JPH03181664A - Speed control device of mechanical type continuously variable transmission - Google Patents
Speed control device of mechanical type continuously variable transmissionInfo
- Publication number
- JPH03181664A JPH03181664A JP32199889A JP32199889A JPH03181664A JP H03181664 A JPH03181664 A JP H03181664A JP 32199889 A JP32199889 A JP 32199889A JP 32199889 A JP32199889 A JP 32199889A JP H03181664 A JPH03181664 A JP H03181664A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- speed
- continuously variable
- variable transmission
- mechanical continuously
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 104
- 238000001514 detection method Methods 0.000 claims abstract description 53
- 238000006243 chemical reaction Methods 0.000 claims description 28
- 230000003321 amplification Effects 0.000 claims description 13
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 13
- 230000002441 reversible effect Effects 0.000 abstract description 28
- 230000004043 responsiveness Effects 0.000 abstract description 8
- 230000007423 decrease Effects 0.000 abstract description 4
- 230000004044 response Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 238000007493 shaping process Methods 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Gear-Shifting Mechanisms (AREA)
- Control Of Transmission Device (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、機械式無段変速機の速度制御装置に係り、特
に、速度検出手段としてマグネチックセンサなどの1回
転当たりのパルス数が少ないものを用いたものに関する
。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a speed control device for a mechanical continuously variable transmission, and in particular to a speed control device that uses a magnetic sensor or the like as a speed detection means with a small number of pulses per rotation. It relates to things that use things.
〈従来の技術〉
第7図は従来の機械式無段変速機の速度制御装置のブロ
ック図である。<Prior Art> FIG. 7 is a block diagram of a conventional speed control device for a mechanical continuously variable transmission.
変速手段lは、機械式無段変速機2を機械的に変速する
ものである。変速手段lとしてリバーシブルモータ(正
逆転モータ)が用いられており、その停止によって機械
式無段変速802の回転速度はある速度に固定され、そ
の正転によって変速部材を正方向に移動させて機械式無
段変速192の回転速度を増速し、その逆転によって変
速部材を負方向に移動させて機械式無段変速機2の回転
速度を減速するようになっている。The speed change means 1 mechanically changes the speed of the mechanical continuously variable transmission 2. A reversible motor (forward/reverse motor) is used as the speed change means l, and when it stops, the rotational speed of the mechanical continuously variable transmission 802 is fixed at a certain speed, and when it rotates in the forward direction, the speed change member is moved in the forward direction, thereby changing the speed of the machine. The rotational speed of the mechanical continuously variable transmission 192 is increased, and the speed change member is moved in the negative direction by reversing the rotational speed, thereby decelerating the rotational speed of the mechanical continuously variable transmission 2.
速度検出手段3は、機械式無段変速機2の回転速度に比
例した周波数信号aを出力するものである。この速度検
出手段3として、機械式無段変速@2の出力軸4に取り
付けられた歯車に対向して設けられたマグネチックセン
サが用いられる。マグネチックセンサは出力軸4の回転
に伴って歯車の歯が1個ずつ通過するのを検出するもの
で、回転速度が速いほど周波数信号aの周波数が高くな
る。この周波数信号aは正弦波となる。The speed detection means 3 outputs a frequency signal a proportional to the rotation speed of the mechanical continuously variable transmission 2. As the speed detecting means 3, a magnetic sensor is used which is provided opposite to a gear attached to the output shaft 4 of the mechanical continuously variable transmission@2. The magnetic sensor detects the passage of gear teeth one by one as the output shaft 4 rotates, and the faster the rotation speed, the higher the frequency of the frequency signal a. This frequency signal a becomes a sine wave.
周波数−電圧変換手段5は、周波数信号aを速度検出電
圧すに変換するもので、周波数信号aが正の半波の期間
で“H”レベル、負の半波の期間で′L”レベルの矩形
波を出力する波形整形回路と、この波形整形回路の出力
波形の立ち上がりおよび立ち下がりのタイミングがら一
定のパルス幅の矩形波を生成する単安定マルチバイブレ
ータと、単安定マルチバイブレークの出力波形を平滑化
する平滑回路とからなり、正弦波である周波数信号aの
周波数が高いほど、速度検出電圧すが高レベルとなり、
かつ、その交流骨は小さくなる。The frequency-voltage conversion means 5 converts the frequency signal a into a speed detection voltage, and the frequency signal a is at the "H" level during the positive half-wave period and at the 'L' level during the negative half-wave period. A waveform shaping circuit that outputs a rectangular wave, a monostable multivibrator that generates a rectangular wave with a constant pulse width based on the rising and falling timing of the output waveform of this waveform shaping circuit, and a monostable multivibrator that smooths the output waveform of the monostable multivibrator. The higher the frequency of the frequency signal a, which is a sine wave, the higher the level of the speed detection voltage becomes.
And the AC bones become smaller.
偏差増幅手段6は、機械式無段変速82に対する設定速
度に比例した速度設定電圧Cと、周波数電圧変換手段5
から人力した速度検出電圧すとの差を増幅し偏差電圧d
として出力するものである。偏差電圧dは、増幅率を省
略すれば、d=cbで表すことができる。The deviation amplification means 6 generates a speed setting voltage C proportional to the set speed for the mechanical continuously variable transmission 82 and a frequency voltage conversion means 5.
Amplify the difference between the manually generated speed detection voltage d and the deviation voltage d
This is what is output as. The deviation voltage d can be expressed as d=cb if the amplification factor is omitted.
比較手段7は、正電圧の正転用基準電圧eIと、負電圧
の逆転用基準電圧e、とをもち、偏差増幅手段6から入
力した偏差電圧dと、変速手段1に対する正転用基準電
圧e1および逆転用基準電圧e2とを比較し、比較出力
fを出力するものである。前記の正転用基準電圧e1は
、結果的には機械式無段変速1)2に対する増速の基準
となり、逆転用基準電圧e2は、結果的には機械式無段
変速機2に対する減速の基準となる。比較出力fは、e
、≦d≦e1のときにはゼロ出力となり、d〉elのと
きには正出力となり、d<ezのときには負出力となる
。e、ld≦e1の範囲は不感帯となる。The comparison means 7 has a reference voltage eI for forward rotation which is a positive voltage and a reference voltage e for reverse rotation which is a negative voltage. It compares the reference voltage e2 for reversal and outputs a comparison output f. The above reference voltage e1 for forward rotation ultimately becomes a reference for speed increase for the mechanical continuously variable transmission 1)2, and the reference voltage e2 for reverse rotation ultimately serves as a reference for deceleration for the mechanical continuously variable transmission 2. becomes. The comparison output f is e
, ≦d≦e1, the output is zero, when d>el, the output is positive, and when d<ez, the output is negative. The range of e, ld≦e1 becomes a dead zone.
駆動手段8は、比較手段7からの比較出力fを人力し、
それがゼロ出力のときに変速手段lを停止状態とし、正
出力のときに変速手段1を正転駆動し、負出力のときに
変速手段lを逆転駆動するようになっている。The driving means 8 manually receives the comparison output f from the comparison means 7,
When the output is zero, the transmission means 1 is stopped, when the output is positive, the transmission means 1 is driven to rotate in the forward direction, and when the output is negative, the transmission means 1 is driven in the reverse direction.
■ 機械式無段変速機20回転速度が設定速度またはそ
れに充分に近い速度となっているときは、速度検出電圧
すと速度設定電圧Cとの偏差電圧dが小さく、e2≦d
≦e、となっているとき(不感帯に入っているとき)に
は、比較出力fがゼロ出力となるから、駆動手段8は変
速手段lを停止状態とし、変速手段1における変速部材
も停止状態となるから、機械式無段変速fi2に対する
変速制御は行われず、機械式無段変速[2の回転速度は
そのままの状態を維持する。■ When the rotational speed of the mechanical continuously variable transmission 20 is at the set speed or sufficiently close to it, the deviation voltage d between the speed detection voltage and the speed set voltage C is small, and e2≦d.
When ≦e (in the dead zone), the comparison output f becomes zero output, so the drive means 8 stops the transmission means 1, and the transmission member in the transmission means 1 also stops. Therefore, no speed change control is performed on the mechanical continuously variable transmission fi2, and the rotational speed of the mechanical continuously variable transmission [2 remains unchanged.
■ 機械式無段変速機2の回転速度が設定速度よりもか
なり遅くなったときは、速度検出電圧すもそれに応じて
低くなり、速度検出電圧すと速度設定電圧Cとの偏差電
圧d (=c−b)がプラス側に増大して不感帯の上限
である正転用基準電圧e1よりも上回り、die、とな
る結果、比較出力fが正出力となり、駆動手段8は変速
手段1を正転駆動して変速部材を正方向に移動させて機
械式無段変速機2の回転速度を増速する。この増速制御
は、偏差電圧dが不感帯(e、≦d≦6+)に戻るまで
行われ、不感帯に復帰すると、■と同じ状態となって増
速制御が停止する。■ When the rotational speed of the mechanical continuously variable transmission 2 becomes considerably slower than the set speed, the speed detection voltage also decreases accordingly, and the deviation voltage d between the speed detection voltage and the speed setting voltage C (= c-b) increases to the positive side and exceeds the reference voltage e1 for forward rotation, which is the upper limit of the dead zone, resulting in die.As a result, the comparison output f becomes a positive output, and the drive means 8 drives the transmission means 1 for forward rotation. Then, the speed change member is moved in the forward direction to increase the rotational speed of the mechanical continuously variable transmission 2. This speed increase control is performed until the deviation voltage d returns to the dead zone (e, ≦d≦6+), and when the deviation voltage d returns to the dead zone, the same state as (■) occurs and the speed increase control stops.
■ 機械式無段変速機2の回転速度が設定速度よりもか
なり速くなったときは、速度検出電圧すもそれに応じて
高くなり、速度検出電圧すと速度設定電圧Cとの偏差電
圧d (= c −b)がマイナス側に増大して不感帯
の下限である逆転用基準電圧egよりも下回り、d<e
、となる結果、比較出力fが負出力となり、駆動手段8
は変速手段lを逆転駆動して変速部材を負方向に移動さ
せて機械式無段変速機2の回転速度を減速する。この減
速制御は、偏差電圧dが不感帯(ex≦d≦e+)に戻
るまで行われ、不感帯に復帰すると、■と同じ状態とな
って減速制御が停止する。■ When the rotational speed of the mechanical continuously variable transmission 2 becomes much faster than the set speed, the speed detection voltage also increases accordingly, and the deviation voltage d between the speed detection voltage and the speed setting voltage C (= c-b) increases to the negative side and becomes lower than the reference voltage eg for reversal which is the lower limit of the dead zone, and d<e
As a result, the comparison output f becomes a negative output, and the driving means 8
drives the speed change means l in the reverse direction to move the speed change member in the negative direction to reduce the rotational speed of the mechanical continuously variable transmission 2. This deceleration control is performed until the deviation voltage d returns to the dead zone (ex≦d≦e+), and when the deviation voltage d returns to the dead zone, the same state as (2) occurs and the deceleration control stops.
〈発明が解決しようとする課題〉
機械式無段変速機2の速度制御の応答性を良くするため
には、周波数−電圧変換手段5の時定数をできるだけ小
さくすることが望ましい、ところが、以下で説明するよ
うに、速度検出手段3としてマグネチックセンサを用い
た場合には、周波数−電圧変換手段5の時定数をあまり
小さくすることができないのである。<Problems to be Solved by the Invention> In order to improve the responsiveness of the speed control of the mechanical continuously variable transmission 2, it is desirable to make the time constant of the frequency-voltage conversion means 5 as small as possible. As will be explained, when a magnetic sensor is used as the speed detection means 3, the time constant of the frequency-voltage conversion means 5 cannot be made very small.
速度設定電圧Cが高く設定されていて機械式無段変速機
2の回転速度が速くなっている状態では、速度検出手段
3による周波数信号aは高い周波数となる。この場合に
、機械式無段変速1)2の回転速度が設定速度またはそ
の近傍にあるときは、第8図(a)に示すように、高い
周波数の周波数信号aが周波数−電圧変換手段5によっ
て変換された速度検出電圧すは、周波数信号aが高い周
波数ゆえに、振幅の小さな交流分を含むものの、前述の
説明から明らかなように、不感帯(et ≦d≦e+>
に入っている。したがって、機械式無段変速機2は設定
速度またはその近傍で安定した回転速度のもとて高速回
転状態を維持する。When the speed setting voltage C is set high and the rotational speed of the mechanical continuously variable transmission 2 is high, the frequency signal a from the speed detection means 3 has a high frequency. In this case, when the rotational speed of the mechanical continuously variable transmission 1) 2 is at or near the set speed, the high-frequency frequency signal a is transmitted to the frequency-voltage conversion means 5, as shown in FIG. 8(a). Since the frequency signal a is high in frequency, the speed detection voltage S converted by is contains an alternating current component with a small amplitude, but as is clear from the above explanation, it has a dead zone (et ≦d≦e+>
It's in. Therefore, the mechanical continuously variable transmission 2 maintains a high-speed rotational state at a stable rotational speed at or near the set speed.
しかし、速度設定電圧Cが低く設定されていて機械式無
段変速1)2の回転速度が遅くなっている状態では、速
度検出手段3による周波数信号aは低い周波数となる。However, when the speed setting voltage C is set low and the rotational speed of the mechanical continuously variable transmission 1) 2 is slow, the frequency signal a from the speed detection means 3 has a low frequency.
この場合に、機械式無段変速機2の回転速度が設定速度
またはその近傍にあるときは、第8図(b)に示すよう
に、低い周波数の周波数信号aが周波数−電圧変換手段
5によって変換された速度検出電圧すは、周波数信号a
が低い周波数ゆえに、振幅の大きな交流分を含むことに
なる。In this case, when the rotational speed of the mechanical continuously variable transmission 2 is at or near the set speed, the frequency signal a of a low frequency is transmitted to the frequency-voltage conversion means 5 as shown in FIG. 8(b). The converted speed detection voltage is the frequency signal a
Since the frequency is low, it includes an alternating current component with a large amplitude.
そして、この場合は、機械式無段変速機20回転速度が
設定速度またはその近傍にあるにもかかわらず、偏差電
圧dは不感帯(e!≦d≦e、)から外れることになる
。In this case, even though the rotational speed of the mechanical continuously variable transmission 20 is at or near the set speed, the deviation voltage d is out of the dead zone (e!≦d≦e).
すなわち、偏差電圧dが不感帯の上限である正転用基準
電圧e、よりも上回ってd>e、となったときに、比較
出力fが正出力となってしまい、機械式無段変速機2が
増速されてしまう、逆に、偏差電圧dが不感帯の下限で
ある逆転用基準電圧e8よりも下回ってd<egとなっ
たときに、比較出力fが負出力となってしまい、機械式
無段変速I!2が減速されてしまう、そして、このよう
な増速と減速とが繰り返され、回転速度が非常に不安定
な状態となる。That is, when the deviation voltage d exceeds the normal rotation reference voltage e, which is the upper limit of the dead band, and d>e, the comparison output f becomes a positive output, and the mechanical continuously variable transmission 2 On the contrary, when the deviation voltage d is lower than the reference voltage e8 for reversal which is the lower limit of the dead zone and d<eg, the comparison output f becomes a negative output, and the mechanical idler Gear shift I! 2 is decelerated, and such speed increase and deceleration are repeated, resulting in a very unstable rotational speed.
しかし、機械式無段変速機2の回転速度はもともと設定
速度またはその近傍にあったのであり、上記のような増
速や減速は本来生してはならないものである。However, since the rotational speed of the mechanical continuously variable transmission 2 was originally at or near the set speed, the speed increase or deceleration described above should not occur.
このような不都合を回避するためには、速度検出手段3
を構成しているマグネチックセンサに対向して機械式無
段変速機2の出力軸4に取り付けられている歯車の歯数
を多くすることにより周波数信号aの周波数を高くして
、偏差電圧dに含まれる交流分の振幅を小さくすればよ
いと考えられる。In order to avoid such inconvenience, the speed detection means 3
The frequency of the frequency signal a is increased by increasing the number of teeth of the gear attached to the output shaft 4 of the mechanical continuously variable transmission 2, facing the magnetic sensor that constitutes the magnetic sensor. It is considered that the amplitude of the alternating current component included in the above should be reduced.
ところが、マグネチックセンサは、歯車の歯が1個ずつ
通過するときの磁束変化を電圧に変化するものであるこ
とから、1個1個の歯をある程度大きくしておかなけれ
ばならない、すると、歯数に制限が加わり、−窓以上に
歯数を増やすわけにはいかない。However, since magnetic sensors convert changes in magnetic flux into voltage when the teeth of a gear pass one by one, each tooth must be made a certain size large. There is a limit on the number of teeth, and it is not possible to increase the number of teeth beyond the - window.
そこで、前記の不都合を回避するための他の対策として
、周波数−電圧変換手段5の時定数を大きく設定するこ
とが考えられる。こうすると、機械式無段変速機2の回
転速度が設定速度またはその近傍にあるときは、その設
定速度が高く設定されているときには、偏差電圧dは第
9図(a)のように交流分をほとんど含まないものとな
り、また、設定速度が低く設定されているときでも、偏
差電圧dは第9図(b)のように交流分が振幅の小さな
ものとなって、不感帯(6g≦d5e+)内に収まるこ
とになる。Therefore, as another measure to avoid the above-mentioned inconvenience, it is conceivable to set the time constant of the frequency-voltage conversion means 5 to a large value. In this way, when the rotational speed of the mechanical continuously variable transmission 2 is at or near the set speed, and when the set speed is set high, the deviation voltage d will be reduced by the AC component as shown in FIG. 9(a). In addition, even when the set speed is set low, the deviation voltage d has a small amplitude AC component as shown in Figure 9(b), resulting in a dead zone (6g≦d5e+). It will fit inside.
以上のような理由から、従来の機械式無段変速機の速度
制御装置においては、周波数−電圧変換手段5の時定数
を大きく設定しである。For the above reasons, in the conventional speed control device for a mechanical continuously variable transmission, the time constant of the frequency-voltage conversion means 5 is set to be large.
しかしながら、周波数−電圧変換手段5の時定数を大き
く設定すると、今度は、機械式無段変速812の速度制
御の応答性が犠牲になる。従来は、これをやむをえない
ものとしていたのであるが、応答性が悪いということは
、変速制御に要する時間が長くかかるということであり
、決して好ましいことではない。However, if the time constant of the frequency-voltage conversion means 5 is set large, the responsiveness of the speed control of the mechanical continuously variable transmission 812 will be sacrificed. In the past, this was considered unavoidable, but poor responsiveness means that it takes a long time to control the speed change, which is not at all desirable.
本発明は、このような事情に鑑みて創案されたものであ
って、機械式無段変速機の速度制御の応答性を改善して
変速制御に要する時間を短縮化するために周波数−電圧
変換手段の時定数を小さく設定することを前提におき、
それでいて、機械式無段変速機の回転速度が低速で設定
速度またはその近傍にあるときに周波数−電圧変換手段
からの偏差電圧に大きな交流分が生じても、それが正転
用基準電圧および逆転用基準電圧を超えないようにして
、設定速度またはその近傍での回転状態における不測の
増速、減速の繰り返し動作を防止できるようにすること
を目的とする。The present invention was devised in view of the above circumstances, and is a method of frequency-voltage conversion in order to improve the responsiveness of speed control of a mechanical continuously variable transmission and shorten the time required for speed change control. Assuming that the time constant of the means is set small,
However, even if a large alternating current component occurs in the deviation voltage from the frequency-voltage conversion means when the rotational speed of the mechanical continuously variable transmission is low and at or near the set speed, the reference voltage for forward rotation and the reference voltage for reverse rotation It is an object of the present invention to prevent a reference voltage from being exceeded and to prevent unexpected repeated speed increases and decelerations in a rotational state at or near a set speed.
〈課題を解決するための手段〉
本発明は、このような目的を達成するために、次のよう
な構成をとる。<Means for Solving the Problems> In order to achieve the above object, the present invention has the following configuration.
すなわち、本発明の機械式無段変速機の速度制御装置は
、機械式無段変速機を変速する変速手段と、前記機械式
無段変速機の出力系に設けられて機械式無段変速機の回
転速度に比例した周波数信号を出力する速度検出手段と
、前記周波数信号の周波数を速度検出電圧に変換する時
定数の小さい周波数−電圧変換手段と、前記機械式無段
変速機に対する設定速度に比例した速度設定電圧と前記
速度検出電圧との差を増幅し偏差電圧として出力する偏
差増幅手段と、偏差電圧または速度検出電圧に含まれる
交流分を注出する交流分注出手段と、この交流分注出手
段からの交流分電圧と基準電圧とを加算して補正基準電
圧として出力する加算手段と、前記偏差電圧と前記補正
基準電圧とを比較する比較手段と、この比較手段の比較
出力または比較手段の比較出力および偏差電圧の極性に
応じて前記変速手段を駆動制御する駆動手段とを備えた
ものである。That is, the speed control device for a mechanical continuously variable transmission of the present invention includes a speed change means for changing the speed of the mechanical continuously variable transmission, and a speed control device provided in the output system of the mechanical continuously variable transmission. speed detection means for outputting a frequency signal proportional to the rotational speed of the mechanical continuously variable transmission; a frequency-voltage conversion means having a small time constant for converting the frequency of the frequency signal into a speed detection voltage; deviation amplification means for amplifying the difference between the proportional speed setting voltage and the speed detection voltage and outputting it as a deviation voltage; an addition means for adding the AC voltage from the dispensing means and a reference voltage and outputting the result as a corrected reference voltage; a comparison means for comparing the deviation voltage and the correction reference voltage; and a comparison output of the comparison means; and drive means for driving and controlling the speed change means according to the comparison output of the comparison means and the polarity of the deviation voltage.
〈作用〉 本発明の上記構成による作用は、次のとおりである。<Effect> The effects of the above configuration of the present invention are as follows.
交流分注出手段が偏差電圧または速度検出電圧に含まれ
ている交流分を注出して交流分電圧として加算手段に与
え、加算手段が基*ii圧と交流分電圧とを加算して補
正基準電圧を作り、比較手段において補正基準電圧と偏
差電圧とを比較し、その比較出力または比較出力および
偏差電圧極性に応して変速手段を駆動制御するように構
成したので、機械式無段変速機の回転速度が低速で不感
帯内で設定速度またはその近傍にあって、偏差電圧また
は速度検出電圧に含まれる交流分の振幅が大きくなって
も、それに追従して補正基準電圧も変化し、回転速度が
不感帯内にある以上、常に、偏差電圧が補正基準電圧に
よる不感帯内に収まることになる。The AC dispensing means extracts the AC component included in the deviation voltage or the speed detection voltage and supplies it to the addition means as an AC voltage, and the addition means adds the base*ii pressure and the AC voltage to determine the correction standard. A mechanical continuously variable transmission Even if the rotational speed is low and at or near the set speed within the dead zone, and the amplitude of the AC component included in the deviation voltage or speed detection voltage increases, the correction reference voltage will change accordingly, and the rotational speed will change. As long as is within the dead zone, the deviation voltage will always fall within the dead zone due to the corrected reference voltage.
したがって、速度検出手段としてマグネチックセンサの
ような1回転のパルス数が少ないものを用いても、周波
数−電圧変換手段の時定数を小さく設定して低速回転状
態で偏差電圧に大きな振幅の交流分が生じるにもがかわ
らず、不測の増速2減速の繰り返し動作が回避されるこ
とになる。Therefore, even if a speed detection means such as a magnetic sensor with a small number of pulses per rotation is used, the time constant of the frequency-voltage conversion means may be set small so that the deviation voltage will contain an alternating current of large amplitude in a low speed rotation state. Despite this, unexpected repeated operations of acceleration and deceleration can be avoided.
〈実施例〉
以下、本発明の実施例を図面に基づいて詳細に説明する
。<Example> Hereinafter, an example of the present invention will be described in detail based on the drawings.
里1大崖班
第1)!Iは本発明の第1実施例に係る機械式無段変速
機の速度制御装置のブロック図である。Village 1 large cliff group 1)! I is a block diagram of a speed control device for a mechanical continuously variable transmission according to a first embodiment of the present invention.
第1図において、1は機械式無段変速機2を機械的に変
速する変速手段、3は機械式無段変速機2の回転速度に
比例した周波数信号a (正弦波)を出力する速度検出
手段、5は周波数信号aを速度検出電圧すに変換する周
波数−電圧変換手段、6は機械式無段変速機2に対する
設定速度に比例した速度設定電圧Cと速度検出電圧すと
の差を増幅して偏差電圧d (=c−b)を出力する偏
差増幅手段、8は比較手段7からの比較出力rに基づい
て変速手段1を制御する駆動手段である。In FIG. 1, 1 is a speed change means for mechanically changing the speed of the mechanical continuously variable transmission 2, and 3 is a speed detection device that outputs a frequency signal a (sine wave) proportional to the rotational speed of the mechanical continuously variable transmission 2. Means 5 is a frequency-voltage conversion means for converting the frequency signal a into a speed detection voltage S; 6 is amplification of the difference between the speed setting voltage C proportional to the set speed for the mechanical continuously variable transmission 2 and the speed detection voltage S; 8 is a drive means for controlling the speed change means 1 based on the comparison output r from the comparison means 7.
周波数−電圧変換手段5は、従来例と同様に、周波数信
号aが正の半波の期間で“H″レベル負の半波の期間で
“L”レベルの矩形波を出力する波形整形回路と、この
波形整形回路の出力波形の立ち上がりおよび立ち下がり
のタイミングから一定のパルス幅の矩形波を生成する単
安定マルチバイブレークと、単安定マルチバイブレータ
の出力波形を平滑化する平滑回路とから構成されている
。The frequency-voltage conversion means 5 is a waveform shaping circuit that outputs a rectangular wave of "H" level during the positive half-wave period of the frequency signal a and "L" level during the negative half-wave period, as in the conventional example. , consists of a monostable multivibrator that generates a rectangular wave with a constant pulse width from the rising and falling timing of the output waveform of this waveform shaping circuit, and a smoothing circuit that smoothes the output waveform of the monostable multivibrator. There is.
機械式無段変速41)2を機械的に変速する変速手段1
は、リバーシブルモータ(正逆転モータ)をもって構成
され、リバーシブルモータの停止によって機械式無段変
速機2の回転速度をある速度に固定し、リバーシブルモ
ータの正転によって変速部材を正方向に移動させて機械
式無段変速機2の回転速度を増速し、リバーシブルモー
タの逆転によって変速部材を負方向に移動させて機械式
無段変速機2の回転速度を減速するものである。Transmission means 1 for mechanically shifting the mechanical continuously variable transmission 41) 2
is composed of a reversible motor (forward/reverse motor), and when the reversible motor stops, the rotational speed of the mechanical continuously variable transmission 2 is fixed at a certain speed, and when the reversible motor rotates forward, the transmission member is moved in the forward direction. The rotational speed of the mechanical continuously variable transmission 2 is increased, and the speed change member is moved in the negative direction by reverse rotation of the reversible motor to reduce the rotational speed of the mechanical continuously variable transmission 2.
速度検出手段3は、機械式無段変速機2の出力軸4に取
り付けられた歯車(図示せず)に対向して設けられたマ
グネチックセンサ(図示せず)をもって構成されている
。このマグネチックセンサは、歯車の歯が1個ずつ通過
するときの磁束変化を電圧に変換するものであるが、そ
の歯車の歯数は60個程度と少ない、それにもかかわら
ず、周波数−電圧変換手段5は、その時定数が小さなも
のに設定されている。The speed detection means 3 includes a magnetic sensor (not shown) provided opposite to a gear (not shown) attached to the output shaft 4 of the mechanical continuously variable transmission 2. This magnetic sensor converts the change in magnetic flux when the teeth of a gear pass one by one into voltage, but the number of teeth on the gear is small, about 60, and despite this, it is difficult to convert frequency to voltage. The time constant of the means 5 is set to be small.
以上の各手段のほかに、偏差電圧dから一定周波数以上
の交流分のみを通過させるバイパスフィルタで構成され
た交流分注出手段9と、この交流分注出手段9からの交
流分電圧りに正電圧の正転用基準電圧e、を加算して変
速手段lに対する正転用補正基準電圧g+ (−el
+h)を出力するとともに、交流分電圧りに負電圧の
逆転用基準電圧e2を加算して変速手段lに対する逆転
用補正基準電圧gt (at +h)を出力する加算
手段lOとを備えている。In addition to the above-mentioned means, there is also an AC dispensing means 9 which is composed of a bypass filter that allows only the AC component of a certain frequency or higher to pass from the deviation voltage d, and an AC component voltage from the AC dispensing means 9. By adding the positive reference voltage e for forward rotation, the corrected reference voltage g+ (-el
+h), and an addition means lO which adds a negative reference voltage e2 for reversal to the AC component voltage and outputs a corrected reference voltage gt (at +h) for reversal for the transmission means l.
比較手段7は、偏差増幅手段6から入力した偏差電圧d
と、加算手段10からの正転用補正基準電圧g1および
逆転用補正基準電圧gtとを比較するようになっている
。比較手段7からの比較出力fは、g!≦d≦g、のと
きにはゼロ出力となり、dig、のときには正出力とな
り、d<gzのときには負出力となる0gt≦d≦g1
の範囲は不感帯となる。駆動手段8は、比較手段7から
の比較出力fを入力し、それがゼロ出力のときに変速手
段1を停止状態とし、正出力のときに変速手段1を正転
駆動し、負出力のときに変速手段1を逆転駆動するよう
になっている。The comparison means 7 receives the deviation voltage d input from the deviation amplification means 6.
The normal rotation correction reference voltage g1 and the reverse rotation correction reference voltage gt from the adding means 10 are compared. The comparison output f from the comparison means 7 is g! When ≦d≦g, the output is zero, when dig, the output is positive, and when d<gz, the output is negative.0gt≦d≦g1
The range becomes a dead zone. The drive means 8 inputs the comparison output f from the comparison means 7, sets the transmission means 1 to a stopped state when it is a zero output, drives the transmission means 1 in forward rotation when it is a positive output, and drives the transmission means 1 in forward rotation when it is a negative output. The transmission means 1 is driven in the reverse direction.
次に、この第1実施例の動作を説明する。Next, the operation of this first embodiment will be explained.
[1]増速制御
機械式無段変速機2の回転速度が設定速度よりもかなり
遅くなったときは、速度検出電圧すもそれに応して低く
なり、速度検出電圧すと速度設定電圧Cとの偏差電圧d
(= c −b)がプラス側に増大して不感帯の上限
である正転用基準電圧e。[1] Speed increase control When the rotational speed of the mechanical continuously variable transmission 2 becomes considerably slower than the set speed, the speed detection voltage decreases accordingly, and the speed detection voltage becomes the speed setting voltage C. deviation voltage d
(= c - b) increases to the positive side and is the upper limit of the dead zone, which is the reference voltage e for forward rotation.
よりも上回る。exceeds.
従って、交流分注出手段9からの交流分電圧りと正転用
基準電圧e1を加算した加算手段10からの正転用補正
基準電圧g、は、g、<dとなって比較手段7による比
較出力fが正出力となり、駆動手段8は変速手段lを正
転駆動して変速部材を正方向に移動させ、機械式無段変
速機2の回転速度を増速する。この増速制御は、偏差電
圧dが不感帯(ex =gz≦d≦g+=8+)に戻る
まで行われ、不感帯に復帰すると増速制御が停止する。Therefore, the corrected reference voltage g for normal rotation from the addition means 10, which is the sum of the AC component voltage from the AC dispensing means 9 and the reference voltage e1 for normal rotation, is g,<d, and the comparison output by the comparison means 7 f becomes a positive output, and the driving means 8 drives the transmission means 1 to rotate in the normal direction, moving the transmission member in the forward direction, and increasing the rotational speed of the mechanical continuously variable transmission 2. This speed increase control is performed until the deviation voltage d returns to the dead zone (ex=gz≦d≦g+=8+), and when it returns to the dead zone, the speed increase control is stopped.
周波数−電圧変換手段5の時定数を小さくしであるから
、機械式無段変速I!2に対する増速制御の応答性が良
く、機械式無段変速機2の回転速度を設定速度またはそ
の近傍まで安定させるのに要する時間は充分に短いもの
となる。Since the time constant of the frequency-voltage conversion means 5 is made small, the mechanical continuously variable speed I! 2, and the time required to stabilize the rotational speed of the mechanical continuously variable transmission 2 to or near the set speed is sufficiently short.
[2]減速制御
機械式無段変速1)2の回転速度が設定速度よりもかな
り速くなったときは、速度検出電圧すもそれに応じて高
くなり、速度検出電圧すと速度設定電圧Cとの偏差電圧
d (=c−b)がマイナス側に増大して不感帯の下限
である逆転用基準電圧etよりも下回る。[2] Deceleration Control Mechanical Continuously Variable Transmission 1) When the rotational speed of 2 becomes considerably faster than the set speed, the speed detection voltage also increases accordingly, and the speed detection voltage and the speed setting voltage C increase. The deviation voltage d (=c-b) increases to the negative side and becomes lower than the reversal reference voltage et, which is the lower limit of the dead zone.
従って、交流分注出手段9からの交流分電圧りと逆転用
基準電圧e、を加算した加算手段10からの逆転用補正
基準電圧gtは、g、<dとなって比較手段7による比
較出力fが負出力となり、駆動手段8は変速手段1を逆
転駆動して変速部材を負方向に移動させ、機械式無段変
速812の回転速度を減速する。この減速制御は、偏差
電圧dが不感帯に戻るまで行われ、不感帯に復帰すると
減速制御が停止する。Therefore, the corrected reference voltage gt for reversal from the addition means 10, which is the sum of the AC component voltage from the AC dispensing means 9 and the reference voltage for reversal e, is g,<d, and the comparison output by the comparison means 7 f becomes a negative output, and the driving means 8 drives the transmission means 1 in the reverse direction to move the transmission member in the negative direction, thereby decelerating the rotational speed of the mechanical continuously variable transmission 812. This deceleration control is performed until the deviation voltage d returns to the dead zone, and when it returns to the dead zone, the deceleration control is stopped.
この場合も、周波数−電圧変換手段5の時定数が小さい
ことから、機械式無段変速機2に対する減速制御の応答
性が良く、機械式無段変速1)2の回転速度を設定速度
またはその近傍まで安定させるのに要する時間は充分に
短いものとなる。In this case as well, since the time constant of the frequency-voltage conversion means 5 is small, the responsiveness of deceleration control for the mechanical continuously variable transmission 2 is good, and the rotation speed of the mechanical continuously variable transmission 1) 2 is set at or below the set speed. The time required to stabilize up to the vicinity is sufficiently short.
[3]安定制御
以上の[1),[2]のようにして、機械式無段変速1
)2の回転速度が設定速度またはその近傍に落ち着くこ
とになる。すなわち、速度検出電圧すと速度設定電圧C
との偏差電圧dが小さく、不感帯(ex≦d≦et)に
入る。ただし、不感帯に入っていても、周波数−電圧変
換手段5において一定のパルス幅の矩形波が断続する単
安定マノ5チバイブレータの出力波形を平滑しているこ
とから、速度検出信号すには交流分が含まれている。[3] Mechanical continuously variable transmission 1 as described in [1] and [2] above for stability control.
) 2 will settle at or near the set speed. In other words, the speed detection voltage C and the speed setting voltage C
The deviation voltage d is small and falls into the dead zone (ex≦d≦et). However, even if it is in the dead zone, the frequency-voltage conversion means 5 smooths the output waveform of the monostable mano-5 vibrator in which a rectangular wave with a constant pulse width is intermittent, so the speed detection signal is Contains minutes.
その交流分は、機械式無段変速機2の回転速度が高いほ
ど小さく、低いほど大きい。The higher the rotational speed of the mechanical continuously variable transmission 2, the smaller the alternating current, and the lower the rotational speed of the mechanical continuously variable transmission 2, the larger the alternating current.
以下、安定制御の動作を、機械式無段変速機2の高速回
転状態の場合と、低速回転状態の場合とに分けて説明す
る。Hereinafter, the operation of the stability control will be explained separately for the case where the mechanical continuously variable transmission 2 is in a high speed rotation state and the case where it is in a low speed rotation state.
ia+ 高速回転状態
速度設定電圧Cが高く設定されていて機械式無段変速機
2が高速回転状態にあり、その回転速度が設定速度また
はその近傍(不感帯)にあるとする、すると、速度検出
手段3による周波数信号a(正弦波)の周波数が高く、
これが周波数−電圧変換手段5によって電圧変換された
速度検出信号すに含まれる交流分の振幅は小さい、偏差
増幅手段6において高く設定された速度設定電圧Cは一
定であるから、これと速度検出電圧すとの差を増幅した
結果の偏差電圧dの交流分も第2図(a)に示すように
その振幅が小さい。ia+ High-speed rotation state Suppose that the speed setting voltage C is set high and the mechanical continuously variable transmission 2 is in a high-speed rotation state, and the rotation speed is at or near the set speed (dead zone). 3, the frequency of the frequency signal a (sine wave) is high,
The amplitude of the alternating current component included in the speed detection signal converted into voltage by the frequency-voltage conversion means 5 is small.Since the speed setting voltage C set high in the deviation amplification means 6 is constant, this and the speed detection voltage The alternating current component of the deviation voltage d resulting from amplifying the difference between the current and the current has a small amplitude as shown in FIG. 2(a).
この偏差電圧dの交流分は交流分注出手段9によって注
出されて交流分電圧りとなり、加算手段lOに入力され
る。加算手段10は、正転用基準電圧e、に交流分電圧
りを加算して正転用補正基を出力するとともに、逆転用
基準電圧
り分電圧りを加算して逆転用補正基準電8力する。正転
用補正基準電圧g+、逆転用補正基準電圧g、は、交流
分電圧りと同一振幅の交流分を有する。ただし、速度検
出信号すに含まれる交流分の振幅が小さいから、偏差電
圧dに含まれる交流分も小さく、同様に、正転用補正基
準電圧g++逆転用補正基準電圧g、に含まれる交流分
も小さい。The alternating current component of this deviation voltage d is extracted by the alternating current dispensing means 9 to become an alternating current component voltage, which is input to the adding means lO. The adding means 10 adds the alternating current voltage to the normal rotation reference voltage e and outputs a normal rotation correction base, and also adds the reverse rotation reference voltage and the reverse rotation correction reference voltage to output the reverse rotation correction reference voltage. The corrected reference voltage g+ for forward rotation and the corrected reference voltage g for reverse rotation have an alternating current component with the same amplitude as the alternating current component voltage. However, since the amplitude of the alternating current component included in the speed detection signal is small, the alternating current component included in the deviation voltage d is also small, and similarly, the alternating current component included in the forward rotation correction reference voltage g+++reverse rotation correction reference voltage g is also small. small.
第2図(a)から明らかなように、機械式無段変速41
)2が高速回転状態で回転速度が設定速度またはその近
傍にあるときは、偏差電圧dが、正転用補正基準電圧g
1と逆転用補正基準電圧g2との間の不感帯<e* +
h=gt≦d≦g+=eI+h)に収まることになる。As is clear from FIG. 2(a), the mechanical continuously variable transmission 41
) 2 is in a high-speed rotation state and the rotation speed is at or near the set speed, the deviation voltage d is the normal rotation correction reference voltage g
1 and the correction reference voltage g2 for reverse rotation <e* +
h=gt≦d≦g+=eI+h).
したがって、機械式無段変速機2は設定速度またはその
近傍で安定した回転速度のもとて高速回転状態を維持す
る。Therefore, the mechanical continuously variable transmission 2 maintains a high-speed rotational state at a stable rotational speed at or near the set speed.
(bl 低速回転状態
速度設定電圧Cが低く設定されていて機械式無段変速機
2が低速回転状態にあり、その回転速度が設定速度また
はその近傍(不感帯)にあるとする、この場合は、速度
検出手段3による周波数信号aの周波数が低く、これが
周波数−電圧変換手段5によって電圧変換された速度検
出信号すに含まれる交流分の振幅は大きい、偏差増幅手
段6において低く設定された速度設定電圧Cは一定であ
るから、これと速度検出電圧すとの差を増幅した結果の
偏差電圧dの交流分も第2図(b)に示すようにその振
幅が大きい。(bl Low speed rotation state Suppose that the speed setting voltage C is set low and the mechanical continuously variable transmission 2 is in a low speed rotation state, and the rotation speed is at or near the set speed (dead zone). In this case, The frequency of the frequency signal a from the speed detection means 3 is low, and the amplitude of the alternating current component included in the speed detection signal obtained by converting the frequency signal a into a voltage by the frequency-voltage conversion means 5 is large, and the speed is set low in the deviation amplification means 6. Since the voltage C is constant, the AC component of the deviation voltage d resulting from amplifying the difference between this voltage and the speed detection voltage S also has a large amplitude as shown in FIG. 2(b).
しかしながら、この偏差電圧dの交流分は交流分注出手
段9によって注出されて交流分電圧りとなり、加算手段
10において作られた正転用補正基準電圧gI、逆転用
補正基準電圧g、に含まれる交流分の振幅も、偏差電圧
dに追従して大きなものとなる。However, the alternating current component of this deviation voltage d is extracted by the alternating current dispensing means 9 and becomes an alternating current voltage, which is included in the corrected reference voltage gI for forward rotation and the corrected reference voltage g for reverse rotation created by the adding means 10. The amplitude of the alternating current component also increases in accordance with the deviation voltage d.
したがって、第2図(b)に示すように、機械式無段変
速機2が低速回転状態で回転速度が設定速度またはその
近傍(不感帯)にあるときでも、大きな交流分を含む偏
差電圧dが、偏差電圧dの交流分と同し大きさの交流分
をもつ正転用補正基準電圧g+ と逆転用補正基準電圧
g2との間の不感帯(gア≦d≦g+)に収まることに
なる。Therefore, as shown in FIG. 2(b), even when the mechanical continuously variable transmission 2 is in a low-speed rotation state and the rotational speed is at or near the set speed (dead zone), the deviation voltage d containing a large AC component is , it falls within the dead zone (ga≦d≦g+) between the corrected reference voltage for normal rotation g+ and the corrected reference voltage for reverse rotation g2, which has an alternating current component of the same magnitude as the alternating current component of the deviation voltage d.
すなわち、偏差電圧dが不感帯から外れることがないの
で、機械式無段変速機2は設定速度またはその近傍で安
定した回転速度のもとて低速回転状態を維持する。That is, since the deviation voltage d does not deviate from the dead zone, the mechanical continuously variable transmission 2 maintains a low-speed rotational state at a stable rotational speed at or near the set speed.
以上のように、速度検出手段3として1回転のパルス数
が少ないマグネチックセンサを用い、かつ、周波数−電
圧変換手段5の時定数を小さく設定して低速回転状態で
偏差電圧dに大きな交流骨が生しるにもかかわらず、高
速回転状態と同様に不測の増速、減速の繰り返し動作を
防止することができる。そして、周波数−電圧変換手段
5の時定数を小さく設定したことから、機械式無段変速
機2の速度制御の応答性が良く、変速制御に要する時間
を短縮化することができるのである。ちなみに、従来例
に比べて約1/3に時間短縮できることが確認された。As described above, a magnetic sensor with a small number of pulses per rotation is used as the speed detection means 3, and the time constant of the frequency-voltage conversion means 5 is set small, so that the deviation voltage d is large when the rotation speed is low. Even though this occurs, it is possible to prevent unexpected repeated speed increases and decelerations as in the case of high speed rotation. Since the time constant of the frequency-voltage conversion means 5 is set small, the speed control of the mechanical continuously variable transmission 2 has good responsiveness, and the time required for speed change control can be shortened. Incidentally, it has been confirmed that the time can be reduced to about 1/3 compared to the conventional example.
星1失施班
第2実施例は、図示を省略するが、第1実施例の説明で
明らかなように、周波数−電圧変換手段5からの速度検
出電圧すの波形と、偏差増幅手段6からの偏差電圧dの
波形とが相似であることに鑑み、第1実施例で偏差電圧
dを交流分注出手段9に通して交流分電圧りを作ってい
たことに代えて、速度検出電圧すを偏差増幅手段6と同
じ増幅率で増幅した後、偏差増幅手段6を通すことなく
交流分注出手段9に通して交流分電圧りを作るように構
成する。この場合も第1実施例と全く同等の効果が得ら
れる。In the second embodiment of the 1-star implementation team, illustration is omitted, but as is clear from the explanation of the first embodiment, the waveform of the speed detection voltage from the frequency-voltage conversion means 5 and the waveform of the speed detection voltage from the deviation amplification means 6 are Considering that the waveform of the deviation voltage d is similar to that of the speed detection voltage d, instead of passing the deviation voltage d through the AC dispensing means 9 to create the AC component voltage in the first embodiment, the speed detection voltage is amplified with the same amplification factor as the deviation amplification means 6, and then passed through the AC dispensing means 9 without passing through the deviation amplification means 6 to create an AC component voltage. In this case as well, effects completely equivalent to those of the first embodiment can be obtained.
策主夫巖班
第1実施例におけるバイパスフィルタを利用した交流分
注出手段9に代えて、第3図に示すように、偏差増幅手
段6からの偏差電圧dを平均化する平均化回路1)と、
該平均化回路1)から出力される平均化電圧iから偏差
電圧dを減算する減算回路12と、該減算回路12から
出力される減算電圧jの極性を反転する極性反転回路1
3とからなる交流分注出手段9を用いたもので、極性反
転電圧kを第1実施例の交流分電圧りの代わりに加算手
段lOに入力するように構成しである。In place of the alternating current dispensing means 9 using a bypass filter in the first embodiment, an averaging circuit 1 for averaging the deviation voltage d from the deviation amplifying means 6 is used, as shown in FIG. and,
A subtraction circuit 12 that subtracts the deviation voltage d from the averaged voltage i output from the averaging circuit 1), and a polarity inversion circuit 1 that inverts the polarity of the subtraction voltage j output from the subtraction circuit 12.
3, and is configured so that the polarity inversion voltage k is input to the addition means lO instead of the alternating current voltage component 1 in the first embodiment.
低速回転状態での偏差電圧d、平均化電圧i。Deviation voltage d and average voltage i in low speed rotation state.
減算電圧jおよび極性反転電圧にの波形を第4図の(a
)〜(d)に示す。The waveforms of the subtraction voltage j and the polarity reversal voltage are shown in (a) in Figure 4.
) to (d).
この場合も第1実施例と同等の効果が得られる。In this case as well, effects similar to those of the first embodiment can be obtained.
筆土大急班 第4実施例を第5図に基づいて説明する。Fudedo emergency team A fourth embodiment will be explained based on FIG. 5.
第1実施例における偏差増幅手段6と交流分注出手段9
との間に絶対値化手段14を挿入するとともに、偏差増
幅手段6と駆動手段8との間に極性判別手段15を挿入
しである。絶対値化手段14の出力が交流分注出手段9
と比較手段7とに導かれている。Deviation amplification means 6 and AC dispensing means 9 in the first embodiment
An absolute value converting means 14 is inserted between the deviation amplifying means 6 and the driving means 8, and a polarity determining means 15 is inserted between the deviation amplifying means 6 and the driving means 8. The output of the absolute value converting means 14 is the AC dispensing means 9
and comparison means 7.
加算手段lOにおける基準電圧eは1つとなっており、
加算手段10から比較手段7への補正基1!電圧にも1
つとなっている。その代わりに、極性判別手段15を設
けて、偏差電圧dの極性を判別し、比較手段7からの比
較出力f1と極性判別手段15からの判別出力r!とで
駆動手段8を駆動するように構成している。There is one reference voltage e in the adding means lO,
Correction base 1 from addition means 10 to comparison means 7! 1 for voltage
It is one. Instead, a polarity determining means 15 is provided to determine the polarity of the deviation voltage d, and the comparison output f1 from the comparing means 7 and the determination output r! from the polarity determining means 15! The driving means 8 is configured to be driven by the following.
極性判別手段15は、回転速度が設定速度またはその近
傍にあるときは無関係である。不感帯から外れたときに
不感帯に戻す際に機能する。The polarity determining means 15 is irrelevant when the rotational speed is at or near the set speed. It functions to return to the dead zone when it is out of the dead zone.
すなわち、機械式無段変速機2の回転速度が不感帯を外
れて低速側にシフトしたとき、偏差電圧d (=c−b
)が正となるが、極性判別手段15はこの正電圧を判別
出力r2として駆動手段8に与え(このとき比較出力f
、は正出力〉、駆動手段8は変速手段1を正転駆動して
機械式無段変速機2の回転速度を増速し、不感帯に復帰
させる。That is, when the rotational speed of the mechanical continuously variable transmission 2 moves out of the dead zone and shifts to the low speed side, the deviation voltage d (= c - b
) becomes positive, and the polarity determining means 15 supplies this positive voltage to the driving means 8 as the determination output r2 (at this time, the comparison output f
, is a positive output>, the driving means 8 drives the transmission means 1 in normal rotation to increase the rotational speed of the mechanical continuously variable transmission 2 and return it to the dead zone.
逆に、回転速度が不感帯を外れて高速側にシフトしたと
き、偏差電圧d (=c−b)が負となるが、極性判別
手段15はこの負電圧を判別出力r2として駆動手段8
に与え(このときも比較出力f。Conversely, when the rotational speed moves out of the dead zone and shifts to the high speed side, the deviation voltage d (=c-b) becomes negative, but the polarity determining means 15 outputs this negative voltage as the determined output r2 to the driving means 8.
(also at this time, the comparison output f.
は正出力)、駆動手段8は変速手段1を逆転駆動して機
械式無段変速機2の回転速度を減速し、不感帯に復帰さ
せる。不感帯に復帰すると、比較出力f1はゼロ出力と
なる。(positive output), the drive means 8 drives the transmission means 1 in reverse to reduce the rotational speed of the mechanical continuously variable transmission 2 and return it to the dead zone. When returning to the dead zone, the comparison output f1 becomes a zero output.
回転速度が設定速度またはその近傍にあるときの主要部
の波形を第6図に示す。FIG. 6 shows the waveforms of the main parts when the rotational speed is at or near the set speed.
比較手段7において比較されるべき絶対値信号lと補正
基準電圧gとは、補正基準電圧gが絶対値信号lの脈動
に対応して同様に脈動するため、回転速度が不感帯にあ
れば、絶対値信号lが補正基準電圧gを超えることはな
く、したがって、不測の増速、tiIi、速の繰り返し
は防止される。The absolute value signal l and the corrected reference voltage g to be compared in the comparison means 7 are the absolute The value signal l never exceeds the corrected reference voltage g, thus preventing an unexpected speed increase, tiIi, speed repetition.
したがって、この実施例の場合も第1実施例と同等の効
果が得られる。Therefore, this embodiment also provides the same effects as the first embodiment.
〈発明の効果〉 本発明によれば、次の効果が発揮される。<Effect of the invention> According to the present invention, the following effects are achieved.
すなわち、偏差電圧または速度検出電圧に含まれている
交流分を注出し、この交流分電圧を基準電圧に加算して
補正基準電圧を作り、この補正基準電圧と偏差電圧との
比較出力または比較出力および偏差電圧極性に応じて変
速手段を駆動制御するように構成したので、機械式無段
変速機の回転速度が低速状態にあって不感帯内で設定速
度またはその近傍にあって、偏差電圧または速度検出電
圧に含まれる交流分の振幅が大きくなっても、それに追
従して補正基準電圧も変化し、回転速度が不感帯内にあ
る以上、常に、偏差電圧が補正基準電圧による不感帯内
に収まることになり、速度検出手段としてマグネチック
センサのような1回転のパルス数が少ないものを用いて
も、また、周波数−電圧変換手段の時定数を小さく設定
しであるにもかかわらず、不測の増速、減速の繰り返し
動作を回避することができる。That is, extract the AC component included in the deviation voltage or speed detection voltage, add this AC voltage to the reference voltage to create a corrected reference voltage, and compare or compare the corrected reference voltage with the deviation voltage. Since the speed change means is drive-controlled in accordance with the difference voltage polarity and the deviation voltage polarity, when the rotational speed of the mechanical continuously variable transmission is in a low speed state and is at or near the set speed within the dead zone, the deviation voltage or the speed Even if the amplitude of the alternating current component included in the detection voltage increases, the correction reference voltage changes accordingly, and as long as the rotation speed is within the dead band, the deviation voltage will always be within the dead band of the correction reference voltage. Therefore, even if a magnetic sensor with a small number of pulses per revolution is used as the speed detection means, or even if the time constant of the frequency-voltage conversion means is set small, unexpected speed increases may occur. , it is possible to avoid repeated deceleration operations.
そして、周波数−電圧変換手段の時定数を小さく設定し
たことから、機械式無段変速機の速度制御の応答性を改
善して、変速制御に要する時間を短縮化することができ
る。Since the time constant of the frequency-voltage conversion means is set small, the responsiveness of speed control of the mechanical continuously variable transmission can be improved and the time required for speed change control can be shortened.
第1図は本発明の第1実施例に係る機械式無段変速機の
速度制御装置のブロック図、第2図は第1実施例の場合
の高速回転状態および低速回転状態での偏差電圧と補正
基準電圧との関係を示す波形図、第3図は第3実施例に
係る交流分注出手段のブロック回路図、第4図はその動
作波形図、第5図は第4実施例に係る機械式無段変速機
の速度制御装置のブロック図、第6図はその動作波形図
、第7図は従来例の機械式無段変速機の速度制御装置の
ブロック図、第8図はその動作波形図、第9図は従来例
において周波数−電圧変換手段の時定数を大きくした場
合の動作波形図である。
l・・・変速手段、2・・・機械式無段変速機、3・・
・速度検出手段、5・・・周波数−電圧変換手段、6・
・・偏差増幅手段、7・・・比較手段、8・・・駆動手
段、9・・・交流分注出手段、lO・・・加算手段、1
5・・・極性判別手段、a・・・周波数信号、b・・・
速度検出電圧、C・・・速度設定電圧、d・・・偏差電
圧、e、・・・正転用基準電圧、e、・・・逆転用基準
電圧、f・・・比較出力、g+・・・正転用補正基準電
圧、gオ・・・逆転用補正基準電圧、h・・・交流分電
圧。Fig. 1 is a block diagram of a speed control device for a mechanical continuously variable transmission according to a first embodiment of the present invention, and Fig. 2 shows deviation voltages in a high speed rotation state and a low speed rotation state in the case of the first embodiment. A waveform diagram showing the relationship with the corrected reference voltage, FIG. 3 is a block circuit diagram of the AC dispensing means according to the third embodiment, FIG. 4 is an operation waveform diagram thereof, and FIG. 5 is according to the fourth embodiment. A block diagram of the speed control device of a mechanical continuously variable transmission, FIG. 6 is its operation waveform diagram, FIG. 7 is a block diagram of the speed control device of a conventional mechanical continuously variable transmission, and FIG. 8 is its operation. FIG. 9 is an operational waveform diagram when the time constant of the frequency-voltage conversion means is increased in the conventional example. l...Transmission means, 2...Mechanical continuously variable transmission, 3...
- Speed detection means, 5... Frequency-voltage conversion means, 6.
... Deviation amplifying means, 7... Comparison means, 8... Driving means, 9... AC dispensing means, lO... Adding means, 1
5...Polarity determination means, a...Frequency signal, b...
Speed detection voltage, C... Speed setting voltage, d... Deviation voltage, e,... Reference voltage for forward rotation, e,... Reference voltage for reverse rotation, f... Comparison output, g+... Correction reference voltage for forward rotation, g o... Correction reference voltage for reverse rotation, h... AC component voltage.
Claims (1)
械式無段変速機の出力系に設けられて機械式無段変速機
の回転速度に比例した周波数信号を出力する速度検出手
段と、 前記周波数信号の周波数を速度検出電圧に変換する時定
数の小さい周波数−電圧変換手段と、前記機械式無段変
速機に対する設定速度に比例した速度設定電圧と前記速
度検出電圧との差を増幅し偏差電圧として出力する偏差
増幅手段と、偏差電圧または速度検出電圧に含まれる交
流分を注出する交流分注出手段と、 この交流分注出手段からの交流分電圧と基準電圧とを加
算して補正基準電圧として出力する加算手段と、 前記偏差電圧と前記補正基準電圧とを比較する比較手段
と、 この比較手段の比較出力に応じてまたは比較手段の比較
出力および偏差電圧の極性に応じて前記変速手段を駆動
制御する駆動手段 とを備えたことを特徴とする機械式無段変速機の速度制
御装置。(1) A speed change means for changing the speed of the mechanical continuously variable transmission, and a speed detection means provided in the output system of the mechanical continuously variable transmission and outputting a frequency signal proportional to the rotational speed of the mechanical continuously variable transmission. and a frequency-voltage conversion means with a small time constant for converting the frequency of the frequency signal into a speed detection voltage, and a difference between a speed setting voltage proportional to a set speed for the mechanical continuously variable transmission and the speed detection voltage. deviation amplification means for amplifying and outputting the amplified deviation voltage; AC dispensing means for extracting an alternating current component included in the deviation voltage or speed detection voltage; an adding means for adding and outputting the result as a corrected reference voltage; a comparing means for comparing the deviation voltage and the corrected reference voltage; A speed control device for a mechanical continuously variable transmission, comprising a drive means for controlling the speed change means accordingly.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32199889A JPH03181664A (en) | 1989-12-11 | 1989-12-11 | Speed control device of mechanical type continuously variable transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32199889A JPH03181664A (en) | 1989-12-11 | 1989-12-11 | Speed control device of mechanical type continuously variable transmission |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03181664A true JPH03181664A (en) | 1991-08-07 |
Family
ID=18138786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32199889A Pending JPH03181664A (en) | 1989-12-11 | 1989-12-11 | Speed control device of mechanical type continuously variable transmission |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03181664A (en) |
-
1989
- 1989-12-11 JP JP32199889A patent/JPH03181664A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03164093A (en) | Current detection | |
JP2638594B2 (en) | Digital servo system | |
JPH03181664A (en) | Speed control device of mechanical type continuously variable transmission | |
JP2535334B2 (en) | Digital negative feedback control system | |
JPH03183379A (en) | Ultrasonic motor drive circuit | |
JPH0535828B2 (en) | ||
JPS60187276A (en) | Load drive device | |
JP3236607B2 (en) | Digital servo controller | |
JP2637178B2 (en) | Power converter | |
RU2079867C1 (en) | Device for control of robot drive | |
JPS6211442A (en) | Reversible rotation repeating control apparatus of dental micromotor | |
SU1282076A2 (en) | Non-linear correcting device | |
SU1548837A1 (en) | Ac electric drive | |
JPS644314Y2 (en) | ||
SU1083326A1 (en) | Control device for bridge inverter | |
JPS60128882A (en) | Drive circuit for dc motor | |
JP2551748B2 (en) | Motor speed controller | |
SU788076A1 (en) | Follow-up system | |
JPS60250261A (en) | Speed signal detector | |
JPS6281988A (en) | Thyristor amplifier | |
JPH01159711A (en) | Position control device | |
JPS6295984A (en) | Speed controller for motor | |
JPH056223A (en) | Positioning device | |
JPH0570198U (en) | Brushless motor drive | |
JPS6096188A (en) | Speed controller for motor |