JPH03183542A - Composite material and manufacture thereof - Google Patents

Composite material and manufacture thereof

Info

Publication number
JPH03183542A
JPH03183542A JP1323167A JP32316789A JPH03183542A JP H03183542 A JPH03183542 A JP H03183542A JP 1323167 A JP1323167 A JP 1323167A JP 32316789 A JP32316789 A JP 32316789A JP H03183542 A JPH03183542 A JP H03183542A
Authority
JP
Japan
Prior art keywords
wood
woody
fibers
wood fiber
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1323167A
Other languages
Japanese (ja)
Other versions
JP2551852B2 (en
Inventor
Tomiyasu Honda
本多 富泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1323167A priority Critical patent/JP2551852B2/en
Publication of JPH03183542A publication Critical patent/JPH03183542A/en
Application granted granted Critical
Publication of JP2551852B2 publication Critical patent/JP2551852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve heat resistance, water resistance, dimensional stability, and incombustibility by forming a metallic coated layer on the surface of a woody fiber board and, moreover, acetylating the woody fiber board as a basic material and, simultaneously, subjecting to an incombustible process. CONSTITUTION:Lumber chips are degreased and softened by steam boiling, and then opened so as to obtain woody fibers, and the woody fibers are made to heat-react while being immersed in acetic anhydride reaction liquid so that a hydroxyl group in the woody fibers is displaced with an acetyl group. In this fashion, an incombustible inorganic compound is filled, adhered or fixed to the cellular cavities of the woody fibers and/or wall surfaces within the cellular cavities and/or the outer surface of the woody fibers, wherein thus acetylated and incombustibly processed woody fibers and molded integrally by the use of an adhesive substance, with the result that a woody fiber mat is formed. The woody fiber mat is heat press-molded in order to form a woody fiber board, and then metal is flame-coated at least on one surface of the woody fiber board, and thereafter, a metal-coated layer is formed by cooling.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は複合材料及びその製造方法に関し、特に木質繊
維板上に金属被覆層が形成されて成る複合材料及びその
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a composite material and a method for producing the same, and more particularly to a composite material in which a metal coating layer is formed on a wood fiberboard and a method for producing the same.

〈従来技術〉 特開昭50−12948号公報に、ハードボード、合板
、木材、スレート、陶磁器等の基材ボードの表面に90
0℃以下の融点をもつ金属または合金4−mmr、−v
t:、rty’>ト1:Innn−+Rnn℃の融点を
もつ金属または合金を溶射した耐熱ボードが開示されて
いる。この従来技術によるボードは二層の溶射を行うも
のであり、耐熱性及び耐水性に優れたものどされている
<Prior art> Japanese Patent Laid-Open No. 50-12948 discloses that 90%
Metals or alloys with melting points below 0°C 4-mmr, -v
A heat-resistant board is disclosed in which a metal or alloy having a melting point of t:, rty'>t1:Innn-+Rnn is thermally sprayed. This prior art board is thermally sprayed in two layers and has excellent heat resistance and water resistance.

〈発明が解決しようとする課題〉 上記従来技術(ごよる耐熱ボードは基材と金属層との複
合であるため、基材と金属層とjこおける吸湿、吸水、
乾燥及び熱等に伴う膨張、収縮の違いによって、ボード
自体に反り、ねじれ、クラック、基材と金属層との眉間
剥離等が発生する傾向が認められる。特にハードボード
、合板、木材等の有機質基材は、吸湿、吸水、乾燥に伴
う膨張、収縮が無機質基材に比して大きく、このような
有機質基材と金属層とを複合した場合には上記した傾向
が顕著に現れる。
<Problems to be solved by the invention> Since the heat-resistant board described in the above-mentioned conventional technology is a composite of a base material and a metal layer, moisture absorption between the base material and the metal layer,
Due to differences in expansion and contraction caused by drying and heat, there is a tendency for the board itself to warp, twist, crack, and peel between the base material and the metal layer. In particular, organic base materials such as hardboard, plywood, and wood have greater expansion and contraction due to moisture absorption, water absorption, and drying than inorganic base materials, and when such organic base materials and metal layers are combined, The above-mentioned tendency is noticeable.

また上記従来技術によるボードは基材表面を被覆する金
属層によって表面の耐熱性が向上されるものの、基材が
ハードボード、合板、木材等の有機質である場合は、金
属層を介して伝達される熱の影響で基材自体が徐々に劣
化ないし炭化してしまい、最終的lこは発火する危険を
有している。
In addition, although the heat resistance of the board according to the above-mentioned conventional technology is improved by the metal layer that covers the surface of the base material, if the base material is an organic material such as hardboard, plywood, or wood, heat resistance may be transmitted through the metal layer. Under the influence of heat, the base material itself gradually deteriorates or becomes carbonized, and there is a danger that the material will eventually catch fire.

これらの理由によって、この従来技術による耐熱ボード
は、建築材料或は家具、建築部祠として使用されるに至
っていないのが現状である。
For these reasons, the heat-resistant boards according to the prior art are not currently used as building materials, furniture, or architectural shrines.

〈課題を解決するための手段〉 本発明は、このような従来技術の欠点に鑑みてその課題
を解決することを目的として鋭意工夫の末に完成された
ものであって、木繊維中に存在する水酸基をアセチル基
と置換すべくアセチル化処理されると共に、該木繊維の
細胞孔内及び/又は細胞孔内壁面及び/又は該木繊維の
外周部に不燃性無機化合物が充填又は付着或は固着され
た木繊維が接着成形一体化されて成る木質繊維板を基板
とし、該基板の少なくとも一表面に、溶射法による金属
被膜層が形成されて成ることを特徴とりる複合材料であ
る。
<Means for Solving the Problems> The present invention was completed through intensive efforts to solve the problems in view of the drawbacks of the prior art. At the same time, a nonflammable inorganic compound is filled or attached to the inside of the cell pores of the wood fiber and/or the inner wall surface of the cell pore and/or the outer periphery of the wood fiber. This composite material is characterized in that the substrate is a wood fiberboard formed by integrally bonding and molding fixed wood fibers, and a metal coating layer is formed on at least one surface of the substrate by a thermal spraying method.

本発明はまたかかる複合材料の製造方法をも提供するも
のであって、この発明方法は、木材チップを蒸煮により
脱脂・軟化処理した後解繊して木繊維を得、該木繊維を
酢酸無水物反応液中に浸漬しつつ加熱反応させて該木繊
維中の水酸基をアセチル基と置換せしめ、かくしてアセ
チル化処理された本繊維の細胞孔内及び/又は細胞孔内
壁面及び/又は該木繊維の外周部に不燃性無機化合物を
充填又は付着或は固着せしめ、かくしてアセチル化及び
不燃化処理された木繊維を接着性物質を用いて成形一体
化して木繊維マットを形成し、該木繊維マットを熱圧成
形して木質繊維板を形成し、該木質繊維板の少なくとも
一表面に金属を溶射した後冷却することにより金属被膜
層を形成することを特徴とする。
The present invention also provides a method for producing such a composite material, and the method includes degreasing and softening wood chips by steaming, and then defibrating them to obtain wood fibers. The hydroxyl groups in the wood fibers are replaced with acetyl groups by a heating reaction while being immersed in a reaction solution, and the inside of the cell pores and/or the inner wall surface of the cell pores and/or the wood fibers are thus acetylated. A nonflammable inorganic compound is filled in, attached to, or fixed to the outer periphery of the wood fiber mat, and the acetylated and nonflammable wood fibers are molded and integrated using an adhesive substance to form a wood fiber mat. The method is characterized in that a wood fiberboard is formed by hot-pressing, and a metal coating layer is formed by thermally spraying metal onto at least one surface of the wood fiberboard and then cooling the wood fiberboard.

本発明において用いられる木繊維は、例えば松、杉、桧
等の針葉樹材又はラワン、カポール、栗、ポプラ等の広
葉樹材をチップにした後、このチップを蒸煮することに
より脱脂・軟化処理し、更にこの蒸煮チップを解繊装置
により解繊することによって得られる。この木繊維は長
さ1〜30朋、直径2〜300μ程度のものが大半を占
める。この木繊維は導管及び仮導管又は細胞が束になっ
たような形をしており、繊維外周部の細胞壁は引き裂か
れたり割れ目を生1゛たりしているものが多いため、湿
気や水分を良く吸収する。
The wood fibers used in the present invention are made by chipping softwood such as pine, cedar, and cypress, or hardwood such as lauan, capor, chestnut, and poplar, and then degreasing and softening the chips by steaming them. Furthermore, it is obtained by defibrating the steamed chips using a defibrating device. Most of these wood fibers have a length of 1 to 30 mm and a diameter of 2 to 300 μm. These wood fibers are shaped like conduits, tracheids, or bundles of cells, and the cell walls around the fiber periphery are often torn or have cracks, which prevents moisture and moisture from forming. Absorbs well.

得られた木繊維は乾燥装置lこより乾燥(また後、木m
維のm雑巾lこ存在する水酸基をアセチル基と置換させ
るべくアセチル化処理する。このアセチル化処理は、本
繊維を、無触媒下で或は触媒として例えば酢酸ナトリウ
ムや酢酸カリウム等の酢酸金属塩水溶液を含浸させ乾燥
させた後、無水酢酸、無水クロル酢酸等の酢酸無水物反
応液槽中に浸漬し、100〜150℃にて数分乃至数時
間加熱反応させることによって行われる。反応終了後、
過剰の反応液を除去し、洗浄し乾燥する。
The obtained wood fibers are dried in a drying device (and later, the wood fibers are
Acetylation treatment is performed to replace the hydroxyl groups present in the fibers with acetyl groups. In this acetylation treatment, the fiber is impregnated with an aqueous solution of metal acetate such as sodium acetate or potassium acetate without a catalyst or as a catalyst, dried, and then subjected to an acetic anhydride reaction such as acetic anhydride or chloroacetic anhydride. The reaction is carried out by immersing it in a liquid bath and heating it at 100 to 150°C for several minutes to several hours. After the reaction is complete,
Remove excess reaction solution, wash and dry.

かくしてアセチル化処理された木繊維を次いで不燃化処
理する。即ち、該木繊維の細胞孔、導管孔等の空隙部に
不燃性無機化合物を充填させ、或は細胞孔内壁に沿って
層状に該不燃性無機化合物を固着又は付着させ、更に木
繊維の外周部に該不燃性無機化合物を固着又は付着させ
て不燃化する。
The thus acetylated wood fibers are then treated to make them incombustible. That is, the voids such as cell pores and conduit pores of the wood fibers are filled with a nonflammable inorganic compound, or the nonflammable inorganic compound is fixed or adhered in a layer along the inner wall of the cell pores, and then the outer periphery of the wood fiber is filled with a nonflammable inorganic compound. The nonflammable inorganic compound is fixed or adhered to the part to make it nonflammable.

この不燃化処理は例えば下記工程によって行うことがで
きる。即ち、木繊維を水溶性無機塩の水溶液(以下「第
1液」と称す)中に十分に浸漬させて含浸させる。第1
液としてはMgCO2,MgBrz+MgSO4・H2
O,Mg(NOs)z・6H!O,AQCQ、。
This nonflammability treatment can be performed, for example, by the following steps. That is, the wood fibers are sufficiently immersed in an aqueous solution of a water-soluble inorganic salt (hereinafter referred to as "first solution") to impregnate it. 1st
The liquid is MgCO2, MgBrz+MgSO4・H2
O, Mg(NOs)z・6H! O,AQCQ,.

AQBrs、A(2z(SO*)s、A<1(N(h)
s・9 H20。
AQBrs, A(2z(SO*)s, A<1(N(h)
s・9 H20.

CaC(22,CaBr、、Ca(NOs)z、ZnC
Q2゜BaCl212H,O,BaBr!、Ba(No
、)、等の水溶液が例示される。第1液の含浸後読液し
、木繊維を乾燥させてこれを表面乾燥状態若しくは絶乾
状態とし、必要に応じて表面に析出した第1液の成分結
晶を除去する。次いで、第1液と反応して水不溶性の不
燃性無機化合物を生成するような化合物液(以下「第2
液」と称す)をブレンダースプレー等を用いて木繊維に
添加混合し或は浸漬せしめることによって、該第2液を
木繊維に含浸させる。第2液としては、Na2CO3゜
(NH4)、GO,、H2SO4,Na25o4゜(N
H4)2SOoHzP04.Na2HPO4゜(N H
4)2 HP O4、H3B O3、N a B 02
 。
CaC(22, CaBr, , Ca(NOs)z, ZnC
Q2゜BaCl212H,O,BaBr! , Ba(No
, ), etc. are exemplified. After impregnation with the first liquid, the wood fibers are read and dried to bring the surface to a dry state or an absolutely dry state, and if necessary, component crystals of the first liquid deposited on the surface are removed. Next, a compound liquid (hereinafter referred to as "second liquid") that reacts with the first liquid to produce a water-insoluble, nonflammable inorganic compound is
The wood fibers are impregnated with the second liquid by adding and mixing or immersing the wood fibers with a blender spray or the like. The second liquid includes Na2CO3° (NH4), GO, H2SO4, Na25o4° (N
H4) 2SOoHzP04. Na2HPO4゜(NH
4) 2 HP O4, H3B O3, N a B 02
.

NH4BO2等が例示される。第2液を塗布含浸させる
ことにより、木繊維中で第1液と第2液とが反応し、不
燃性無機化合物が生成される。生成される不燃性無機化
合物としては、リン酸マグネシウム、リン酸カルシウム
、リン酸バリウム、リン酸アルミニウム、ホウ酸マグネ
シウム、炭酸マグネシウム、炭酸カルシウム、リン酸亜
鉛、炭酸バリウム、硝酸カルシウム、硝酸バリウム等の
カルシウム化合物、マグネシウム化合物、アルミニウム
化合物、バリウム化合物、鉛化合物、亜鉛化合物、ケイ
酸化合物等が例示される。反応終了後脱液し乾燥させる
。この不燃性無機化合物は水不溶性であるため、乾燥後
において、木繊維の細胞孔内又は細胞孔内壁面及び木繊
維外周部に充填又は付着或は固着される。これによって
、木繊維外周部の細胞壁に裂は目や割れ目が含まれる場
合にも、これを閉塞ないし充填するような形で不燃性無
機化合物が存在することとなる。
Examples include NH4BO2. By applying and impregnating the second liquid, the first liquid and the second liquid react in the wood fibers, and a nonflammable inorganic compound is generated. Nonflammable inorganic compounds produced include calcium compounds such as magnesium phosphate, calcium phosphate, barium phosphate, aluminum phosphate, magnesium borate, magnesium carbonate, calcium carbonate, zinc phosphate, barium carbonate, calcium nitrate, and barium nitrate. , magnesium compounds, aluminum compounds, barium compounds, lead compounds, zinc compounds, silicate compounds, and the like. After the reaction is completed, the liquid is removed and dried. Since this nonflammable inorganic compound is water-insoluble, after drying, it is filled in, adhered to, or fixed in the cell pores of the wood fiber or on the inner wall surface of the cell pore and the outer periphery of the wood fiber. As a result, even if the cell wall of the outer periphery of the wood fibers contains cracks or fissures, the nonflammable inorganic compound is present in a form that blocks or fills them.

不燃性無機化合物は、木繊維に対して33重量%以上の
割合で混入されることが好ましく、これ以下では十分な
防火性能が得られない。また第1液と第2液との反応効
率を高めるために、第2液の添加混合は加熱雰囲気下、
特に40℃以上更に好ましくは50℃以上の温度で行う
ことが好ましい。
It is preferable that the nonflammable inorganic compound is mixed in at a ratio of 33% by weight or more based on the wood fibers, and if it is less than this, sufficient fire protection performance cannot be obtained. In addition, in order to increase the reaction efficiency between the first liquid and the second liquid, the addition and mixing of the second liquid is carried out under a heated atmosphere.
In particular, it is preferable to carry out at a temperature of 40°C or higher, more preferably 50°C or higher.

かくしてアセチル化及び不燃化処理された木繊維を混合
装置に投入し、接着剤、サイズ剤等を添加混合して付着
させる。次いで木繊維を風送し、7オーミング装置にて
搬送装置上に一定厚の連続した木繊維マットを形成する
The wood fibers thus acetylated and made non-combustible are put into a mixing device, and adhesives, sizing agents, etc. are added and mixed and adhered to the wood fibers. The wood fibers are then air blown to form a continuous wood fiber mat of constant thickness on a conveying device using a 7 ohming device.

得られた木繊維マットを定尺切断した後、ホ・ントブレ
スに挿入して熱圧成形し、木質繊維板が得られる。この
木質繊維板の比重は0.4〜1.2の範囲内とすること
が好ましい。この理由は、比重が0.4以下であると表
面がポーラスとなって金属被膜層が形成されにくくなり
、膜厚を大きくする必要が生ずるためであり、また比重
が1.2以上であると表面が密になり過ぎて金属被膜層
の木質繊維板に対する投錨効果が減少し、密着力が低下
するためである。また木質繊維板の含水率は20%以下
とすることが好ましい。この理由は、含水率が20%以
上であると、金属溶射時にその熱の影響で溶射面側の内
部水が蒸発し反対側に水分移動されるために内部バラン
スが崩れ、金属溶射中において木質繊維板自体に溶射面
側を凹とする反りが生じ易くなるためである。
After cutting the obtained wood fiber mat to a specified length, it is inserted into a hot press and hot-pressed to obtain a wood fiber board. The specific gravity of this wood fiberboard is preferably within the range of 0.4 to 1.2. The reason for this is that when the specific gravity is 0.4 or less, the surface becomes porous and it becomes difficult to form a metal coating layer, making it necessary to increase the film thickness. This is because the surface becomes too dense and the anchoring effect of the metal coating layer on the wood fiberboard decreases, resulting in a decrease in adhesion. Further, the moisture content of the wood fiberboard is preferably 20% or less. The reason for this is that if the moisture content is 20% or more, the internal water on the sprayed surface side will evaporate and move to the opposite side due to the influence of heat during metal spraying, causing the internal balance to be disrupted. This is because the fiberboard itself tends to warp with the sprayed surface side concave.

得られた木質繊維板を養生し、必要に応じてその表面(
後に金属被膜層が形成される側)をサンディングした後
、溶射器を用いて必要量の溶融金属を吹き付は溶射を行
う。金属溶射は木質繊維板の表面に限らず裏面、木口面
等の必要箇所、また全面を被覆するように行うことがで
きる。金属溶射が行われる木質繊維板の面の温度は40
−100℃であることが好ましく、この観点より、熱圧
成形後の木質繊維板の材温か高いうちに或は少なくとも
木質繊維板の金属被膜層を形成する面の温度を温めた後
に、金属溶射を行うことが好ましい。
The obtained wood fiberboard is cured and its surface (
After sanding the side (on which the metal coating layer will later be formed), a necessary amount of molten metal is sprayed using a thermal sprayer. Metal spraying can be carried out to cover not only the front surface of the wood fiberboard, but also necessary parts such as the back surface, end surface, etc., and the entire surface. The temperature of the surface of the wood fiberboard where metal spraying is performed is 40
-100°C is preferable, and from this point of view, metal spraying should be carried out while the temperature of the wood fiberboard after thermoforming is still high, or at least after the temperature of the surface of the wood fiberboard on which the metal coating layer will be formed is warmed. It is preferable to do this.

40℃以下であると吹き付けられた溶融金属が直ちに冷
却固化してしまうため、木質繊維板の被覆面に対する投
錨効果による密着力が十分に発揮されない。また100
℃以上であると溶融金属の温度影響が強く、木質繊維板
の表面を劣化させることとなって、密着力が低下する6
溶射される金属としては錫、鉛、亜鉛、銅、黄銅、青銅
、アルミニウム、ニッケル、鉄、ステンレス等の金属合
金が好適に用いられる。溶射法としては一般に行われる
電気溶線式溶射法、ガス溶線式溶射法、粉末式溶射法の
いずれを採用しても良い。溶射された金属は、その後の
冷却により固化し、木質繊維板の表面上に金属被膜層が
密着形成される。
If the temperature is below 40°C, the sprayed molten metal will immediately cool and solidify, so that the adhesion force due to the anchoring effect to the coated surface of the wood fiberboard will not be sufficiently exerted. 100 again
If the temperature is above ℃, the temperature effect of the molten metal will be strong, degrading the surface of the wood fiberboard and reducing the adhesion force6.
Metal alloys such as tin, lead, zinc, copper, brass, bronze, aluminum, nickel, iron, and stainless steel are preferably used as the metal to be thermally sprayed. As the thermal spraying method, any of the commonly used electric wire spraying method, gas wire thermal spraying method, and powder spraying method may be employed. The sprayed metal is solidified by subsequent cooling, and a metal coating layer is formed in close contact with the surface of the wood fiberboard.

く作用〉 木質繊維板の表面に形成される金属被膜層によって耐熱
性が向上される。木質繊維板は、その木繊維中の水酸基
がアセチル基と置換されてアセチル化処理されるので寸
法安定性に優れ、木繊維中への水分吸収及び乾燥に伴う
板の膨張・収縮が抑制される。同時に、この木質繊維板
は、その木繊維の細胞孔内又は細胞孔内壁面或は木繊維
外周部に不燃性無機化合物が充填又は付着或は固着され
ることによって不燃化されるため、金属被膜層を介して
伝達される熱によっても劣化ないし炭化することがない
。木質繊維板自体において、その木繊維が蒸煮脱脂処理
されているため、溶融金属の溶射に際して前処理を行う
必要がない。
Effect> Heat resistance is improved by the metal coating layer formed on the surface of the wood fiberboard. Wood fiberboard is acetylated by replacing the hydroxyl groups in the wood fibers with acetyl groups, so it has excellent dimensional stability and suppresses moisture absorption into the wood fibers and expansion and contraction of the board due to drying. . At the same time, this wood fiberboard is made nonflammable by filling, adhering, or fixing a noncombustible inorganic compound into the cell pores of the wood fibers, on the inner wall surface of the cell pores, or on the outer periphery of the wood fibers. It does not deteriorate or become carbonized by heat transferred through the layers. Since the wood fibers of the wood fiberboard itself have been steamed and degreased, there is no need for pretreatment when spraying molten metal.

〈実施例〉 ラジアータパインのチップをダイジェスタ−により16
0°Os 7 kg7cm2で5分間蒸煮して脱脂・軟
化処理した。このチップをデイファイブレータ−式リフ
ァイナーで解繊し、脱脂された木繊維を得た。この木繊
維を乾燥した後、無水酢酸に浸漬し、120℃で1時間
加熱反応を行った。反応終了後、過剰の反応液を除去し
、直ちに洗浄機に投入して水洗し、乾燥させることによ
って、アセチル化処理された木繊維を得た。この際アセ
チル化による重量増加率は17%であった。
<Example> 16 pieces of radiata pine chips were added to the digester using a digester.
It was degreased and softened by steaming at 0°Os 7 kg 7 cm2 for 5 minutes. The chips were defibrated using a defibrator refiner to obtain defatted wood fibers. After drying this wood fiber, it was immersed in acetic anhydride and subjected to a heating reaction at 120° C. for 1 hour. After the reaction was completed, the excess reaction solution was removed, and the mixture was immediately put into a washing machine, washed with water, and dried to obtain acetylated wood fibers. At this time, the weight increase rate due to acetylation was 17%.

更にこのアセチル化処理された木繊維を、塩化バリウム
を主成分とする水溶液に10分間浸漬し、拡散処理の後
、脱液した。これを熱風乾燥して含水率を7%に調整し
た。乾燥後、この木繊維をブレンダー装置に投入して、
リン酸アンモニウムを主成分とする水溶液を添加混合し
、該木繊維の細胞孔等の孔内又は本繊維外周部に水不溶
性リン酸バリウムとリン酸水素バリウムから成る不燃性
無機化合物を充填ないし付着せしめるべく不燃化処理を
行った後、熱風乾燥して、その含水率を6%に調整した
。この不燃化処理によって生成された不燃性無機化合物
による重量増加率は50%であった。
Furthermore, this acetylated wood fiber was immersed for 10 minutes in an aqueous solution containing barium chloride as a main component, and after a diffusion treatment, the liquid was removed. This was dried with hot air to adjust the moisture content to 7%. After drying, the wood fibers are put into a blender,
An aqueous solution containing ammonium phosphate as a main component is added and mixed, and a nonflammable inorganic compound consisting of water-insoluble barium phosphate and barium hydrogen phosphate is filled or attached to the cell pores of the wood fiber or the outer periphery of the fiber. After being treated to make it incombustible, it was dried with hot air and its moisture content was adjusted to 6%. The weight increase rate due to the nonflammable inorganic compound produced by this nonflammability treatment was 50%.

かくしてアセチル化処理されると共に不燃化処理された
木繊維をブレンダーに投入し、該ブレンダー内において
木繊維量に対して4%のワックスサイズ及び10%のフ
ェノール樹脂接着剤を添加混合した後、風送し、7エル
ターにてスクリーンコンベア上に7オーミングして一定
厚の連続した木繊維マットを形成した。この木繊維マッ
トをその幅、長さを所定寸法に切断した後、ホットプレ
スに挿入して200℃にて4分間圧締成形し、比重0.
8.10mm厚、3’X6’サイズの木質繊維板を得た
The thus acetylated and nonflammable wood fibers were put into a blender, and in the blender, 4% wax size and 10% phenolic resin adhesive were added and mixed based on the amount of wood fibers. The wood fibers were fed to a screen conveyor at 7 ohms to form a continuous wood fiber mat of constant thickness. After cutting this wood fiber mat into a predetermined width and length, it was inserted into a hot press and pressed and formed at 200°C for 4 minutes, with a specific gravity of 0.
8. A wood fiberboard with a thickness of 10 mm and a size of 3' x 6' was obtained.

得られた木質繊維板を養生し、表面温度が50℃になっ
たところで、粉末式溶射法によりニッケル合金(Ni3
0%、Zn4%、Cu66%、融点800〜1200℃
)溶融金属を溶射し、後冷却することにより、金属被膜
層を形成し、本発明による複合飼料が得られた。
The obtained wood fiberboard was cured and when the surface temperature reached 50°C, a nickel alloy (Ni3
0%, Zn4%, Cu66%, melting point 800-1200℃
) A composite feed according to the present invention was obtained by thermally spraying molten metal and cooling it afterwards to form a metal coating layer.

〈発明の効果〉 本発明による複合材料は、木質繊維板の表面に金属被膜
層が形成されることにより耐熱性・耐水性に優れ、しか
も基材である木質繊維板はアセチル化処理されているた
めに寸法安定性に優れ、吸湿・吸水に伴う膨張・収縮が
抑制され、同時に不燃化処理されているために、金属被
膜層を介して伝達される熱によって劣化ないし炭化する
ことがなく、長期的にも発火する恐れがない。よって広
く建築材料或は家具・建築部材として好適に用G1られ
る。
<Effects of the Invention> The composite material according to the present invention has excellent heat resistance and water resistance due to the formation of a metal coating layer on the surface of the wood fiberboard, and the wood fiberboard that is the base material is acetylated. Therefore, it has excellent dimensional stability, suppresses expansion and contraction due to moisture and water absorption, and is treated to be nonflammable, so it does not deteriorate or carbonize due to heat transmitted through the metal coating layer, so it can last for a long time. There is no risk of catching fire. Therefore, it is widely used as a building material or furniture/building member.

Claims (3)

【特許請求の範囲】[Claims] (1)木繊維中に存在する水酸基をアセチル基と置換す
べくアセチル化処理されると共に、該木繊維の細胞孔内
及び/又は細胞孔内壁面及び/又は該木繊維の外周部に
不燃性無機化合物が充填又は付着或は固着された木繊維
が接着成形一体化されて成る木質繊維板を基板とし、該
基板の少なくとも一表面に、溶射法による金属被膜層が
形成されて成ることを特徴とする複合材料。
(1) Acetylation treatment is performed to replace the hydroxyl groups present in the wood fiber with acetyl groups, and the inside of the cell pores of the wood fiber and/or the inner wall surface of the cell pore and/or the outer periphery of the wood fiber is nonflammable. The substrate is a wood fiber board formed by adhesive molding and integrating wood fibers filled with, attached to, or fixed with an inorganic compound, and a metal coating layer is formed on at least one surface of the substrate by a thermal spraying method. and composite materials.
(2)木材チップを蒸煮により脱脂・軟化処理した後解
繊して木繊維を得、該木繊維を酢酸無水物反応液中に浸
漬しつつ加熱反応させて該木繊維中の水酸基をアセチル
基と置換せしめ、かくしてアセチル化処理された木繊維
の細胞孔内及び/又は細胞孔内壁面及び/又は該木繊維
の外周部に不燃性無機化合物を充填又は付着或は固着せ
しめ、かくしてアセチル化及び不燃化処理された木繊維
を接着性物質を用いて成形一体化して木繊維マットを形
成し、該木繊維マットを熱圧成形して木質繊維板を形成
し、該木質繊維板の少なくとも一表面に金属を溶射した
後冷却することにより金属被膜層を形成することを特徴
とする、複合材料の製造方法。
(2) Wood chips are degreased and softened by steaming, then defibrated to obtain wood fibers, and the wood fibers are heated and reacted while immersed in an acetic anhydride reaction solution to convert the hydroxyl groups in the wood fibers into acetyl groups. A nonflammable inorganic compound is filled in, attached to, or fixed to the inside of the cell pores of the acetylated wood fiber and/or the inner wall surface of the cell pore and/or the outer periphery of the wood fiber, thus acetylated and A wood fiber mat is formed by integrally molding wood fibers that have been rendered incombustible using an adhesive substance, a wood fiber board is formed by heat-pressing the wood fiber mat, and at least one surface of the wood fiber board is formed by heat-pressing the wood fiber mat. A method for producing a composite material, which comprises forming a metal coating layer by thermally spraying a metal onto a surface and then cooling the material.
(3)上記金属溶射を、熱圧成形後の上記木質繊維板の
材温が40〜100℃である状態で行うことを特徴とす
る、請求項2記載の複合材料の製造方法。
(3) The method for manufacturing a composite material according to claim 2, characterized in that the metal spraying is performed at a temperature of 40 to 100° C. of the wood fiberboard after thermoforming.
JP1323167A 1989-12-13 1989-12-13 Composite material and manufacturing method thereof Expired - Fee Related JP2551852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1323167A JP2551852B2 (en) 1989-12-13 1989-12-13 Composite material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1323167A JP2551852B2 (en) 1989-12-13 1989-12-13 Composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03183542A true JPH03183542A (en) 1991-08-09
JP2551852B2 JP2551852B2 (en) 1996-11-06

Family

ID=18151828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1323167A Expired - Fee Related JP2551852B2 (en) 1989-12-13 1989-12-13 Composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2551852B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198610A (en) * 1993-01-08 1994-07-19 Yamaha Corp Preparation of wooden fibrous material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151544A (en) * 1980-04-28 1981-11-24 Tokuji Iwasaki Mamufacture of light fireproof heat-insulating board containing wooden fiber, chip, powder and vegetable fiber as principal materials
JPS57103804A (en) * 1980-12-19 1982-06-28 Toray Industries Thermoplastic improved wood
JPH01176061A (en) * 1987-12-28 1989-07-12 Masuzo Hamamura Wooden product coated with metal film and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151544A (en) * 1980-04-28 1981-11-24 Tokuji Iwasaki Mamufacture of light fireproof heat-insulating board containing wooden fiber, chip, powder and vegetable fiber as principal materials
JPS57103804A (en) * 1980-12-19 1982-06-28 Toray Industries Thermoplastic improved wood
JPH01176061A (en) * 1987-12-28 1989-07-12 Masuzo Hamamura Wooden product coated with metal film and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198610A (en) * 1993-01-08 1994-07-19 Yamaha Corp Preparation of wooden fibrous material

Also Published As

Publication number Publication date
JP2551852B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
JPH03183542A (en) Composite material and manufacture thereof
JP2700191B2 (en) Fire door
JPH04115084A (en) Fire door
JP2530240B2 (en) Composite material and manufacturing method thereof
JPH03183541A (en) Composite material and manufacture thereof
JPH03183540A (en) Composite material and manufacture thereof
JP2744951B2 (en) Fire door
JP2700192B2 (en) Fire door
JP2700194B2 (en) Fire door
JP2663049B2 (en) Manufacturing method of composite board
JP2521173B2 (en) Composite material and manufacturing method thereof
JP2521174B2 (en) Composite material and manufacturing method thereof
JP2521176B2 (en) Composite material and manufacturing method thereof
JPH04115083A (en) Fire door
JP2589218B2 (en) Manufacturing method of composite board
JP2646158B2 (en) Manufacturing method of composite board
JP2700193B2 (en) Fire door
JP2521175B2 (en) Composite material and manufacturing method thereof
JPH04351502A (en) Improved wooden fiber-plate and its manufacture
JPH0655507A (en) Modified wooden fiber board and manufacture thereof
JPH03258509A (en) Non-combustible organic fiber-board and manufacture thereof
JPH04122638A (en) Composite board and manufacture thereof
JPH0327199A (en) Organic fiber board and preparation thereof
JPH03258508A (en) Non-combustible chip-board and manufacture thereof
JPH04216045A (en) Decorative panel and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees