルのみをかえて、
小画素の点灯を制御したが、走査電極と信号電極の両方
の電圧をかえると、少ない電圧レベル数で更に多くの分
割に対しても対応できる。
In this example, only the voltage level of the signal electrode was changed,
Although we have controlled the lighting of small pixels, by changing the voltages of both the scanning electrode and the signal electrode, it is possible to support even more divisions with a smaller number of voltage levels.

〔発明の効果〕〔Effect of the invention〕

上記のごとく本発明によれば、階調表示をするために、
1つの画素を複数の小画素に分割する複数の電極を共通
の電極駆動回路により駆動できる電極構成にしたために
、駆動回路数を増やすことなく、安定で、表示品質のす
ぐれた階調表示ができる強誘電性液晶素子の提供が可能
となる。
As described above, according to the present invention, in order to display gradation,
Because the electrode configuration allows multiple electrodes that divide one pixel into multiple small pixels to be driven by a common electrode drive circuit, stable gradation display with excellent display quality can be achieved without increasing the number of drive circuits. It becomes possible to provide a ferroelectric liquid crystal element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の液晶素子の電極を示す構成図、第2図
は第1図の液晶パネルの断面図、第3図は第1図の液晶
素子を駆動する駆動信号および画素の点灯状態を示す状
態図、第4図は従来例の液晶素子の電極を示す構成図で
ある。 1・・・・・上基板、 2・・・・・・下基板、 3・・・・・・配向膜、 4・・・・・・シール。 5・・・・・・液晶、 6・・・・・・スペーサ、 81〜SN・・・・・・走査電極、 D1〜DN・・・・・・信号電極、 G11・・・・・・画素、 G 11 a=G11 d−−・・・・小画素、Sa、
Da・・・・・・画素電極部、 Sb、Db・・・・・・電極抵抗調整部、Sc、Dc・
・・・・・電極連結部。 第3図 第4図 L)IA L)11=5 LIZAlllfl
Fig. 1 is a configuration diagram showing the electrodes of the liquid crystal element of the present invention, Fig. 2 is a cross-sectional view of the liquid crystal panel of Fig. 1, and Fig. 3 is a drive signal for driving the liquid crystal element of Fig. 1 and the lighting state of the pixels. FIG. 4 is a configuration diagram showing electrodes of a conventional liquid crystal element. 1... Upper substrate, 2... Lower substrate, 3... Alignment film, 4... Seal. 5...Liquid crystal, 6...Spacer, 81~SN...Scanning electrode, D1~DN...Signal electrode, G11...Pixel , G11 a=G11 d---small pixel, Sa,
Da: pixel electrode section, Sb, Db: electrode resistance adjustment section, Sc, Dc.
・・・・・・Electrode connection part. Figure 3 Figure 4 L)IA L)11=5 LIZAllfl

Claims (1)

【特許請求の範囲】[Claims] 走査電極と信号電極の交差部に形成される画素を、各走
査電極および各信号電極の少なくとも一方を複数本の電
極にして、複数の小画素に分割し、前記電極に接続され
る電極駆動回路により、小画素毎に点灯、非点灯の制御
をして、階調表示をする強誘電性液晶素子において、前
記複数本の電極が互いに異なる電気抵抗を有する電極部
分を介して、共通の電極駆動回路に接続されていること
を特徴とする強誘電性液晶素子。
A pixel formed at the intersection of a scanning electrode and a signal electrode is divided into a plurality of small pixels by making at least one of each scanning electrode and each signal electrode a plurality of electrodes, and an electrode drive circuit connected to the electrode. In a ferroelectric liquid crystal element that controls lighting and non-lighting for each small pixel to display gradation, the plurality of electrodes are driven by a common electrode through electrode portions having different electrical resistances. A ferroelectric liquid crystal element characterized by being connected to a circuit.
JP32741089A 1989-12-19 1989-12-19 Ferroelectric liquid crystal element Pending JPH03189622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32741089A JPH03189622A (en) 1989-12-19 1989-12-19 Ferroelectric liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32741089A JPH03189622A (en) 1989-12-19 1989-12-19 Ferroelectric liquid crystal element

Publications (1)

Publication Number Publication Date
JPH03189622A true JPH03189622A (en) 1991-08-19

Family

ID=18198844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32741089A Pending JPH03189622A (en) 1989-12-19 1989-12-19 Ferroelectric liquid crystal element

Country Status (1)

Country Link
JP (1) JPH03189622A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0685832A1 (en) 1994-06-01 1995-12-06 Sharp Kabushiki Kaisha A ferroelectric liquid crystal display device and a driving method of effecting gradational display thereof
US5999242A (en) * 1996-05-17 1999-12-07 Sharp Kabushiki Kaisha Addressable matrix array containing electrodes with a variety of resistances for ferroelectric liquid crystal device
US6137463A (en) * 1997-06-20 2000-10-24 Sharp Kabushiki Kaisha Liquid crystal device and method of addressing a liquid crystal device
US6271820B1 (en) 1997-05-20 2001-08-07 Harald Reinhart Bock Light modulating devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0685832A1 (en) 1994-06-01 1995-12-06 Sharp Kabushiki Kaisha A ferroelectric liquid crystal display device and a driving method of effecting gradational display thereof
US5614924A (en) * 1994-06-01 1997-03-25 Sharp Kabushiki Kaisha Ferroelectric liquid crystal display device and a driving method of effecting gradational display therefor
US5999242A (en) * 1996-05-17 1999-12-07 Sharp Kabushiki Kaisha Addressable matrix array containing electrodes with a variety of resistances for ferroelectric liquid crystal device
US6271820B1 (en) 1997-05-20 2001-08-07 Harald Reinhart Bock Light modulating devices
US6137463A (en) * 1997-06-20 2000-10-24 Sharp Kabushiki Kaisha Liquid crystal device and method of addressing a liquid crystal device

Similar Documents

Publication Publication Date Title
US7023420B2 (en) Electronic display with photo-addressing means
NL8700627A (en) METHOD FOR CONTROLLING A LIQUID CRYSTAL DISPLAY AND ASSOCIATED DISPLAY.
TWI397734B (en) Liquid crystal display and driving method thereof
US20070126693A1 (en) Method and apparatus for reducing edge image retention in an electrophoretic display device
JP2005526996A (en) Electrophoretic display and driving method of electrophoretic display
NL8703085A (en) METHOD FOR CONTROLLING A DISPLAY DEVICE
KR20060097125A (en) Bi-stable display with dc-balanced over-reset driving
JP5409352B2 (en) Moving particle display
US5576728A (en) Driving method for an electrooptical device
JPH03189622A (en) Ferroelectric liquid crystal element
JP2608403B2 (en) Driving method of active matrix type liquid crystal panel
JPS6388523A (en) Liquid crystal display device and driving method thereof
JP2725003B2 (en) Driving method of liquid crystal display device
JPS614021A (en) Driving method of liquid crystal element
JPH02136824A (en) Liquid crystal panel driving circuit
JP3338410B2 (en) Driving method of liquid crystal display device
JP3097724B2 (en) Liquid crystal display device
KR100366749B1 (en) Color liquid crystal display panel and color liquid crystal display device
JPS62133426A (en) Liquid crystal device
JPS63259516A (en) Method for driving matrix type liquid crystal display body
KR100319959B1 (en) Method for electrically addressing optical cells
JPS60262134A (en) Driving method of liquid-crystal element
KR20120052762A (en) Electrophoretic display device and method of fabricating the same
JPH0980384A (en) Liquid crystal display device using two terminals type nonlinear resistance element
KR20070063944A (en) Display device