JPH03181802A - Scanning tunneling microscope - Google Patents

Scanning tunneling microscope

Info

Publication number
JPH03181802A
JPH03181802A JP32294189A JP32294189A JPH03181802A JP H03181802 A JPH03181802 A JP H03181802A JP 32294189 A JP32294189 A JP 32294189A JP 32294189 A JP32294189 A JP 32294189A JP H03181802 A JPH03181802 A JP H03181802A
Authority
JP
Japan
Prior art keywords
sample
tunnel
temperature
probe
tunneling microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32294189A
Other languages
Japanese (ja)
Other versions
JP2835530B2 (en
Inventor
Eisuke Tomita
冨田 英介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18149346&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03181802(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1322941A priority Critical patent/JP2835530B2/en
Publication of JPH03181802A publication Critical patent/JPH03181802A/en
Application granted granted Critical
Publication of JP2835530B2 publication Critical patent/JP2835530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To detect a sample by a scanning tunneling microscope when the temperature of the sample is controlled by providing a moving means for two- dimensionally moving a tunnel probe in parallel to the surface of the sample and a controlling means for controlling the temperature of the surface of the sample. CONSTITUTION:A sample 2 is heated by a heater 7. The temperature of the sample is detected and controlled by a sample temperature detecting/controlling part 13 via a temperature sensor 8. A tunnel probe 1 is moved adjacent to the sample in a tunnel region by a controlling part 12 of a finely moving mechanism. A voltage is impressed between the sample 2 and probe 1 by a voltage controlling/tunnel current detecting part 23. The tunnel current is detected. A tunnel current signal is output from the detecting part 23 to the controlling part 12, and the distance between the probe 1 and sample 2 is controlled to be constant by the controlling part 12. Moreover, the tunnel current signal from the detecting part 23 and a control signal from the controlling part 12 are processed in an image processor 15, whereby an image of the tunneling microscope is obtained. In this manner, a tunneling microscopic image when the temperature is controlled is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、走査型トンネル顕微鏡に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a scanning tunneling microscope.

〔発明の概要〕[Summary of the invention]

本発明は、試料表面の温度を制御する手段を持つ走査型
トンネル顕微鏡であり、試料は大気中、液体中、電解質
水溶液中のいずれの場合を含む。
The present invention is a scanning tunneling microscope having means for controlling the temperature of the sample surface, and the sample may be in the air, in a liquid, or in an aqueous electrolyte solution.

さらに、XYステージによって試料表面をミリメートル
オーダで移動する手段を有する場合をも含む。この際、
雰囲気としては大気の他に、不活性ガス(Ntガスなど
)の場合を含む、温度制御手段によって、液晶の相変化
などの物質の温度による変化、又はメツキやエンチング
の析出溶解反応の温度に対する変化を、トンネル顕微鏡
の移動観察により評価可能にするものである。
Furthermore, it also includes a case in which a means for moving the sample surface on the order of millimeters by an XY stage is provided. On this occasion,
In addition to the atmosphere, the atmosphere may include inert gas (Nt gas, etc.). Temperature control means may be used to control changes due to temperature of substances such as phase changes of liquid crystals, or changes due to temperature of precipitation and dissolution reactions such as plating and etching. can be evaluated by moving observation using a tunneling microscope.

〔従来の技術〕[Conventional technology]

試料をトンネル探針間に電圧を印加し、トンネル電流を
検出する方法は一般的であり、さらに検出したトンネル
電流により試料の表面像として表わす手段としては、走
査型トンネル顕微鏡として知られている。この走査型ト
ンネル顕微鏡に関しては、例えば、米国特許43439
93号 明細書等において周知であり、超高真空下での
測定が行われてきたが、最近では大気中、溶液中での測
定も可能となっている。
A common method is to apply a voltage to a sample between tunneling probes and detect a tunneling current, and a scanning tunneling microscope is known as a means for expressing the detected tunneling current as a surface image of the sample. Regarding this scanning tunneling microscope, for example, US Pat.
No. 93 is well known in the specifications, etc., and measurements have been performed under ultra-high vacuum, but recently it has also become possible to measure in the atmosphere or in a solution.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、試料温度を制御し、走査型トンネル顕微鏡測定
を行う方法は、困難であった。さらに、室温より高い温
度でのメツキ、エツチングの動的観察を行える走査型ト
ンネルD微鏡測定方法は、確立されていなかった。
However, it has been difficult to control the sample temperature and perform scanning tunneling microscopy measurements. Furthermore, a scanning tunnel D microscopic measurement method that allows dynamic observation of plating and etching at temperatures higher than room temperature has not been established.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために、本発明においては、試料
表面温度を制御する手段を有する走査型トンネル顕微鏡
を構成し、大気中の試料表面又は、液体中の試料表面の
温度をHaした状態で走査型トンネル顕微鏡測定を行う
ことにした。
In order to solve the above-mentioned problems, in the present invention, a scanning tunneling microscope is constructed which has a means for controlling the sample surface temperature, and the temperature of the sample surface in the atmosphere or in the liquid is maintained at Ha. We decided to perform scanning tunneling microscopy measurements.

〔作用〕[Effect]

このような構成により、試料表面の温度を制御mし、液
晶の相変化等の連続測定及びメツキやエツチングの核成
長等の動的観察が可能となった。
With this configuration, it is possible to control the temperature of the sample surface and to continuously measure liquid crystal phase changes, etc., and dynamically observe plating, etching nucleus growth, etc.

〔実施例〕〔Example〕

以下に、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

実施例−1 第1図は、大気中走査型トンネル顕微鏡の概略図である
。試料2をヒータ7で加熱し、温度センサ8を試料温度
検出・制御部13で試料温度を検知し制御する。トンネ
ル探計1は、微動機#I制御部12でトンネル領域まで
試料に接近させ、試料/探針間電圧制御・トンネル電流
検出部23で、試料とトンネル探針間に電圧をかけトン
ネル電流を検出する。トンネルを流検出部23からは、
微動機構制御部12ヘトンネル電流信号が出力され、ト
ンネル探針1と試料2との距離をトンネル電流が一定と
なるよう微動機構制御部12で制御する。またトンネル
電流検出部23からのトンネル電流信号と微動機構制御
部12からの制御l信号は、トンネル顕微鏡画像化処理
部15で、データ処理され、トンネル顕微鏡像となる0
以上の構成により、温度制御下の大気中走査型トンネル
顕微鏡像を得ることができた。
Example-1 FIG. 1 is a schematic diagram of an atmospheric scanning tunneling microscope. The sample 2 is heated by the heater 7, and the temperature sensor 8 is detected and controlled by the sample temperature detection/control section 13. In the tunnel probe 1, the fine mover #I controller 12 approaches the sample to the tunnel region, and the sample/probe voltage control/tunnel current detector 23 applies voltage between the sample and the tunnel probe to generate a tunnel current. To detect. From the tunnel flow detection unit 23,
A tunnel current signal is output to the fine movement mechanism control section 12, and the fine movement mechanism control section 12 controls the distance between the tunnel probe 1 and the sample 2 so that the tunnel current is constant. Further, the tunnel current signal from the tunnel current detection section 23 and the control l signal from the fine movement mechanism control section 12 are data-processed in the tunneling microscope image processing section 15, and are converted into a tunneling microscope image.
With the above configuration, it was possible to obtain atmospheric scanning tunneling microscope images under temperature control.

この装置では、例えば、液晶の温度による相転移の状況
が、液晶分子レベルで観察でき、液晶分子配列の欠陥の
発生機構の解明等に用いることができる。また固体の溶
解現象が原子、分子レベルで観察でき、溶解現象のミク
ロレベルの扱いが可能である。
With this device, for example, the state of phase transition due to temperature of liquid crystal can be observed at the level of liquid crystal molecules, and can be used to elucidate the mechanism of occurrence of defects in the alignment of liquid crystal molecules. In addition, dissolution phenomena in solids can be observed at the atomic and molecular level, making it possible to treat dissolution phenomena at the micro level.

実施例−2 第2図は、液中走査型トンネル顕微鏡の概略図である。Example-2 FIG. 2 is a schematic diagram of a submerged scanning tunneling microscope.

セル5中に、トンネル探針1と試料2を配置し、溶液6
を満たす、この場合の溶液は、土に絶縁性の液体を用い
る。セルの下にヒータ7を配置し、温度センサ8と試料
温度検出・制御部13で試料の温度を検出し制御を行う
、トンネル探針は実施例】と同様に制御して、液中で温
度制御下の試料の走査型トンネル顕微鏡像を得ることが
できた。
Tunnel probe 1 and sample 2 are placed in cell 5, and solution 6
The solution in this case is to fill the soil with an insulating liquid. A heater 7 is placed under the cell, and the temperature of the sample is detected and controlled by the temperature sensor 8 and the sample temperature detection/control unit 13.The tunnel probe is controlled in the same manner as in Example] to adjust the temperature in the liquid. Scanning tunneling microscopy images of the sample under control could be obtained.

この例の装置では、例えば、溶液として油等を用いて、
大気と遮断した状態で金属合金等の酸化しやすい物質の
表面の温度による相変化を、原子レベルで扱うことがで
きる。
In the device of this example, for example, using oil etc. as a solution,
It is possible to handle temperature-induced phase changes on the surface of materials that are easily oxidized, such as metal alloys, at the atomic level when isolated from the atmosphere.

実施例−3 第3図は、電解液中走査型トンネルw4徽鏡の概略図で
ある。テフロンまたはガラス製の電気化学セル5中に、
トンネル探針l、試料2.参照電極3、対極4.温度セ
ンサ8を設置し、電解液6を満たす。この際、トンネル
探針は、テフロンまたはガラスでコーティングし、先端
部のみを露出した白金または白金イリジウムの細線(1
0ミクロン径〉を用いた。探針は、この他に、電解研摩
し先端部のみを細くした白金(または白金イリジウム)
のワイヤも用いることを含む。参照電極は、SCE (
飽和カロメル電極)またはA g / A g Cl電
極を用いた。対極には、白金ワイヤまたは白金板を用い
た。温度センサとしては、白金抵抗温度センサまたはサ
ーミスタを、ガラス封入したものを用いた。電気化学セ
ル5の下にヒータ7を設置し、除震台9の上に置く、ヒ
ータは抵抗加熱型またはペルチェ素子を用いた。温度セ
ンサによって塩度を検知し、試料温度検出・制御部13
で、ヒータの加熱量を制御し、試料2の表面温度を制御
した。トンネル探針lおよび試料2.参照電極3゜対極
4は、試料とトンネル探針電位制御部・試料電流検出部
10に接続され、トンネル探針1と試料2の電位制御を
行う。この「試料とトンネル探針電位制御部・試料電流
検出部10Jは、試料電位・試料電流記録部14に接続
され、電流−電位曲線(サイクリックボルタモダラム)
等の電気化学測定結果を記録する。一方、トンネル探針
1は、トンネル電流検出部11に接続され、トンネル電
流を記録する。実施例1と同様にトンネル探針の微動は
微動機構制in部12によって制御し、制御信号は、ト
ンネルw4微m画像化処理部15によって画像化する。
Example 3 FIG. 3 is a schematic diagram of a scanning tunnel W4 mirror in an electrolytic solution. In an electrochemical cell 5 made of Teflon or glass,
Tunnel probe 1, sample 2. Reference electrode 3, counter electrode 4. A temperature sensor 8 is installed and the electrolyte 6 is filled. At this time, the tunnel probe is coated with Teflon or glass, with only the tip exposed.
0 micron diameter> was used. In addition to this, the probe is made of platinum (or platinum iridium) that has been electropolished to make only the tip thinner.
This also includes the use of wires. The reference electrode was SCE (
A saturated calomel electrode) or an A g /A g Cl electrode was used. A platinum wire or platinum plate was used as the counter electrode. As the temperature sensor, a platinum resistance temperature sensor or a thermistor sealed in glass was used. A heater 7 was installed under the electrochemical cell 5 and placed on a vibration isolation table 9. The heater used was a resistance heating type or a Peltier element. The temperature sensor detects the salinity, and the sample temperature detection/control unit 13
The surface temperature of sample 2 was controlled by controlling the heating amount of the heater. Tunnel probe 1 and sample 2. The reference electrode 3 and the counter electrode 4 are connected to the sample and tunnel probe potential control section/sample current detection section 10 to control the potentials of the tunnel probe 1 and the sample 2. This "sample and tunnel probe potential control section/sample current detection section 10J is connected to the sample potential/sample current recording section 14, and the current-potential curve (cyclic voltamodrum) is
Record the electrochemical measurement results such as On the other hand, the tunnel probe 1 is connected to a tunnel current detection section 11 and records the tunnel current. As in the first embodiment, the fine movement of the tunnel probe is controlled by the fine movement mechanism control unit 12, and the control signal is converted into an image by the tunnel w4 fine m imaging processing unit 15.

以上の構成により、温度制御下の電解液中走査型トンネ
ル顕微鏡像を得ることができた。
With the above configuration, it was possible to obtain a scanning tunneling microscope image in an electrolyte under temperature control.

この例の装置では、例えば、温度によるメツキ層の成長
状況や構造を原子レベルで観察でき、メツキ層の分析の
ち役立てることができる。
With the apparatus of this example, for example, the growth status and structure of the plating layer due to temperature can be observed at the atomic level, which can be useful after analyzing the plating layer.

実施例−4 第4図は、XYステージ付定走査型トンネル顕微鏡概略
図である。XYYステージ2X)の上にヒータ7と試料
2を配置した構成になっている。
Example 4 FIG. 4 is a schematic diagram of a constant scanning tunneling microscope with an XY stage. The heater 7 and the sample 2 are arranged on an XYY stage 2X).

この場合も、温度制御下の走査型トンネルR微鏡像が得
られた。
In this case as well, a scanning tunnel R microscopic image under temperature control was obtained.

実施例−5 第5図は、本発明の恒温セルを有する液中走査型トンネ
ル顕微鏡の概略図である。電気化学セル5を恒温セルI
6に入れ、この恒温セル16中に温水17を通し温度制
御を行う、温水17は、恒温槽18により、一定温度に
保たれ、恒温セル16内を循環する。このような構成に
より、温度制御下の液中走査型トンネル顕微鏡像を得る
ことができた。
Example 5 FIG. 5 is a schematic diagram of a submerged scanning tunneling microscope having a constant temperature cell of the present invention. Electrochemical cell 5 is thermostatic cell I
6 and temperature control is performed by passing hot water 17 through this constant temperature cell 16. The hot water 17 is kept at a constant temperature by a constant temperature bath 18 and circulates within the constant temperature cell 16. With this configuration, it was possible to obtain images using a submerged scanning tunneling microscope under temperature control.

実施例−6 第6図は、本発明の赤外線ヒータを有する液中走査型ト
ンネルw4徽鏡の概略図である。赤外線ヒータ19を用
いて、試料2の表面温度を制御する。
Example 6 FIG. 6 is a schematic diagram of a submerged scanning tunnel W4 mirror having an infrared heater according to the present invention. The surface temperature of the sample 2 is controlled using the infrared heater 19.

この場合も、温度制御下の液中走査型トンネル顕微鏡像
を得ることができた。
In this case as well, we were able to obtain images using a submerged scanning tunneling microscope under temperature control.

実施例−7 第7図は、本発明の水浸ヒータ20を有する液中走査型
トンネル顕微鏡の概略図である。溶液6の中に、水浸可
能なヒータ20を設置し、溶液6を加熱し、試料2の表
面温度を制御する。この場合も、温度制御下の液中走査
型トンネル顕微鏡像を得ることができた。
Example 7 FIG. 7 is a schematic diagram of a submerged scanning tunneling microscope having a water immersion heater 20 of the present invention. A heater 20 that can be immersed in water is installed in the solution 6 to heat the solution 6 and control the surface temperature of the sample 2. In this case as well, we were able to obtain images using a submerged scanning tunneling microscope under temperature control.

実施例−8 第8図は、本発明の赤外線温度センサ8を有する液中走
査型トンネル顕微鏡の概略図である。赤外線温度センサ
21を用いて、試料2の表面温度を検出する。この場合
も、温度制御下の液中走査型トンネル顕微鏡像を得るこ
とができた。
Example 8 FIG. 8 is a schematic diagram of a submerged scanning tunneling microscope having an infrared temperature sensor 8 of the present invention. The surface temperature of the sample 2 is detected using the infrared temperature sensor 21. In this case as well, we were able to obtain images using a submerged scanning tunneling microscope under temperature control.

実施例−9 第9図は、本発明のマイクロ波ヒータを有する液中走査
型トンネル顕微鏡の概略図である。マイクロ波ヒータ2
2により、試料2の表面温度を制御する。この場合も、
温度制御下の液中走査型トンネル顕m鏡像が得られた。
Example 9 FIG. 9 is a schematic diagram of a submerged scanning tunneling microscope having a microwave heater of the present invention. Microwave heater 2
2 controls the surface temperature of the sample 2. In this case too,
A submerged scanning tunneling microscope image was obtained under temperature control.

〔発明の効果〕〔Effect of the invention〕

本発明により、温度制御下での試料の走査型トンネル顕
微鏡測定が可能となった。さらに試料表面の温度下での
、メツキやエンチングの核成長等の動的観察が可能とな
った。
The present invention enables scanning tunneling microscopy measurements of samples under temperature control. Furthermore, it has become possible to dynamically observe the growth of plating and etching nuclei under the temperature of the sample surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の大気中走査型トンネル顕微鏡
の概略図、第2図は液中走査型トンネル顕微鏡の概略図
、第3図は電解液中走査型トンネル顕微鏡の概略図、第
4図はxyステージ付き液中走査型トンネルw4fi鏡
の概略図、第5図は恒温セルを有する液中走査型トンネ
ルS9i微鏡の概略図、第6図は赤外線ヒータを有する
液中走査型トンネル顕微鏡の概略図、第7図、第8図、
第9図は水浸ヒータ、赤外線温度センサ、マイクロ波ヒ
ータをそれぞれ有する液中走査型トンネル顕微鏡の概略
図である。 ・・トンネル探針 ・・試料 ・・ヒータ ・・温度センサ ・・恒温セル ・・温水 18・ 19・ 20・ 21・ 22・ ・恒温槽 ・赤外線ヒータ ・水浸し−タ ・赤外線温度センサ ・マイクロ波ヒータ
FIG. 1 is a schematic diagram of an atmospheric scanning tunneling microscope according to an embodiment of the present invention, FIG. 2 is a schematic diagram of a liquid-submerged scanning tunneling microscope, and FIG. 3 is a schematic diagram of an electrolyte-submerged scanning tunneling microscope. Figure 4 is a schematic diagram of a submerged scanning tunnel w4fi mirror with an xy stage, Figure 5 is a schematic diagram of a submerged scanning tunnel S9i microscope with a constant temperature cell, and Figure 6 is a schematic diagram of a submerged scanning tunnel with an infrared heater. Schematic diagram of the microscope, Figures 7 and 8,
FIG. 9 is a schematic diagram of a submerged scanning tunneling microscope having a water immersion heater, an infrared temperature sensor, and a microwave heater.・・Tunnel probe・・Sample・・Heater・・Temperature sensor・・Thermostat cell・Hot water 18, 19, 20, 21, 22・・Thermostatic chamber・Infrared heater・Water immersion・Infrared temperature sensor・Microwave heater

Claims (6)

【特許請求の範囲】[Claims] (1)試料とトンネル探針間の電圧を設定する手段と、
試料とトンネル探針間に流れるトンネル電流を検出する
手段と、トンネル探針を試料に接近させる手段と、トン
ネル探針を試料面に対し平行に2次元移動させる手段と
、試料表面の温度を制御する手段により構成される走査
型トンネル顕微鏡。
(1) means for setting the voltage between the sample and the tunnel probe;
A means for detecting the tunnel current flowing between the sample and the tunnel probe, a means for bringing the tunnel probe closer to the sample, a means for moving the tunnel probe two-dimensionally parallel to the sample surface, and controlling the temperature of the sample surface. A scanning tunneling microscope consisting of means for
(2)試料とトンネル探針を液体中に配置したセルと、
試料とトンネル探針間の電圧を設定する手段と、試料と
トンネル探針間に流れるトンネル電流を検出する手段と
、トンネル探針を試料に接近させる手段と、トンネル探
針を試料面に対し平行に2次元移動させる手段と、試料
表面の温度を制御する手段により構成される走査型トン
ネル顕微鏡。
(2) A cell in which a sample and a tunnel probe are placed in a liquid,
means for setting a voltage between the sample and the tunnel probe, means for detecting a tunnel current flowing between the sample and the tunnel probe, means for bringing the tunnel probe close to the sample, and means for moving the tunnel probe parallel to the sample surface. A scanning tunneling microscope consists of means for two-dimensional movement and means for controlling the temperature of the sample surface.
(3)試料、対極、参照電極及びトンネル探針を溶液中
に配置した電気化学セルと、試料及びトンネ探針の電位
を設定する手段と、試料と対極とに流れる電流を検出す
る手段と、試料とトンネル探針との間に流れるトンネル
電流を検出する手段と、トンネル探針を試料に接近させ
る手段と、トンネル探針を試料面に対し平行に2次元移
動させる手段と、試料表面の温度を制御する手段により
構成される走査型トンネル顕微鏡。
(3) an electrochemical cell in which a sample, a counter electrode, a reference electrode, and a tunnel probe are placed in a solution; a means for setting the potentials of the sample and the tunnel probe; and a means for detecting the current flowing through the sample and the counter electrode; A means for detecting a tunnel current flowing between a sample and a tunnel probe, a means for bringing the tunnel probe closer to the sample, a means for moving the tunnel probe two-dimensionally in parallel to the sample surface, and a means for detecting the temperature of the sample surface. A scanning tunneling microscope consisting of means for controlling.
(4)トンネル探針を試料面に対し平行に2次元移動さ
せる手段が、XYステージであることを特徴とする第1
項記載の走査型トンネル顕微鏡。
(4) A first method characterized in that the means for two-dimensionally moving the tunnel probe parallel to the sample surface is an XY stage.
Scanning tunneling microscope as described in section.
(5)トンネル探針を試料面に対し平行に2次元移動さ
せる手段が、XYステージであることを特徴とする第2
項記載の走査型トンネル顕微鏡。
(5) A second device characterized in that the means for two-dimensionally moving the tunnel probe parallel to the sample surface is an XY stage.
Scanning tunneling microscope as described in section.
(6)トンネル探針を試料面に対し平行に2次元移動さ
せる手段が、XYステージであることを特徴とする第3
項記載の走査型トンネル顕微鏡。
(6) A third feature in which the means for two-dimensionally moving the tunnel probe parallel to the sample surface is an XY stage.
Scanning tunneling microscope as described in section.
JP1322941A 1989-12-12 1989-12-12 Scanning tunnel microscope Expired - Fee Related JP2835530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1322941A JP2835530B2 (en) 1989-12-12 1989-12-12 Scanning tunnel microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1322941A JP2835530B2 (en) 1989-12-12 1989-12-12 Scanning tunnel microscope

Publications (2)

Publication Number Publication Date
JPH03181802A true JPH03181802A (en) 1991-08-07
JP2835530B2 JP2835530B2 (en) 1998-12-14

Family

ID=18149346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1322941A Expired - Fee Related JP2835530B2 (en) 1989-12-12 1989-12-12 Scanning tunnel microscope

Country Status (1)

Country Link
JP (1) JP2835530B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516207A (en) * 2004-10-07 2008-05-15 エヌアンビション・ゲーエムベーハー Apparatus and method for scanning probe microscopy
WO2014006734A1 (en) * 2012-07-06 2014-01-09 株式会社日立製作所 Force probe microscope and height distribution measurement method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112415A (en) * 1982-12-16 1984-06-28 Comput Basic Mach Technol Res Assoc Thin film magnetic head
JPS6151556A (en) * 1984-08-21 1986-03-14 Hitachi Ltd Electrolyte analysis instrument
JPH01141302A (en) * 1987-11-27 1989-06-02 Seiko Instr & Electron Ltd Method and device for executing simultaneously electrochemical measurement and tunnel current measurement
JPH01199218A (en) * 1988-02-03 1989-08-10 Shimadzu Corp Sample temperature controller for analyzing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112415A (en) * 1982-12-16 1984-06-28 Comput Basic Mach Technol Res Assoc Thin film magnetic head
JPS6151556A (en) * 1984-08-21 1986-03-14 Hitachi Ltd Electrolyte analysis instrument
JPH01141302A (en) * 1987-11-27 1989-06-02 Seiko Instr & Electron Ltd Method and device for executing simultaneously electrochemical measurement and tunnel current measurement
JPH01199218A (en) * 1988-02-03 1989-08-10 Shimadzu Corp Sample temperature controller for analyzing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516207A (en) * 2004-10-07 2008-05-15 エヌアンビション・ゲーエムベーハー Apparatus and method for scanning probe microscopy
WO2014006734A1 (en) * 2012-07-06 2014-01-09 株式会社日立製作所 Force probe microscope and height distribution measurement method
JPWO2014006734A1 (en) * 2012-07-06 2016-06-02 株式会社日立製作所 Force probe microscope and height distribution measuring method

Also Published As

Publication number Publication date
JP2835530B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
Simões et al. Use of SVET and SECM to study the galvanic corrosion of an iron–zinc cell
Isaacs et al. Determination of surface inhomogeneities using a scanning probe impedance technique
Eckhard et al. Alternating current techniques in scanning electrochemical microscopy (AC-SECM)
Zou et al. A High‐Resolution Probe for Localized Electrochemical Impedance Spectroscopy Measurements
WO2003044509A1 (en) Method for thermal analysis and system for thermal analysis
Banks et al. The transport limited currents at insonated electrodes
Ervin et al. Alternating current impedance imaging of membrane pores using scanning electrochemical microscopy
US5489515A (en) Device for analyzing the metabolism of cells
EP0362307A1 (en) Ultrasonic temperature measurement and applications in optical spectroscopy and calorimetry.
Nail et al. An improved microscope stage for direct observation of freezing and freeze drying
Lohrengel et al. Microimpedance—Localized material analysis
JPH10239325A (en) Sample receptacle for observing sample in liquid
JPH03181802A (en) Scanning tunneling microscope
Lillard et al. Scanning electrode techniques for investigating near-surface solution current densities
Doppelhammer et al. Using moving electrode impedance spectroscopy to monitor particle sedimentation
JPH10311818A (en) Material evaluating method
Láng Interface stress measurements in an electrochemical environment
JP3577517B2 (en) Method and apparatus for simultaneous measurement of pH and potential on material surface
Handley Product review: quartz crystal microbalances
Hamori et al. pH-Jump measurements on the helix-coil transition of poly-L-tyrosine
US4264328A (en) Method for recording measured values in an automatically performed blood gas analysis
Kipp et al. Problems in temperature control performing in situ investigations with the scanning force microscope
JP2006304625A (en) Device for measuring microorganism
Anderson Continuous Recording of the Growth of Micro‐Organisms under Turbidostatic and Chemostatic Control
JPH09292358A (en) Zeta-potential measuring method using optical-scanning type two-dimensional concentration-distribution measuring device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees