JPH03182607A - Operating position detecting type electromagnetic force valve drive unit - Google Patents

Operating position detecting type electromagnetic force valve drive unit

Info

Publication number
JPH03182607A
JPH03182607A JP1322420A JP32242089A JPH03182607A JP H03182607 A JPH03182607 A JP H03182607A JP 1322420 A JP1322420 A JP 1322420A JP 32242089 A JP32242089 A JP 32242089A JP H03182607 A JPH03182607 A JP H03182607A
Authority
JP
Japan
Prior art keywords
intake
magnetic
movable element
electromotive force
electromagnetic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1322420A
Other languages
Japanese (ja)
Other versions
JP2855352B2 (en
Inventor
Hideo Kawamura
英男 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP1322420A priority Critical patent/JP2855352B2/en
Publication of JPH03182607A publication Critical patent/JPH03182607A/en
Application granted granted Critical
Publication of JP2855352B2 publication Critical patent/JP2855352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To control the change-over of an intake/exhaust valve accurately by detecting self-induced counter-electromotive force being lower than the specified value to control the current applied state to coils. CONSTITUTION:The magnetic passage 21 of a movable piece 2 is connected to an intake valve 1 and reciprocated. The magnetic poles 32 of a drive part 3 are lined up in the direction of reciprocating motion and constantly opposed to the peripheral surface of the magnetic passage 21. Exciting coils 31 are wound on the magnetic poles 32, and secondary coils are provided at the peripheral surface of the magnetic passage 21. Hereupon, an electromotive force detecting device 33 detects self-induced counter-electromotive force generated at the exciting coils 31 being lower than the specified value. When the current applied state to the exciting coils 31 is controlled by a controller 4 on the basis of a signal from the electromotive force detecting device 33, a progressive magnetic field is formed by the magnetic poles 32 lined up at the side faces of the secondary coils 22, and a current induced to the secondary coils 22 reciprocates the intake valve 1 by electromagnetic force received from the progressive magnetic field. The intake valve 1 can be therefore controlled in change-over with further accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの吸排気バルブの作動位置を検知し
、該検知された位置信号に基づき電磁力により吸排気バ
ルブを開閉駆動する作動位置検出式電磁力バルブ駆動装
置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention detects the operating position of an intake and exhaust valve of an engine, and detects the operating position of the intake and exhaust valve by electromagnetic force based on the detected position signal. The present invention relates to a detection type electromagnetic force valve driving device.

(従来の技術) 従来の吸排気バルブの開閉駆動装置は、エンジン回転位
相と同期して回転するカムシャフトのカム面からロッカ
ーアームやブッシングロッド等のリンク機構を介してバ
ルブの軸端面を押すことにより、常時スプリングにより
閉方向にバイアスされている吸排気バルブを開閉駆動し
ている。該開閉駆動装置は、カムシャフト及びリンク機
構をエンジンに付設せねばならず、そのためエンジンが
大型化し、カムシャフト及びリンク機構を駆動する際の
摩擦抵抗によりエンジン出力の一部が消費され、エンジ
ンの実効出力が低下する。またエンジン運転中に吸排気
バルブの開閉タイくングを変更できないので、所定のエ
ンジン回転数に合わせてバルブ開閉タイミングを調整し
なければならない。よって、該所定の回転数と異なる回
転数での運転時にはエンジンの出力及び効率が低下する
という問題がある。
(Prior art) A conventional intake/exhaust valve opening/closing drive device pushes the end face of the valve shaft from the cam surface of a camshaft that rotates in synchronization with the engine rotational phase via a link mechanism such as a rocker arm or bushing rod. This opens and closes the intake and exhaust valves, which are always biased in the closing direction by springs. The opening/closing drive device requires a camshaft and a link mechanism to be attached to the engine, which increases the size of the engine and consumes a portion of the engine output due to frictional resistance when driving the camshaft and link mechanism. Effective output decreases. Furthermore, since the opening/closing timing of the intake and exhaust valves cannot be changed while the engine is running, the valve opening/closing timing must be adjusted in accordance with a predetermined engine speed. Therefore, there is a problem in that the output and efficiency of the engine decrease when the engine is operated at a rotation speed different from the predetermined rotation speed.

そこで、上記問題を解決するために、吸排気バルブの開
閉駆動をカムシャフトによらず電磁石による電磁力で行
なう装置が、特開昭58−183805号公報、あるい
は特開昭61−78713号公報に記載されている。
Therefore, in order to solve the above problem, a device for opening and closing the intake and exhaust valves using electromagnetic force generated by an electromagnet instead of using a camshaft was proposed in Japanese Patent Laid-Open No. 58-183805 or No. 61-78713. Are listed.

(発明が解決しようとする課題) しかし、上記2公報により開示された装置は、吸排気バ
ルブに付設した磁性体を、該吸排気バルブの移動方向に
配設した電磁石により吸引し、該吸引力によって吸排気
バルブを駆動するものである。
(Problem to be Solved by the Invention) However, the device disclosed in the above two publications attracts a magnetic body attached to an intake/exhaust valve with an electromagnet disposed in the direction of movement of the intake/exhaust valve. This is to drive the intake and exhaust valves.

磁性体に作用する吸引力はtIit1石と磁性体との間
隔の二乗に反比例するため、該間隔の変化に伴ない吸引
力が変化し吸排気バルブの駆動が不安定になるという問
題がある。また、駆動開始時には吸排気バルブC対し強
力な加速力を与えなければならないが、上記2公報によ
り開示された装置は駆動開始時における電磁石と磁性体
との間隔が最大となり、よって吸排気バルブに対して最
小の駆動力しか作用させることができない。
Since the attraction force acting on the magnetic body is inversely proportional to the square of the distance between the tIit1 stone and the magnetic body, there is a problem in that the attraction force changes as the distance changes, making the driving of the intake and exhaust valves unstable. Furthermore, a strong accelerating force must be applied to the intake and exhaust valves C at the start of driving, but in the devices disclosed in the above two publications, the distance between the electromagnet and the magnetic body is maximum at the start of driving, and therefore the intake and exhaust valves Only the minimum driving force can be applied.

更に、上記の電磁力にて吸排気バルブを駆動する装置で
は、吸排気バルブは常に非接触状態で駆動されるため、
実際の開閉位置及び速度が設定状態と同一であるという
補償は無い。
Furthermore, in the device that drives the intake and exhaust valves using electromagnetic force, the intake and exhaust valves are always driven in a non-contact state.
There is no guarantee that the actual opening/closing position and speed are the same as the set state.

本発明は、上記の点に鑑みてなされたもので、吸排気バ
ルブに作用する駆動力が吸排気バルブの移動による影響
を受けず安定して吸排気バルブの開閉制御を行ない、か
つ、吸排気バルブの開閉状態を検出し、該検出された開
閉状態を吸排気バルブ駆動IIJiO装置にフィードバ
ックすることにより、吸排気バルブをより正確に開閉制
御する作動位置検出式電磁力バルブ駆動装置を提供しよ
うとするものである。
The present invention has been made in view of the above points, and is capable of stably controlling the opening and closing of the intake and exhaust valves without being affected by the movement of the intake and exhaust valves, with the driving force acting on the intake and exhaust valves being unaffected by the movement of the intake and exhaust valves. An attempt is made to provide an actuation position detection type electromagnetic force valve drive device that more accurately controls the opening and closing of intake and exhaust valves by detecting the open/close state of the valve and feeding back the detected open/close state to the intake/exhaust valve drive IIJiO device. It is something to do.

(課題を解決するための手段) 本発明によれば、エンジンの吸排気バルブに連結し往復
自在な可動子と、該可動子の外周面と対向し往復方向に
並設された磁極と、該磁極に捲設され往復方向の進行磁
界を形成するコイルと、上記可動子の外周面に上記磁極
と対向して環設された2次コイルと、上記コイルに発生
する自己誘導よる逆起電力が所定値以下であることを検
知する作動位置検知手段と、該作動検知手段からの信号
に基づいて上記コイルへの通電状態を制御し吸排気バル
ブを開閉駆動せしめる通電制御手段とを有することを特
徴とする作動位置検出式電磁力バルブ駆動装置を提供で
きる。
(Means for Solving the Problems) According to the present invention, a movable element connected to an intake and exhaust valve of an engine and capable of reciprocating, magnetic poles facing the outer peripheral surface of the movable element and arranged in parallel in the reciprocating direction; A coil is wound around the magnetic pole to form a traveling magnetic field in a reciprocating direction, a secondary coil is installed around the outer peripheral surface of the movable element facing the magnetic pole, and a back electromotive force due to self-induction generated in the coil is provided. It is characterized by having an actuation position detection means for detecting that the value is below a predetermined value, and an energization control means for controlling the energization state of the coil based on the signal from the operation detection means and driving the intake and exhaust valves to open and close. It is possible to provide an actuation position detection type electromagnetic force valve driving device.

(作用) 本発明の作動位置検出式電磁力バルブ駆動装置では、可
動子に周設された2次コイルの側面に並設されたm極に
より進行磁界を形成し、2次コイルに誘導される電流が
進行磁界から受る電磁力により吸排気バルブを往復駆動
するので、吸排気バルブの位置が変化しても駆動力は変
化せず、従って、安定した開閉制御を行なうことができ
る。また、非接触状態で開閉駆動される吸排気バルブの
開閉状態を検出するので、該検出された開閉状態を開閉
制御装置にフィードバックすることにより、吸排気バル
ブの動作を設定通りに制御することができる。
(Function) In the operating position detection type electromagnetic force valve driving device of the present invention, a traveling magnetic field is formed by the m poles arranged in parallel on the side surface of the secondary coil surrounding the movable element, and the magnetic field is induced in the secondary coil. Since the intake and exhaust valves are reciprocated by the electromagnetic force received from the traveling magnetic field of the current, the driving force does not change even if the position of the intake and exhaust valves changes, and therefore stable opening/closing control can be performed. In addition, since the open/close state of the intake and exhaust valves that are driven to open and close in a non-contact state is detected, the operation of the intake and exhaust valves can be controlled according to settings by feeding back the detected open/close state to the opening/closing control device. can.

(実施例) 以下1本発明の一実施例を図面に従って詳細に説明する
(Embodiment) An embodiment of the present invention will be described below in detail with reference to the drawings.

341図は、本発明の駆動装置の構成を示すブロック図
である。尚、エンジンには上記のごとく吸気バルブと排
気バルブとが設けられているが、本発明による駆動装置
は吸排気バルブ共に適用できるので、以下主に吸気バル
ブについて説明する。
FIG. 341 is a block diagram showing the configuration of the drive device of the present invention. Although the engine is provided with an intake valve and an exhaust valve as described above, the drive device according to the present invention can be applied to both the intake and exhaust valves, so the intake valve will mainly be described below.

1は、軽量であり高温強度に優れた窒化珪素等のセラミ
ックス材あるいは耐熱合金からなる吸気バルブである。
Reference numeral 1 denotes an intake valve made of a ceramic material such as silicon nitride or a heat-resistant alloy, which is lightweight and has excellent high-temperature strength.

該吸気バルブ1の軸部はバルブガイド12によって往復
自在に軸承されている。そして、該吸気バルブlの閉鎖
時には、本図に示すごとく、吸排気バルブlの傘部がバ
ルブシ一ト13に着座し吸気口を閉鎖する。
The shaft portion of the intake valve 1 is rotatably supported by a valve guide 12. When the intake valve 1 is closed, the umbrella portion of the intake/exhaust valve 1 is seated on the valve seat 13 to close the intake port, as shown in this figure.

該吸気バルブ1の軸端部には可動子2が連結している。A movable element 2 is connected to the shaft end of the intake valve 1 .

該可動子2は往復慣性質量を減少させるため極力軽量で
なければならず、よって磁気通路21は薄肉円筒形に形
成されている。そして該磁気通路21の外周面には複数
個の2次コイル22が周設されている。該2次コイルは
磁気通路21の外周面に刻設された溝に溶融したアルミ
ニウムを流し込んで形成される。
The movable element 2 must be as light as possible in order to reduce the reciprocating inertial mass, and therefore the magnetic passage 21 is formed in a thin cylindrical shape. A plurality of secondary coils 22 are provided around the outer peripheral surface of the magnetic path 21. The secondary coil is formed by pouring molten aluminum into a groove cut on the outer peripheral surface of the magnetic path 21.

尚、磁気通路21は磁束密度を増加させるために磁性体
から形成されており、例えば磁性金属のアモルファス薄
板を放射状に配列したり、あるいは強磁性体であるニッ
ケルークロム合金等を円筒形状に形成したものである。
The magnetic path 21 is made of a magnetic material in order to increase the magnetic flux density, for example, amorphous thin plates of magnetic metal are arranged radially, or ferromagnetic material such as nickel-chromium alloy is formed into a cylindrical shape. This is what I did.

そして、該可動子2は、硬質プラスチックからなるコツ
ター止め23を介して吸気バルブ1の軸端部と連結して
いる。
The movable element 2 is connected to the shaft end of the intake valve 1 via a stopper stopper 23 made of hard plastic.

また、エンジン停止時に吸気バルブ1が降下することを
防止するため、上記バルブガイド12と可動子2との間
にはスプリング24が配設されている。
Further, a spring 24 is provided between the valve guide 12 and the movable element 2 to prevent the intake valve 1 from falling when the engine is stopped.

該可動子2の周囲には駆動部3が配設されている。該駆
動部3は、上記2次コイル22と対向し可動子2の外周
面に周設された複数個の磁極32と、該磁極32の各々
に捲設された励磁コイル31を有している。そして、磁
極32を通過する磁束の通路となるコア34の中央には
円柱状の突起5fI極35が形成されており、上記可動
子2の内部に挿通している。そして、該突起磁極35は
可動子2に作用する磁束の通路として作用するため該磁
束の通過に際する磁気抵抗を低減することができる。
A driving section 3 is arranged around the movable element 2. The drive unit 3 includes a plurality of magnetic poles 32 facing the secondary coil 22 and disposed around the outer peripheral surface of the movable element 2, and an excitation coil 31 wound around each of the magnetic poles 32. . A cylindrical projection 5fI pole 35 is formed at the center of the core 34, which serves as a path for the magnetic flux passing through the magnetic pole 32, and is inserted into the interior of the movable element 2. Since the protruding magnetic poles 35 act as a path for the magnetic flux acting on the movable element 2, the magnetic resistance when the magnetic flux passes can be reduced.

上記励磁コイル31は、起電力検出装置33を介してコ
ントローラ4と接続しており、該起電力検出装置33を
経由してコントローラ4から電力の供給を受ける。また
、起電力検出装置33はコントローラ4に接続しており
、励磁コイル31に自己誘導によって発生する起電力が
所定値以下であることを検知すると該検知信号をコント
ローラ4へ出力する。
The excitation coil 31 is connected to the controller 4 via an electromotive force detection device 33, and receives power from the controller 4 via the electromotive force detection device 33. Further, the electromotive force detection device 33 is connected to the controller 4 and outputs a detection signal to the controller 4 when it detects that the electromotive force generated by self-induction in the excitation coil 31 is less than a predetermined value.

該コントローラ4には、上記の他にエンジンの回転数及
びクランク角を検出する回転センサ5と、アクセルペダ
ル(図示せず)の踏込量を検出する負荷センサ6とから
の検出信号が入力されている。
In addition to the above, the controller 4 receives detection signals from a rotation sensor 5 that detects the engine speed and crank angle, and a load sensor 6 that detects the amount of depression of an accelerator pedal (not shown). There is.

上記コントローラ4は、上記検出信号の人力及び電力の
供給を司る入出力インターフェイス、予めプログラムや
各種関係マツプを記憶するROM、該ROMに記憶され
たプログラムに沿って演算を実行するCPU、演算結果
やデータを一時記憶するRAM、コントローラ4内部の
信号の流れを制御するコントロールメモリ等から構成さ
れている。
The controller 4 includes an input/output interface that controls the supply of power and power for the detection signals, a ROM that stores programs and various relationship maps in advance, a CPU that executes calculations according to the programs stored in the ROM, and a CPU that executes calculations based on the programs stored in the ROM. It consists of a RAM that temporarily stores data, a control memory that controls the flow of signals inside the controller 4, and the like.

次に、上記構成による本発明の装置の作動社ついて説明
する。
Next, the operation of the apparatus of the present invention having the above configuration will be explained.

エンジンの運転中においては、常時負荷センサ6からア
クセルペダルの踏込量と回転センサ5からエンジンの回
転数とを検出し、予め設定された関係マツプを用いて該
踏込量及び回転数に対応する吸気バルブ1の開閉タイミ
ングを演算する。そして、回転センサ5により検出され
るクランク角が吸気バルブ1の開タイミングになると、
励磁コイル31に交番電力を供給し、磁極32からの磁
束により形成される磁界を進行磁界とすることにより吸
気バルブ1を開閉駆動する。
While the engine is running, the load sensor 6 constantly detects the amount of accelerator pedal depression and the rotation sensor 5 detects the engine rotation speed, and a preset relationship map is used to detect the intake air that corresponds to the amount of depression and rotation speed. Calculate the opening/closing timing of valve 1. Then, when the crank angle detected by the rotation sensor 5 reaches the opening timing of the intake valve 1,
The intake valve 1 is driven to open and close by supplying alternating power to the excitation coil 31 and using the magnetic field formed by the magnetic flux from the magnetic pole 32 as a traveling magnetic field.

クランク角が吸気バルブ1の開タイミングになると、励
磁コイル31への通電状態を、図での下方向への交番電
力に切換え、2次コイル22に下方向の進行磁界を作用
させる。
When the crank angle reaches the opening timing of the intake valve 1, the energization state of the excitation coil 31 is switched to downward alternating power in the figure, and a downward traveling magnetic field is applied to the secondary coil 22.

各2次コイル22に作用している磁束が、磁界が下方向
へ進行することにより減少すると、各2次コイル22に
は磁束を維持する方向の誘導電流が発生する。ところが
、該誘導電流が発生する時点には、磁界は既に進行した
状態となっており、該誘導電流は磁界内部を流れること
になる。すると、2次コイル22に誘導される電流は磁
界から下方向の電磁力を受ける。よって、吸気バルブl
は下方向へと駆動される。
When the magnetic flux acting on each secondary coil 22 decreases as the magnetic field advances downward, an induced current is generated in each secondary coil 22 in a direction that maintains the magnetic flux. However, at the time when the induced current is generated, the magnetic field has already advanced, and the induced current flows inside the magnetic field. Then, the current induced in the secondary coil 22 receives a downward electromagnetic force from the magnetic field. Therefore, the intake valve l
is driven downward.

吸気バルブ1を閉鎖方向に駆動するには励磁コイル31
へ供給している交番電力の交番方向を反転させ、上方向
の進行磁界を形成すればよい、また、吸気バルブ1の着
座時には、上方向の磁界進行速度を減速することにより
吸気バルブ1の着座時の速度を減速し、緩やかに着座さ
せる。
Excitation coil 31 is used to drive intake valve 1 in the closing direction.
It is sufficient to reverse the alternating direction of the alternating power supplied to the intake valve 1 to form an upward traveling magnetic field.Also, when the intake valve 1 is seated, the upward traveling speed of the magnetic field is decelerated to prevent the intake valve 1 from seating. Slow down and sit gently.

上記駆動$lI御の内、下方向への駆動時について説明
する。
Among the above drive $lI controls, the downward drive will be explained.

第2図は、励磁コイル31への通電例を示す図である。FIG. 2 is a diagram showing an example of energizing the excitation coil 31.

図において、a〜dは複数個の励磁コイル31への通電
状態を第1図に示した励磁コイル31の上から順次示し
たものである。
In the figure, a to d indicate the state of energization to a plurality of excitation coils 31 sequentially from the top of the excitation coil 31 shown in FIG. 1.

本図に示すように、wJ磁ココイル31は順次交番電力
がパルス状に印加される。該パルス電力がオフにされる
と、各励磁コイル31には自己誘導による逆起電力が発
生する。該逆起電力は、各励磁コイル31のインダクタ
ンスに比例するが、励磁コイル31が捲設されている磁
極32に対向する位置に2次コイル22があると、該イ
ンダクタンスが増加し逆起電力の電圧が上昇する。逆に
、可動子2が移動し、M1極32に対向する2次コイル
22が存在しないと逆起電力の電圧は降下する。該逆起
電力の電圧差を起電力検出装置33により検知し、逆起
電力電圧の高低により、吸気バルブ1の実際の位置を検
出し、コントローラ4にフィードバックし、磁界の進行
状態を補正することにより吸気バルブ1の開閉をクロー
ズトループ制御することができる。
As shown in this figure, alternating power is sequentially applied to the wJ magnetic coil 31 in a pulsed manner. When the pulsed power is turned off, a back electromotive force is generated in each excitation coil 31 due to self-induction. The back electromotive force is proportional to the inductance of each exciting coil 31, but if the secondary coil 22 is located at a position facing the magnetic pole 32 around which the exciting coil 31 is wound, the inductance increases and the back electromotive force increases. Voltage increases. Conversely, when the movable element 2 moves and the secondary coil 22 facing the M1 pole 32 does not exist, the voltage of the back electromotive force drops. The voltage difference of the back electromotive force is detected by an electromotive force detection device 33, and the actual position of the intake valve 1 is detected based on the level of the back electromotive force voltage, which is fed back to the controller 4 to correct the progress state of the magnetic field. The opening and closing of the intake valve 1 can be controlled in a closed loop.

ところで、上記実施例において、2次コイル22の円周
長を大とするため可動子2を中空の円筒形状としたが、
中実の円柱形状としても何等問題はない。
By the way, in the above embodiment, the mover 2 is formed into a hollow cylindrical shape in order to increase the circumferential length of the secondary coil 22.
There is no problem even if it has a solid cylindrical shape.

尚、吸気バルブ1を閉状態で保持するスプリング24の
パイアスカは上記電磁力に対し、充分小に設定されてい
る。
The bias of the spring 24 that holds the intake valve 1 in a closed state is set to be sufficiently small with respect to the electromagnetic force described above.

以上、実施例について詳細に説明したが、本発明の精神
から逸れないかぎりで、種々の異なる実施例は容易に構
成できるから、本発明は前記特許請求の範囲において記
載した限定以外、特定の実施例に制約されるものではな
い。
Although the embodiments have been described in detail above, various different embodiments can be easily constructed without departing from the spirit of the present invention. The examples are not intended to be limiting.

(発明の効果) 以上説明したように、本発明によれば、可動子に周設さ
れた2次コイルの側面に並設された磁極により進行磁界
を形成し、2次コイルに誘導される電流が進行磁界から
受る電磁力により吸排気バルブを往復駆動するので、吸
排気バルブの位置が変化しても駆動力は変化せず、従っ
て、安定した開閉制御を行なうことができる。また、非
接触状態で開閉駆動される吸排気バルブの開閉状態を検
出するので、該検出された開閉状態を開閉制御装置にフ
ィードバックすることにより、吸排気バルブの動作を設
定通りに制御することができる作動位置検出式電磁力バ
ルブ駆動装置を提供できる。
(Effects of the Invention) As explained above, according to the present invention, a traveling magnetic field is formed by the magnetic poles arranged in parallel on the side surface of the secondary coil surrounding the movable element, and the current induced in the secondary coil is Since the intake and exhaust valves are reciprocated by the electromagnetic force received from the traveling magnetic field, the driving force does not change even if the position of the intake and exhaust valves changes, and therefore stable opening/closing control can be performed. In addition, since the open/close state of the intake and exhaust valves that are driven to open and close in a non-contact state is detected, the operation of the intake and exhaust valves can be controlled according to settings by feeding back the detected open/close state to the opening/closing control device. It is possible to provide an electromagnetic force valve drive device that detects the operating position.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示すブロック図、第2図
は、励磁コイル31への通電例を示す図である。 1・・・吸気バルブ、2・・・可動子、3・・・駆動部
、4・・・コントローラ、5・・・回転センサ、6・・
・負荷センサ、22・・・2次コイル、31・・・励磁
コイル、32・・パ磁極、33・・・起電力検出装置。 第1 図 51Lイ町′Cン“ワ′
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 is a diagram showing an example of energizing the excitation coil 31. DESCRIPTION OF SYMBOLS 1... Intake valve, 2... Mover, 3... Drive unit, 4... Controller, 5... Rotation sensor, 6...
- Load sensor, 22... Secondary coil, 31... Excitation coil, 32... Paramagnetic pole, 33... Electromotive force detection device. 1st Figure 51

Claims (3)

【特許請求の範囲】[Claims] (1)エンジンの吸排気バルブに連結し往復自在な可動
子と、該可動子の外周面と対向し往復方向に並設された
磁極と、該磁極に捲設され往復方向の進行磁界を形成す
るコイルと、上記可動子の外周面に上記磁極と対向して
環設された2次コイルと、上記コイルに発生する自己誘
導よる逆起電力が所定値以下であることを検知する作動
位置検知手段と、該作動検知手段からの信号に基づいて
上記コイルへの通電状態を制御し吸排気バルブを開閉駆
動せしめる通電制御手段とを有することを特徴とする作
動位置検出式電磁力バルブ駆動装置。
(1) A movable element that is connected to the intake and exhaust valves of the engine and can freely reciprocate; a magnetic pole that faces the outer peripheral surface of the movable element and is arranged in parallel in the reciprocating direction; and a magnetic pole that is wound around the magnetic pole to form a traveling magnetic field in the reciprocating direction. a secondary coil disposed in a ring on the outer circumferential surface of the movable element facing the magnetic pole; and an actuation position sensor for detecting that a self-induced back electromotive force generated in the coil is below a predetermined value. and energization control means for controlling the energization state of the coil based on the signal from the operation detection means and driving the intake and exhaust valves to open and close.
(2)上記2次コイルは可動子の往復方向に複数個並設
されていることを特徴とする請求項(1)記載の作動位
置検出式電磁力バルブ駆動装置。
(2) The operating position detection type electromagnetic force valve driving device according to claim (1), wherein a plurality of the secondary coils are arranged in parallel in the reciprocating direction of the movable element.
(3)上記可動子は磁性体で形成されていることを特徴
とする請求項(1)記載の作動位置検出式電磁力バルブ
駆動装置。
(3) The operating position detection type electromagnetic force valve driving device according to claim (1), wherein the movable element is made of a magnetic material.
JP1322420A 1989-12-12 1989-12-12 Actuating position detection type electromagnetic force valve drive Expired - Lifetime JP2855352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1322420A JP2855352B2 (en) 1989-12-12 1989-12-12 Actuating position detection type electromagnetic force valve drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1322420A JP2855352B2 (en) 1989-12-12 1989-12-12 Actuating position detection type electromagnetic force valve drive

Publications (2)

Publication Number Publication Date
JPH03182607A true JPH03182607A (en) 1991-08-08
JP2855352B2 JP2855352B2 (en) 1999-02-10

Family

ID=18143466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1322420A Expired - Lifetime JP2855352B2 (en) 1989-12-12 1989-12-12 Actuating position detection type electromagnetic force valve drive

Country Status (1)

Country Link
JP (1) JP2855352B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7634981B2 (en) * 2006-12-15 2009-12-22 Caterpillar Inc. Valve performing detection and modification strategy for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7634981B2 (en) * 2006-12-15 2009-12-22 Caterpillar Inc. Valve performing detection and modification strategy for internal combustion engine

Also Published As

Publication number Publication date
JP2855352B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
JP2652802B2 (en) Electromagnetic valve drive
JP2596459B2 (en) Valve electromagnetic drive
JP2707127B2 (en) Electromagnetic valve drive
JPH03189311A (en) Electromagnetic force valve driver
JP2759330B2 (en) Electromagnetic valve drive
JP2639587B2 (en) Valve stepping drive
JPH04175408A (en) Solenoid valve driving device
JPH02176288A (en) Electromagnetic force valve driving gear
JPH02176284A (en) Electromagnetic force valve driving gear
JP2855352B2 (en) Actuating position detection type electromagnetic force valve drive
JP2606740B2 (en) Valve stepping drive
JP2707141B2 (en) Electromagnetic valve drive
JP2787342B2 (en) Induction type electromagnetic valve drive
JP2709737B2 (en) Electromagnetic valve drive
JP2759358B2 (en) Induction type electromagnetic valve drive
JP3040784B2 (en) Induction type electromagnetic valve drive
JP2772569B2 (en) Electromagnetic valve drive
JP2789119B2 (en) Induction type electromagnetic valve drive
JP2787356B2 (en) Induction type electromagnetic valve drive
JP2673370B2 (en) Valve drive
JPH03182608A (en) Induction-type electromagnetic force valve drive unit
JPH03185207A (en) Electromagnetic valve driving device
JP2789120B2 (en) Electromagnetic valve drive
JP2802540B2 (en) Electromagnetic valve drive
JP2772563B2 (en) Electromagnetic valve drive