JPH03166527A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH03166527A
JPH03166527A JP1306290A JP30629089A JPH03166527A JP H03166527 A JPH03166527 A JP H03166527A JP 1306290 A JP1306290 A JP 1306290A JP 30629089 A JP30629089 A JP 30629089A JP H03166527 A JPH03166527 A JP H03166527A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
resistors
electrode
line electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1306290A
Other languages
Japanese (ja)
Other versions
JP2762631B2 (en
Inventor
Akihiro Hoshino
昭裕 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP30629089A priority Critical patent/JP2762631B2/en
Publication of JPH03166527A publication Critical patent/JPH03166527A/en
Application granted granted Critical
Publication of JP2762631B2 publication Critical patent/JP2762631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To allow sharp picture element display free from unequalness by adding resistors in electrically series to sintered body varistor elements and setting the resistance values of the resistors smaller the further the liquid crystal picture element electrodes part from the voltage supply terminal of a line electrode and thereby uniformizing the supply voltages to the respective liquid crystal picture elements along the line electrode. CONSTITUTION:The line electrode 11 and the liquid crystal picture element electrodes 12-1 to 12-n are connected by the sintered body varistor elements 13 and the resistors 18-1 to 18-n. The sectional areas S1 to Sn of the resistors 18-1 to 18-n are set larger the further from a power source 20 to uniformize the supply voltage to the respective liquid crystal picture elements along the line electrode 11. Namely, the resistance values of the resistors 18-1 to 18-n are set smaller the further the liquid crystal picture element electrodes 12-1 to 12-n part from the power source 20 of the line electrode 11 to decrease the influence of the voltage drop the further from the power source 20, by which the supply voltages to the respective liquid crystal picture elements along the line electrode 11 are uniformized. The sharp image display free from the unequalness is executed in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は非線形素子として焼結体バリスタ素子を用いた
2端子素子型の液晶表示装置(L C D)に間する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a two-terminal element type liquid crystal display device (LCD) using a sintered varistor element as a nonlinear element.

[従来の技術コ 現在、例えば液晶テレビの画像表示装置には大別して単
純マトリックス方式とアクティブマトリックス方式とが
ある。
[Prior Art] At present, image display devices for, for example, liquid crystal televisions are broadly classified into simple matrix type and active matrix type.

単純マトリックス方式は直角を成して設けられた2組の
帯状電極群(行電極群と列電極群)の間に複数の液晶画
素を行列状に配して接続したものであり、これら帯状電
極間に駆動回路によって所定の電圧を印加して液晶画素
を作動させる。この方式は、構造が簡単なため低価格で
システムを実現できるという利点があるが、各液晶画素
でのクロストークが生じるため画像のコントラストが低
く、液晶テレビの画像表示には使用できないのもであっ
た。
In the simple matrix method, a plurality of liquid crystal pixels are arranged in a matrix and connected between two sets of band-shaped electrode groups (row electrode group and column electrode group) arranged at right angles. During this time, a predetermined voltage is applied by a drive circuit to operate the liquid crystal pixels. This method has the advantage of being able to realize a system at a low cost due to its simple structure, but because crosstalk occurs in each LCD pixel, the contrast of the image is low, and it cannot be used for displaying images on LCD TVs. there were.

これに対し、アクティブマトリックス方式は各液晶画素
毎にスイッチを設けて電圧を保持するものであり、液晶
表示装置を時分割駆動しても液晶画素が選択時の電圧を
維持することができるため、表示容量の増大が可能で、
コントラスト等の画質に関する特性が良く、液晶テレビ
の画像表示を実現できるものである。しかしながら、ア
クティブマトリックス方式にあっては構造が複雑となっ
て製造コストが高くなってしまうという欠点があった。
On the other hand, in the active matrix method, a switch is provided for each liquid crystal pixel to maintain the voltage, and even if the liquid crystal display device is time-divisionally driven, the liquid crystal pixel can maintain the voltage at the time of selection. It is possible to increase the display capacity,
It has good image quality characteristics such as contrast, and can be used to display images on a liquid crystal television. However, the active matrix method has the disadvantage that the structure is complicated and the manufacturing cost is high.

例えば、スイッチとしてフイルム状の電界効果トランジ
スタを用いるTFT型では、その製造工程において5枚
以上のフォトマスクを用いて5層以上の薄膜を重ねるた
め、製品歩留りを上げることが困難である。
For example, in a TFT type switch that uses a film-like field effect transistor as a switch, it is difficult to increase the product yield because five or more photomasks are used in the manufacturing process to stack five or more thin films.

上記のような事情から、コントラスト等の画質に間する
特性が良く且つ構造簡単にして低コストな方式の液晶表
示装置の実現が望まれており、このような要求を実現す
る方式として焼結体バリスタ素子を用いた2端子素子型
液晶表示装置が注目されている。
Due to the above-mentioned circumstances, there is a desire to realize a liquid crystal display device that has good characteristics related to image quality such as contrast, has a simple structure, and is low in cost. Two-terminal element type liquid crystal display devices using varistor elements are attracting attention.

2端子素子型の液晶表示装置は単純マトリックス方式に
改良を加えて、第6図に示すように行電極1と列電極2
との間に焼結体バリスタ素子3と液晶画素4とを電気的
に直列に配して接続したものであり、第7図に示すよう
な焼結体バリスタ素子3の非線形な電琉一電圧特性を利
用したものである。すなわち、単純マトリックス方式に
おける時分割駆動では、第8図に示すように液晶画素が
オン(光透過率が90%)する電圧V90とオフ(光透
過率が10%)する電圧V10との比γ(=V90/ 
V 10= (V 10+ A V )/ V 10)
から、各液晶画素間のクロストークを生ずることなく許
容される最大の走査線数N maxは、Nmax= (
(r2+1 )/ 72−1))2てあり、γの値が小
さい方が走査線数が大きくなって液晶テレビ表示に有利
である。これに対し、2端子素子型では、焼結体バリス
タ素子4によりそのしきい値電圧vvを超えた分の電圧
が液晶画素3に印加されるようにして、焼結体バリスタ
素子を設けない場合の液晶画素の動作電圧(第9図(a
)参照)を焼結体バリスタ素子を設けることによってそ
のしきい値電圧vvだけ高くしている(第9図(b)参
照)。ζの結果、前記γの値はV 90/ V 10か
ら(VV+ V90)/(VV+ V 10)ニ改善さ
れ、γ値の低下によって最大走査線数NmaXの増加が
図られ、良質な液晶表示を実現することがてきる。
A two-terminal element type liquid crystal display device is an improvement on the simple matrix method, and as shown in FIG.
The sintered varistor element 3 and the liquid crystal pixel 4 are electrically connected in series between the sintered varistor element 3 and the liquid crystal pixel 4. It takes advantage of its characteristics. That is, in time-division driving using the simple matrix method, as shown in FIG. 8, the ratio γ of the voltage V90 at which the liquid crystal pixel is turned on (light transmittance is 90%) and the voltage V10 at which the liquid crystal pixel is turned off (light transmittance is 10%) is γ. (=V90/
V10= (V10+AV)/V10)
Therefore, the maximum number of scanning lines Nmax that is allowed without causing crosstalk between each liquid crystal pixel is Nmax=(
(r2+1)/72-1))2, and the smaller the value of γ, the larger the number of scanning lines, which is advantageous for liquid crystal television display. On the other hand, in the case of the two-terminal element type, the voltage exceeding the threshold voltage vv is applied to the liquid crystal pixel 3 by the sintered varistor element 4, and when the sintered varistor element is not provided. The operating voltage of the liquid crystal pixel (Figure 9 (a)
)) is increased by its threshold voltage vv by providing a sintered varistor element (see FIG. 9(b)). As a result of ζ, the value of γ is improved from V 90 / V 10 to (VV + V 90) / (VV + V 10), and by decreasing the γ value, the maximum number of scanning lines NmaX can be increased, and high quality liquid crystal display can be achieved. It can come true.

第2図〜第5図には従来の2端子素子型の液晶表示装置
を示す。
2 to 5 show conventional two-terminal element type liquid crystal display devices.

図示のように、下側ガラス基板10上に行電極11と画
素電極12とを所定の間隔dを隔てて設け、これら行電
極11と画素電極12とをZnOの焼結体バリスタ素子
13で接続してある。そして、これらの上部を液晶14
で満たし、更に、列電極15、カラーフィルタ16、上
側ガラス基板l7を設けてある。
As shown in the figure, a row electrode 11 and a pixel electrode 12 are provided on a lower glass substrate 10 at a predetermined distance d, and these row electrodes 11 and pixel electrodes 12 are connected by a sintered ZnO varistor element 13. It has been done. Then, attach the upper part of these to the liquid crystal 14.
Further, column electrodes 15, color filters 16, and an upper glass substrate 17 are provided.

焼結体バリスタ素子l3は、第5図に詳示するように、
ZnOをMn,Co酸化物で被覆したバリスタ粒13a
をガラスフリット13bで焼結したものであり、粒径約
5μmのバリスタ粒1個当り約3vのしきい値電圧が得
られる。従って、行電極1lと画素電極12との間隔d
を25μmに設定すれば、この間隔d内に存在する実質
的に直列5個のバリスタ粒13aを介して行電極11と
画素電極l2とが接続され、これら電極IL12間には
5個X3V=1 5Vのしきい値電圧が得られここて、
第2図に示すように、上記の行電極11それぞれに対し
て多数の画素電極12が一定の間隔dをもって設けられ
、行電極11と画素電極12とは各焼結体バリスタ素子
13て一定のしきい値電圧VVをもって接続されている
。尚、図中にはn個の画素電極12に対して順次1,2
・・・(n−1),nの添え字を付してある。
As shown in detail in FIG. 5, the sintered varistor element l3 is
Varistor grains 13a in which ZnO is coated with Mn and Co oxides
is sintered with a glass frit 13b, and a threshold voltage of about 3 V can be obtained for each varistor grain with a grain size of about 5 μm. Therefore, the distance d between the row electrode 1l and the pixel electrode 12
If varistor grains 13a are set to 25 μm, the row electrode 11 and the pixel electrode l2 are connected through substantially five varistor grains 13a in series existing within this interval d, and between these electrodes IL12 there are five varistor grains A threshold voltage of 5V is obtained.
As shown in FIG. 2, a large number of pixel electrodes 12 are provided for each row electrode 11 at a constant interval d, and the row electrodes 11 and pixel electrodes 12 are connected to each sintered varistor element 13 at a constant distance d. It is connected with a threshold voltage VV. In addition, in the figure, 1, 2
...(n-1), a subscript of n is attached.

[発明が解決しようとする課題コ 2端子素子型は構造簡単且つ安価にして画質の良好な液
晶表示装置を実現することができるものであるが、従来
ては、各画素電極12−1〜12一nへ焼結体バリスタ
素子13の一定のしきい値電圧V■をもって電圧を供給
していた。
[Problems to be Solved by the Invention] The two-terminal element type can realize a liquid crystal display device with a simple structure and low cost and good image quality. A voltage was supplied to the sintered varistor element 13 with a constant threshold voltage V■.

このため、液晶表示装置の大画面化という近年の傾向に
伴って、表示画面にむらが生じてしまうという問題があ
る。これは、表示画面が大型化するとこれに応じて行電
極11も長尺化するため、この行電極l1の抵抗による
電圧降下が無視てきなくなり、電源20から電圧が供給
される行電極11の電圧供給端に近い画素電極12−1
と遠い画素電極12−nとては供給される電圧に大きな
差が生してしまうことによる。例えば、行電極11を酸
化インジウム(ITO)あるいはクロム(Cr)用いて
ライン長30I?m、ライン幅0.  2mmで3Ω/
口に形成すると、ライン抵抗は4.5KΩとなり、この
行電極に接続する画素数を1000個、画素1個当りに
流れる電流値をI X 1 0−8Aとすると、ライン
抵抗による電圧降下だけで、電圧供給端に近い画素電極
12−1と遠い画素電極12−nとては供給される電圧
に4.5Vの差が生ずることとなる。このような条件に
おいて電源20を3 0 V,焼結体バリスタ素子13
のしきい値電圧を25Vとして試算すると、しきい値電
圧、ライン抵抗、各画素での電圧消費等による電圧降下
で、行電極11の電源20に近い位置の電圧は30Vだ
が、行電極11の電源20から最も遠い位置の電圧は2
5Vてあり、電圧供給源に最も近い画素電極12−1に
供給される電圧は5Vだが、電圧供給源に最も遠い画素
電極12−nに供給される電圧は0.5Vとなり、表示
画像に顕著なむらが生じてしまう。
Therefore, with the recent trend of increasing the screen size of liquid crystal display devices, there is a problem that unevenness occurs on the display screen. This is because as the display screen becomes larger, the row electrodes 11 also become longer, so the voltage drop due to the resistance of the row electrode l1 cannot be ignored, and the voltage of the row electrodes 11 to which the voltage is supplied from the power source 20 increases. Pixel electrode 12-1 near the supply end
This is because there is a large difference in the voltage supplied to the pixel electrode 12-n and the far pixel electrode 12-n. For example, if the row electrodes 11 are made of indium oxide (ITO) or chromium (Cr) and the line length is 30I? m, line width 0. 3Ω/2mm
When formed at the mouth, the line resistance is 4.5KΩ.If the number of pixels connected to this row electrode is 1000, and the current value flowing per pixel is IX10-8A, then the voltage drop due to the line resistance alone is , a difference of 4.5 V occurs in the voltage supplied between the pixel electrode 12-1 near the voltage supply end and the pixel electrode 12-n far from the voltage supply end. Under these conditions, the power supply 20 is set to 30 V, and the sintered varistor element 13 is
When calculating the threshold voltage of 25V, the voltage at the position of the row electrode 11 near the power supply 20 is 30V due to the voltage drop due to the threshold voltage, line resistance, voltage consumption in each pixel, etc. The voltage at the farthest point from the power supply 20 is 2
The voltage supplied to the pixel electrode 12-1 closest to the voltage supply source is 5V, but the voltage supplied to the pixel electrode 12-n furthest from the voltage supply source is 0.5V, which is noticeable in the displayed image. This results in unevenness.

本発明は上記従来の事情に鑑みなされたもので、行電極
の電圧供給源に近い側から遠い側にかけて各液晶画素に
供給される電圧を一定化して、むらのない鮮明な画像表
示を実現する液晶表示装置を提供することを目的とする
The present invention has been developed in view of the above-mentioned conventional circumstances, and aims to stabilize the voltage supplied to each liquid crystal pixel from the side close to the voltage supply source of the row electrode to the side far from the voltage supply source, thereby realizing clear image display without unevenness. The purpose of the present invention is to provide a liquid crystal display device.

[課題を解決するための手段コ 本発明に係る液晶表示装置は、行電極と列電極との間に
焼結体バリスタ素子と液晶画素とを電気的に直列に配し
て接続した液晶表示装置において、行電極と液晶画素電
極とを接続している焼結体バリスタ素子に対して抵抗体
を電気的に直列に付加し、当該抵抗体の抵抗値を液晶画
素電極が行電極の電圧供給端から遠ざかるに応じて小さ
く設定して行電極に沿った各液晶画素への供給電圧を均
一化したことを特徴とする。
[Means for Solving the Problems] A liquid crystal display device according to the present invention is a liquid crystal display device in which a sintered varistor element and a liquid crystal pixel are electrically connected in series between a row electrode and a column electrode. , a resistor is electrically added in series with the sintered varistor element connecting the row electrode and the liquid crystal pixel electrode, and the resistance value of the resistor is determined when the liquid crystal pixel electrode is connected to the voltage supply terminal of the row electrode. The feature is that the supply voltage to each liquid crystal pixel along the row electrode is made uniform by setting the voltage to be smaller as the distance from the row electrode increases.

[作用コ 本発明の液晶表示装置では、焼結体バリスタ素子に対し
て抵抗体を電気的に直列に付加し、この抵抗体の抵抗値
を行電極の電圧供給端から遠ざかるに応して小さく設定
しすることにより、行電極の電圧降下の影響を電圧供給
端から遠ざかるに従って減少させ、電圧供給源に近い側
から遠い側にかけて行電極に接続される各画素に総じて
均一な電圧を供給する。
[Function] In the liquid crystal display device of the present invention, a resistor is electrically added in series with the sintered varistor element, and the resistance value of this resistor decreases as the distance from the voltage supply end of the row electrode increases. By setting this, the influence of the voltage drop of the row electrode decreases as the distance from the voltage supply end increases, and a generally uniform voltage is supplied to each pixel connected to the row electrode from the side closer to the voltage supply source to the side farther from the voltage supply source.

[実施例コ 本発明に係る液晶表示装置を実施例に基づいて具体的に
説明する。尚、前述した従来例と同一部分には同一符号
を付し、重複する説明は省略する。
[Example] The liquid crystal display device according to the present invention will be specifically explained based on an example. Note that the same parts as in the conventional example described above are given the same reference numerals, and redundant explanations will be omitted.

第1図は本発明の一実施例に係る液晶表示装置を示す平
面図である。
FIG. 1 is a plan view showing a liquid crystal display device according to an embodiment of the present invention.

図示のように、行電極11と液晶画素電極12一1〜1
2−nとを電気的に直列に接続した焼結体バリスタ素子
13と抵抗体18−1〜18−nとて接続している。そ
して、これら抵抗体18ー1〜18−nはそれぞれ同長
であるが、それらの断面積S1〜Snは電源20から遠
ざかるに従って大きく設定してあり、行電極11に沿っ
た各液晶画素への供給電圧を均一化してある。すなわち
、抵抗体18−1〜18−nの抵抗値を液晶画素電極!
2−1〜12−nが行電極11の電源20から遠ざかる
に応じて小さく設定して電源20から遠ざかるに従って
電圧降下の影響を減少させ、総じて行電極11に沿った
各液晶画素への供給電圧を均一化してある。尚、抵抗体
l8−1〜1B−nは例えば窒化チタン、酸化インジウ
ム(ITO)、タンタルオキサイド等により形成される
As shown in the figure, the row electrode 11 and the liquid crystal pixel electrode 12-1-1
The resistors 18-1 to 18-n are connected to the sintered varistor element 13 which is electrically connected in series with the resistors 18-1 to 18-n. These resistors 18-1 to 18-n have the same length, but their cross-sectional areas S1 to Sn are set to increase as they move away from the power source 20, so that the resistors 18-1 to 18-n have the same length. The supply voltage is equalized. That is, the resistance values of the resistors 18-1 to 18-n are the same as those of the liquid crystal pixel electrodes!
2-1 to 12-n are set smaller as the distance from the power source 20 of the row electrode 11 decreases to reduce the effect of voltage drop as the distance from the power source 20 increases, and as a whole, the supply voltage to each liquid crystal pixel along the row electrode 11 is reduced. have been made uniform. Note that the resistors l8-1 to 1B-n are formed of, for example, titanium nitride, indium oxide (ITO), tantalum oxide, or the like.

本実施例では、行電極l1に沿ったライン抵抗、各画素
での電圧消費等による電圧降下量の増大に対し抵抗体1
8−1〜18−nの抵抗値を逆に減少させ、総じて行電
極11の長平方向における各画素電極への供給電圧を均
一化している。従って、行電極11が長尺な大型の液晶
表示装置にあっても各画素への供給電圧の均一化が図れ
、むらのない鮮明な画像表示が行える。
In this embodiment, the resistor 1
On the contrary, the resistance values of 8-1 to 18-n are decreased, and the voltage supplied to each pixel electrode in the longitudinal direction of the row electrode 11 is generally made uniform. Therefore, even in a large-sized liquid crystal display device in which the row electrodes 11 are long, the voltage supplied to each pixel can be made uniform, and an even and clear image can be displayed.

尚、抵抗体の抵抗値を変化させる手段としては、上記の
ように断面積を変化させるものの他に、抵抗体の長さを
変化させたり、抵抗体自体の材質を変化させて抵抗値を
変化させることもてきる。また、上記実施例では焼結体
バリスタ素子としてZnoを組成としたものを示したが
、SiC等といった他の公知の材料を組戎とした焼結体
バリスタ素子を用いることもできる。また、抵抗体と焼
結体バリスタ素子との接続関係を上記実施例とは逆にし
て、行電極に焼結体バリスタ素子を接続する一方、画素
電極に抵抗体を接続し、これら焼結体バリスタ素子と抵
抗体とを接続するようにしてもよい。
In addition to changing the cross-sectional area as described above, methods for changing the resistance value of a resistor include changing the length of the resistor or changing the material of the resistor itself. You can also let them do it. Further, in the above embodiment, a sintered varistor element made of Zno was shown, but a sintered varistor element made of other known materials such as SiC may also be used. In addition, the connection relationship between the resistor and the sintered varistor element is reversed from the above embodiment, and the sintered varistor element is connected to the row electrode, while the resistor is connected to the pixel electrode, and these sintered varistor elements are connected to the pixel electrode. The varistor element and the resistor may be connected.

[効果] 本発明の液晶表示装置によれば、焼結体バリスタ素子に
対して抵抗体を電気的に直列に付加し、この抵抗体の抵
抗値を行電極の電圧供給端から遠ざかるに応じて小さく
設定するようにしたため、行電極の電圧降下の影響を電
圧供給端から遠ざかろに従って減少させ、微妙なバリス
タ特性の調整を行わずとも、電圧供給源に近い側から遠
い側にかけて行電極に接続される各画素に総して均一な
電圧を供給することができる。従って、液晶表示装置の
大画面化を図っても、むらのない鮮明な画像表示を実現
することができる。
[Effect] According to the liquid crystal display device of the present invention, a resistor is electrically added in series with the sintered varistor element, and the resistance value of the resistor increases as the distance from the voltage supply end of the row electrode increases. Because it is set to a small value, the effect of the voltage drop on the row electrode decreases as it moves away from the voltage supply end, and it is possible to connect the row electrode from the side close to the voltage supply source to the side far from the voltage supply source without making delicate adjustments to the varistor characteristics. A uniform voltage can be supplied to each pixel. Therefore, even if the screen of the liquid crystal display device is made larger, it is possible to display an even and clear image.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る液晶表示装置の構成図
、第2図は従来の液晶表示装置の構成図、第3図は従来
の液晶表示装置の平面図、第4図は第3図中のIV−I
V矢視断面図、第5図は第4図中の要部の拡大図、第6
図は2端子素子型液晶表示装置の概略構成図、第7図は
焼結体バリスタ素子の電圧一電流特性囚、第8図は液晶
画素の動作特性図、第9図(a)、(b)は焼結体バリ
スタ素子の作用を説明する液晶画素の動作特性図である
。 11は行電極、 12、12−1〜12−nは画素電極、13は焼結体バ
リスタ素子、 14は液晶、 15は列電極、 18−1−1.8−nは抵抗体である。
FIG. 1 is a block diagram of a liquid crystal display device according to an embodiment of the present invention, FIG. 2 is a block diagram of a conventional liquid crystal display device, FIG. 3 is a plan view of a conventional liquid crystal display device, and FIG. 4 is a block diagram of a conventional liquid crystal display device. IV-I in Figure 3
V arrow sectional view, Figure 5 is an enlarged view of the main part in Figure 4, Figure 6
The figure shows a schematic configuration diagram of a two-terminal element type liquid crystal display device, Figure 7 shows voltage-current characteristics of a sintered varistor element, Figure 8 shows operating characteristics of a liquid crystal pixel, and Figures 9 (a) and (b). ) is an operational characteristic diagram of a liquid crystal pixel explaining the action of a sintered body varistor element. 11 is a row electrode, 12 and 12-1 to 12-n are pixel electrodes, 13 is a sintered varistor element, 14 is a liquid crystal, 15 is a column electrode, and 18-1-1.8-n is a resistor.

Claims (1)

【特許請求の範囲】[Claims] 行電極と列電極との間に焼結体バリスタ素子と液晶画素
とを電気的に直列に配して接続した液晶表示装置におい
て、行電極と液晶画素電極とを接続している焼結体バリ
スタ素子に対して抵抗体を電気的に直列に付加し、当該
抵抗体の抵抗値を液晶画素電極が行電極の電圧供給端か
ら遠ざかるに応じて小さく設定して行電極に沿った各液
晶画素への供給電圧を均一化したことを特徴とする液晶
表示装置。
A sintered varistor that connects a row electrode and a liquid crystal pixel electrode in a liquid crystal display device in which a sintered varistor element and a liquid crystal pixel are electrically connected in series between a row electrode and a column electrode. A resistor is electrically added in series with the element, and the resistance value of the resistor is set to decrease as the liquid crystal pixel electrode moves away from the voltage supply end of the row electrode, and is applied to each liquid crystal pixel along the row electrode. A liquid crystal display device characterized in that supply voltage is made uniform.
JP30629089A 1989-11-24 1989-11-24 Liquid crystal display Expired - Fee Related JP2762631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30629089A JP2762631B2 (en) 1989-11-24 1989-11-24 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30629089A JP2762631B2 (en) 1989-11-24 1989-11-24 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH03166527A true JPH03166527A (en) 1991-07-18
JP2762631B2 JP2762631B2 (en) 1998-06-04

Family

ID=17955316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30629089A Expired - Fee Related JP2762631B2 (en) 1989-11-24 1989-11-24 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2762631B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065051A3 (en) * 1998-06-09 2000-03-16 Symetrix Corp Ferroelectric flat panel displays
US6198225B1 (en) 1999-06-07 2001-03-06 Symetrix Corporation Ferroelectric flat panel displays

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065051A3 (en) * 1998-06-09 2000-03-16 Symetrix Corp Ferroelectric flat panel displays
US6198225B1 (en) 1999-06-07 2001-03-06 Symetrix Corporation Ferroelectric flat panel displays

Also Published As

Publication number Publication date
JP2762631B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
KR960704428A (en) Display device
CN1045904A (en) Color monitor
JP2011039513A (en) Liquid crystal display device
JPS63170692A (en) Matrix display device
US6225968B1 (en) Method and system for addressing LCD including diodes
TWI363207B (en) Display device and diode array panel therefor
JPH02134618A (en) Display device
JPH03166527A (en) Liquid crystal display device
US6433765B1 (en) Liquid crystal display
JP3069659B2 (en) Display device
JP2608403B2 (en) Driving method of active matrix type liquid crystal panel
JPH03166524A (en) Liquid crystal display device
JPH02111920A (en) Liquid crystal display device
JP2770500B2 (en) Liquid crystal display
CN106683609A (en) Pixel driving circuit, driving method thereof and display device
JPH02298915A (en) Liquid crystal display device
JPH04123024A (en) Liquid crystal display device
JPS59107328A (en) Driving system of liquid crystal display type image receiving device
JPH03166515A (en) Liquid crystal display device
JPH04283730A (en) Active matrix substrate for liquid crystal display device
JPH10311989A (en) Liquid crystal display element
JP2610138B2 (en) Driving method of light modulation element
US20040119926A1 (en) Single panel, active matrix, full color, cholesteric LCD cell configuration
JPH03166522A (en) Liquid crystal display device
JPH0488321A (en) Active matrix substrate for liquid crystal display device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees