JPH03171755A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03171755A
JPH03171755A JP31129589A JP31129589A JPH03171755A JP H03171755 A JPH03171755 A JP H03171755A JP 31129589 A JP31129589 A JP 31129589A JP 31129589 A JP31129589 A JP 31129589A JP H03171755 A JPH03171755 A JP H03171755A
Authority
JP
Japan
Prior art keywords
layer
region
element region
dielectric
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31129589A
Other languages
Japanese (ja)
Inventor
Masatoshi Utaka
正俊 右高
Hisanori Ogawa
尚紀 小川
Yoshinobu Maeda
佳伸 前田
Hiroshi Misawa
三沢 宏支
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP31129589A priority Critical patent/JPH03171755A/en
Publication of JPH03171755A publication Critical patent/JPH03171755A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To reduce leak current within an element when it is biased inversely at a high temperature while maintaining a high isolation capability between elements through dielectric isolation by introducing a semiconductor layer with an opposite conductive type to that of an element region which is in contact with the dielectric between the element region and the dielectrically isolated region. CONSTITUTION:A structure with a semiconductor layer 205 having an inverse conductive type as an element region is formed between the N-type element region and a dielectric isolation region 203. By using a wafer which is in a structure where the periphery of these N-type element regions is surrounded by a P-type layer and by normal process, a base and an emitter are diffused and a transistor is formed at this element region. In this transistor, leak current between a base and a collector becomes approximately 1/50 as compared with the case when the element is formed in direct contact with SiO2 at 300 deg.C. Also, when the element region and the surrounding layer are inversely biased, leak current between the base and the collector can be reduced to approximately 1/100 as compared with the case when the element is formed in direct contact with the SiO2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、新規な半導体装置の構造に関し,さらに詳細
には、誘電体によって少なくともその構成素子の一部の
分離を行なったバイポーラICなどの半導体装直の高温
時における特性を向上させる構造に関するものである. (従来の技tS) 一般に,バイポーラIC等において各素子間の分離を行
なう際には, N型の素子領域をP型の基板,およびP
型の分離拡散層で囲み.ここにできるPN接合を逆バイ
アスするPN接合分離を用いる.この方法は、製造プロ
セスが簡単であり,通常のICの使用環境では十分な素
子分離能力を持つため広く用いられている. しかし,
 200℃以上の高温や放射線照射.光照射が行なわれ
る環境においては.PN接合の逆方向漏れ電流が増加し
充分な素子分離能力を維持することができない.また.
  PN接合分離以外の方法として、おもに高耐電圧、
高耐温度,高耐放射線等の能力を持つ素子製造やフォト
ダイオード等の受光素子を集積化する場合の分離方法と
して,素子領域をSint等の誘電体で囲む誘電体分離
法がある.この誘電体による分離方法では、 PN接合
分離による方法と比較して分離層への漏れ電流は大きく
低減されるが、誘電体と素子の界面で発生するキャリア
,特に温度を高くした場合に熱により発生する少数キャ
リアが素子内の接合のみに拡散してくるので.トランジ
スタのベースーコレクタ接合等,素子内の接合が逆バイ
アスされている場合に.該接合の逆方向漏れ電流が大き
くなる問題があった.(発明が解決しようとする問題点
) 本発明は前記従来技術の問題点を背景になされたもので
,誘電体分離による高い素子間分離能力を維持したまま
,高温時等において,素子内の逆バイアスされた接合の
漏れ電流を低減することを目的とする. (問題点を解決するための手段) 本発明は m電体分離によって素子間分離を行なった半
導体装置において,従来の素子層と誘電体分離層の間に
該素子層と逆の導電型を持つ半導体領域を介在せしめる
ことによって,高温時の構成素子内接合の逆方向漏れ電
流の少ない半導体装置を提供するものである.これは,
高温時における接合の逆方向漏れ電流の大部分が少数キ
ャリアの拡散電流であるため,近傍に接合をおくと該接
合のバイアス条件によって, もう一方の抜合の逆方向
漏れ電流を低減できるという原理によるものである. 
このMjIを.  PN接合における一般的な少数キャ
リアの拡散方程式(1)の解析結果を用いて以下に説明
する. d’Pn     Pn−PnQ dx’         τ p ただし、 ここでop、 τPはそれぞれNl層中での
少数キャリアの拡散係数および寿命である.図1は逆バ
イアスしたPINI接合のNl層側に.  Nl層の厚
さが少数キャリアの拡散長以下になるように新し<P2
層を付加し, そのようにしてできるNIP2接合を逆
バイアス(曲線1).lm放(同n)にした場合のN1
層の少数キャリアの濃度分布である.また,破線(II
1)はNl層を直挟誘電体に接して形成した時に,表面
発生電流の膨響下で生ずる少数キャリアの濃度分布を示
す.ところで拡散電流はW=Oの点での少数キャリアの
濃度勾配に比例することは周知のことである. したが
って図1よりNl層と誘電体層の間にNi層と逆の導電
型を持つP2層を形成することにより、 PIN+接合
への拡散電流が減少し, さらにNIP2接合を逆バイ
アスする事により、拡散電流が著しく減少することが理
解できる.なお図1ではNi層の厚さを少数キャリアの
拡散長の1/Losi度としたが, この効果はNl層
の厚さが拡散長より小さい程大きくなることは解析結果
より容易に結論されるところである.以下実施例をあげ
て本発明を具体的に説明する. (実施例) 基板には、比抵抗が約IQcmの(100)方位のもの
で、厚さが約380μmの3インチのNilシリコンウ
ェハを用いた.この基板の表面にほう素の熱拡散を行な
い,約1μmのP型層を形威した.その後、 このウェ
ハを酸化し約5000人の酸化膜を形成した.またこれ
とは別に, 3インチウェハに酸化膜を約5000入形
成したものを用意した. この2枚のウエハを重ね合わ
せて熱処理することにより張り合わせ,N型基板を裏面
より研磨してN型の単結晶層の厚さが約5μmになるよ
うにした.次に, このウエハを酸化し,蒙化膿にホト
リソグラフイにて素子間分離のパターンを形成し, こ
の酸化震のパターンをマスクとして異方性エッチング液
でエッチングを行ない分離用の溝を形成した.そして、
 この溝にほう素の熱拡散を行なってP型層を形威した
後、ウェハを酸化して溝の表面に酸化額を形威した.さ
らに, このウェハ上に多結晶シリコンの堆積を行ない
,その後表面を平坦化するため研磨を行なった.このよ
うにして誘電体分離構造で,素子領域と誘電体分離屑と
の間に.fR子領域と逆の導電型を持つ半導体層をもつ
構造が得られた. このようにして得られた, N型の
素子領域の周囲をP型の層で囲んだ構造のウェハを用い
、通常のプロセスによって、ベース,エミッタの拡散を
行ない,この素子領域にトランジスタを形威した. こ
のトランジスタの構造を図2に示す.このトランジスタ
は、 300℃において,ベースーコレクタ間の漏れ電
流が,素子を直接S i O 2に接して作った場合と
比較して約1750となり、 さらに素子領域とその周
囲の層を逆バイアスした場合には,ペースーコレクタ間
漏れ電流が,素子を直接S10tに接して作った嚇合の
約17400に低減できた. 以上 本発明の実施例を述べたが,この実施例の他に,
M電体分履構造のICを作る従来の方法が本発明の構造
を作り得ることはいうまでもない.また、誘電体分離履
に接した拡散層を作る方法としては、誘電体中に所望の
拡散層を得られる不純物を含ませるようにして、 その
後の熱処理中に所望の拡散Mを作る方法も考えられる. (発明の効果) 本発明により、 トランジスタ、ダイオード等が誘電体
により分離できたため. それぞれの索子の寄生容凰が
減少し,周波数特性が改善された.また、周囲温度が上
昇した場合においても、素子間のリーク電流の増加が起
こらず、良好A特性が得られた.
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of a novel semiconductor device, and more particularly to a semiconductor device such as a bipolar IC in which at least some of its constituent elements are separated by a dielectric. This article relates to a structure that improves the characteristics of semiconductor devices at high temperatures. (Conventional technique) Generally, when separating each element in a bipolar IC, etc., an N-type element region is separated from a P-type substrate and a P-type substrate.
Surrounded by a type separation diffusion layer. PN junction isolation is used to reverse bias the PN junction formed here. This method is widely used because the manufacturing process is simple and it has sufficient element isolation capability in a normal IC usage environment. but,
High temperatures over 200℃ and radiation exposure. In environments where light irradiation is performed. The reverse leakage current of the PN junction increases, making it impossible to maintain sufficient element isolation capability. Also.
As methods other than PN junction isolation, mainly high withstand voltage,
A dielectric isolation method in which the element region is surrounded by a dielectric material such as Sint is used as an isolation method for manufacturing elements with high temperature resistance and radiation resistance, and for integrating light-receiving elements such as photodiodes. In this isolation method using a dielectric, the leakage current to the separation layer is greatly reduced compared to the method using PN junction isolation, but carriers generated at the interface between the dielectric and the element, especially when the temperature is raised, are This is because the minority carriers that are generated diffuse only to the junctions within the device. When the junction within the device is reverse biased, such as the base-collector junction of a transistor. There was a problem that the reverse leakage current of this junction became large. (Problems to be Solved by the Invention) The present invention has been made against the background of the above-mentioned problems of the prior art. The purpose is to reduce leakage current in biased junctions. (Means for Solving the Problems) The present invention provides a semiconductor device in which elements are isolated by m-electric isolation, in which a layer having a conductivity type opposite to that of the element layer is formed between a conventional element layer and a dielectric isolation layer. By interposing a semiconductor region, a semiconductor device is provided in which reverse leakage current at junctions within the component elements is reduced at high temperatures. this is,
Since most of the reverse leakage current of a junction at high temperatures is the diffusion current of minority carriers, the principle is that if a junction is placed nearby, the reverse leakage current of the other junction can be reduced depending on the bias conditions of the junction. This is due to
This MjI. This will be explained below using the analysis results of the general minority carrier diffusion equation (1) in a PN junction. d'Pn Pn-PnQ dx' τ p where op and τP are the diffusion coefficient and lifetime of minority carriers in the Nl layer, respectively. Figure 1 shows the reverse biased PINI junction on the Nl layer side. The thickness of the Nl layer is set to be less than the minority carrier diffusion length <P2.
Add a layer and reverse bias the resulting NIP2 junction (curve 1). N1 when set to lm emission (same n)
This is the concentration distribution of minority carriers in the layer. In addition, the dashed line (II
1) shows the concentration distribution of minority carriers that occurs under the expansion of the surface-generated current when the Nl layer is formed in contact with the directly sandwiched dielectric. By the way, it is well known that the diffusion current is proportional to the concentration gradient of minority carriers at the point W=O. Therefore, from Figure 1, by forming a P2 layer with a conductivity type opposite to that of the Ni layer between the Nl layer and the dielectric layer, the diffusion current to the PIN+ junction is reduced, and by reverse biasing the NIP2 junction, It can be seen that the diffusion current decreases significantly. In Figure 1, the thickness of the Ni layer is set to 1/Losi degrees of the minority carrier diffusion length, but it can be easily concluded from the analytical results that this effect becomes larger as the thickness of the Nl layer becomes smaller than the diffusion length. By the way. The present invention will be specifically explained below with reference to Examples. (Example) A 3-inch Nil silicon wafer with a resistivity of about IQcm, a (100) orientation, and a thickness of about 380 μm was used as the substrate. Thermal diffusion of boron was performed on the surface of this substrate to form a P-type layer of approximately 1 μm. Afterwards, this wafer was oxidized to form an oxide film of approximately 5,000 layers. Separately, we prepared a 3-inch wafer with approximately 5,000 oxide films formed on it. These two wafers were stacked and bonded together by heat treatment, and the N-type substrate was polished from the back side so that the thickness of the N-type single crystal layer was approximately 5 μm. Next, this wafer was oxidized, a pattern for isolation between elements was formed using photolithography, and using this oxidation pattern as a mask, etching was performed with an anisotropic etching solution to form isolation grooves. .. and,
After thermally diffusing boron into the groove to form a P-type layer, the wafer was oxidized to form an oxidized layer on the surface of the groove. Furthermore, polycrystalline silicon was deposited on this wafer, and the surface was then polished to planarize it. In this way, in the dielectric isolation structure, there is a gap between the element region and the dielectric isolation waste. A structure with a semiconductor layer having a conductivity type opposite to that of the fR region was obtained. Using the wafer thus obtained, which has a structure in which the N-type device region is surrounded by a P-type layer, the base and emitter are diffused using a normal process to form a transistor in this device region. did. Figure 2 shows the structure of this transistor. This transistor has a base-collector leakage current of approximately 1750 at 300°C compared to the case where the element is made in direct contact with SiO2, and the element region and surrounding layers are reverse-biased. In this case, the pace-collector leakage current was reduced to about 17,400 compared to the case where the element was in direct contact with S10t. Although the embodiment of the present invention has been described above, in addition to this embodiment,
It goes without saying that the structure of the present invention can be made using the conventional method of making an IC with an M-electrode split structure. In addition, as a method for creating a diffusion layer in contact with the dielectric separator, we have also considered a method in which impurities that can obtain the desired diffusion layer are included in the dielectric, and the desired diffusion M is created during subsequent heat treatment. It will be done. (Effects of the Invention) According to the present invention, transistors, diodes, etc. can be separated by dielectrics. The parasitic volume of each cord was reduced, and the frequency characteristics were improved. Furthermore, even when the ambient temperature rose, the leakage current between the elements did not increase, and good A characteristics were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明の原理を説明するもので.NIWの濃度を
IXIO’%/信3とし.少数キャリアの拡散長を10
0μm.Nl層の厚さを10μmとした場合の、 Nl
層中の少数キャリアの分布を,NIP2接合が逆バイア
スされている場合(I),開放されている場合(n),
およびNl層が直接誘電体暦に接している場合(■)に
ついて示したものである.
Figure 1 explains the principle of the present invention. The concentration of NIW is set to IXIO'%/3. Set the minority carrier diffusion length to 10
0μm. When the thickness of the Nl layer is 10 μm, Nl
The distribution of minority carriers in the layer is expressed as follows: when the NIP2 junction is reverse biased (I), when it is open (n),
and the case where the Nl layer is in direct contact with the dielectric material (■).

Claims (1)

【特許請求の範囲】[Claims]  構成素子の少なくとも一部に誘電体分離を行なった半
導体装置において、素子領域と誘電体分離領域との間に
、誘電体と接した素子領域の導電型と逆の導電型を持つ
半導体層を介在せしめることを特徴とする半導体装置。
In a semiconductor device in which at least a part of the constituent elements is dielectrically isolated, a semiconductor layer having a conductivity type opposite to that of the element region in contact with the dielectric is interposed between the element region and the dielectric isolation region. A semiconductor device characterized by:
JP31129589A 1989-11-30 1989-11-30 Semiconductor device Pending JPH03171755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31129589A JPH03171755A (en) 1989-11-30 1989-11-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31129589A JPH03171755A (en) 1989-11-30 1989-11-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03171755A true JPH03171755A (en) 1991-07-25

Family

ID=18015414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31129589A Pending JPH03171755A (en) 1989-11-30 1989-11-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03171755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637168B2 (en) 2008-10-08 2014-01-28 Merck Patent Gmbh Materials for organic electroluminescence devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637168B2 (en) 2008-10-08 2014-01-28 Merck Patent Gmbh Materials for organic electroluminescence devices

Similar Documents

Publication Publication Date Title
JP2995723B2 (en) Vertical current semiconductor device using wafer bonding and method of manufacturing the same
US2861018A (en) Fabrication of semiconductive devices
US3202887A (en) Mesa-transistor with impurity concentration in the base decreasing toward collector junction
US4047217A (en) High-gain, high-voltage transistor for linear integrated circuits
JPH05347413A (en) Manufacture of semiconductor device
JP2004111900A (en) Very fine soi mos fet, and manufacturing method thereof
US3978511A (en) Semiconductor diode and method of manufacturing same
GB1018399A (en) Semiconductor devices
US3445734A (en) Single diffused surface transistor and method of making same
US3275910A (en) Planar transistor with a relative higher-resistivity base region
US5907168A (en) Low noise Ge-JFETs
US3571674A (en) Fast switching pnp transistor
US3617822A (en) Semiconductor integrated circuit
JP3122118B2 (en) Semiconductor device
GB2198583A (en) Front-surface n+ gettering techniques for reducing noise in semiconductor devices
JPH03171755A (en) Semiconductor device
JPH03142963A (en) Semiconductor device
JPH01205565A (en) Optical semiconductor device and its manufacture
JPH04242980A (en) Light-receiving element
JPS60123062A (en) Manufacture of semiconductor integrated circuit
KR100364924B1 (en) method for fabricating high power device
van Nielen et al. MOS transistors in thin monocrystalline silicon layers
JPH02170571A (en) Semiconductor device and manufacture thereof
JPH0228937A (en) Semiconductor device
JPS5914907B2 (en) Bidirectional negative resistance semiconductor device