JPH03164178A - Protein containing human iga binding region and production thereof - Google Patents

Protein containing human iga binding region and production thereof

Info

Publication number
JPH03164178A
JPH03164178A JP1303641A JP30364189A JPH03164178A JP H03164178 A JPH03164178 A JP H03164178A JP 1303641 A JP1303641 A JP 1303641A JP 30364189 A JP30364189 A JP 30364189A JP H03164178 A JPH03164178 A JP H03164178A
Authority
JP
Japan
Prior art keywords
protein
iga
arp4
gene
plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1303641A
Other languages
Japanese (ja)
Inventor
Tomosuke Nakatani
中谷 知右
Atsuko Higuchi
樋口 敦子
Hiroshi Noguchi
浩 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP1303641A priority Critical patent/JPH03164178A/en
Publication of JPH03164178A publication Critical patent/JPH03164178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

NEW MATERIAL:A protein containing amino acid sequence expressed by the formula and having immunoglobulin-A(IgA) binding activity. USE:Used as IgA detecting reagent and remedy of autoimmune disease owing to human IgA. PREPARATION:For instance, plasmid containing gene coding binding region of protein Arp4 having IgA binding activity expressed by the formula is cut with suitable restricting enzyme and each cut fragment is bonded to suitable vector to prepare recombinant plasmid. Next, said plasmid is inserted into host such as Escherichia coli and transformed, then the resultant transformant is cultured, thus gene is manifested. Next, a solution containing produced material is purified by an anion-exchange column chromatography and gel column chromatography to afford the aimed protein having IgA binding activity containing amino acid sequence expressed by the formula.

Description

【発明の詳細な説明】 本発明は、ヒト免疫グロブリンA(以下、[gAと略す
)に対して親和性を有するプロテイン.A r p 4
(以下、Arp4と略す)と称される蛋白質のIgA結
合領域をlまたは2以上含む蛋白質、該蛋白質の遺伝子
、遺伝子組み換え体を利用した該蛋白質の製造l去に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a protein having an affinity for human immunoglobulin A (hereinafter abbreviated as [gA)]. A r p 4
The present invention relates to a protein containing one or more IgA binding regions of a protein called Arp4 (hereinafter abbreviated as Arp4), a gene for the protein, and the production of the protein using a genetically recombinant protein.

〔従来の技術および解決すべき課題〕[Conventional technology and issues to be solved]

プロテインArp4は、A群の溶血性連鎖球菌AP4株
の膜表面上に存在する膜蛋白質であり、ヒトlgAと特
異的に結合する。Arp4の遺伝子は、クローニングさ
れ、その全塩基配列が決定されている(Mo1,Vic
robiol. 3  1111−1119(1989
)) .それによるとArp4は386アミノ酸よりな
る蛋白質であり、N末端4lアミノ酸が蛋白質の分泌に
必要なシグナル配列である。このシグナル配列を除く、
成熟型Arp4は345アミノ酸よりなる分子量395
44の蛋白質である。アミノ酸配列、とりわけそのC末
端後半部がA群の溶血性連鎖球菌の膜上に存在するM蛋
白質を類似性を示す。また、中央部には54アミノ酸を
1単位とするアミノ酸配列がくり返し3存在する。この
Arp4の遺伝子は大腸菌でも発現可能であり、例えば
適当なブラスミドにつなぐことにより、大腸菌で連続的
な生産も可能である。その場合、得られるArp4蛋白
質は、内膜と外膜の間の空間であるペリプラズムに大量
に蓄積される(Mo I .Microbiol.3 
 1111−1119(1989))。
Protein Arp4 is a membrane protein present on the membrane surface of group A hemolytic streptococcus AP4 strain, and specifically binds to human IgA. The Arp4 gene has been cloned and its entire nucleotide sequence has been determined (Mo1, Vic
robiol. 3 1111-1119 (1989
)). According to this, Arp4 is a protein consisting of 386 amino acids, and the N-terminal 41 amino acids are a signal sequence necessary for protein secretion. excluding this signal sequence,
Mature Arp4 has a molecular weight of 395 and consists of 345 amino acids.
There are 44 proteins. The amino acid sequence, especially the latter half of the C-terminus, shows similarity to the M protein present on the membrane of group A hemolytic streptococci. Furthermore, in the central region, there are three repeating amino acid sequences each consisting of 54 amino acids. This Arp4 gene can also be expressed in E. coli, and continuous production in E. coli is also possible, for example, by linking it to an appropriate plasmid. In that case, the resulting Arp4 protein accumulates in large quantities in the periplasm, which is the space between the inner and outer membranes (Mo I. Microbiol. 3
1111-1119 (1989)).

従って、大腸菌においてこのArp4の大量取得が比較
的容易に行われる。このようにして得られるA『p4の
利用分野としては、ヒトIgAの結合、分離、同定用の
研究試薬としての利用の他、ヒトIgAが主たる原因で
ある自己免疫疾患を有する患者の血液よりIgAを吸収
・除去する等の利用が考えられる。
Therefore, large amounts of Arp4 can be obtained relatively easily in E. coli. Fields of use for A'p4 obtained in this way include its use as a research reagent for binding, separation, and identification of human IgA, as well as the use of IgA from the blood of patients with autoimmune diseases whose main cause is human IgA. Possible uses include absorbing and removing water.

このような用途で使用される場合、重要なファクターの
ひとつはArp4のIgAに対する結合容量である。す
なわち、1分子のArp4に対して結合するIgAの分
子数比で示される結合モル比、あるいは単位itの.A
 r p 4に対し結合するIgAの重量で示される結
合重量比が、例えば血液中のIgAの除去効率を大きく
左右する。これらの結合比が大きい程、除去効率は向上
すると期待されるが、現在までにArp4を用い、それ
を改良することにより、結合容量を向上させるような試
みはなされていない。
When used in such applications, one of the important factors is the binding capacity of Arp4 to IgA. That is, the binding molar ratio expressed as the ratio of the number of molecules of IgA binding to one molecule of Arp4, or the unit of it. A
The binding weight ratio, expressed as the weight of IgA bound to r p 4, greatly influences the removal efficiency of IgA from, for example, blood. Although it is expected that the removal efficiency will improve as the coupling ratio increases, no attempt has been made to date to improve the coupling capacity by using Arp4 and improving it.

また、Arp4の[gA結合領域を取り出し、これを他
の蛋白質を融合させることにより新しい機能を持たせる
といった蛋白工学的試みもまだ着手されるに至っていな
い。このような試みを始める前提としてArp4蛋白上
のIgA結合領域の同定は必須であることはいうまでも
ない。
In addition, protein engineering efforts have not yet been undertaken, such as extracting the [gA-binding region of Arp4 and fusing it with other proteins to impart new functions. It goes without saying that the identification of the IgA binding region on the Arp4 protein is essential as a prerequisite for starting such an attempt.

[課題解決の手段j こうした現状において、本発明者らは遺伝子工学的手法
を用い、Arp4の種々誘導体を作成し、その[g.l
I結合活性を検討する過程において、Arp4の改良に
成功した。すなわち、Arp4遺伝子の種々の誘導体を
作威し、そのIgA結合活性を検討した結果、Arp4
蛋白質上でIgAが結合する領域を同定した。この結果
をもとに、IgA結合領域が2個存在する変異体Arp
4Sを作或し、この蛋白質の結合モル比が向上すること
を見出した。
[Means for Solving the Problem] Under these circumstances, the present inventors used genetic engineering techniques to create various derivatives of Arp4, and their [g. l
In the process of examining I-binding activity, we succeeded in improving Arp4. That is, as a result of producing various derivatives of the Arp4 gene and examining their IgA binding activity, it was found that Arp4
The region to which IgA binds on the protein was identified. Based on this result, a mutant Arp with two IgA binding regions was found.
We created 4S and found that the binding molar ratio of this protein was improved.

このことはまた、分離したIgA結合領域がそのままで
機能を有することを示すものであり、他の蛋白質と融合
することにより、新たな機能を有する新規蛋白質を創或
する手段を与えるものである7本発明はIgA結合活性
を有するポリペブチドを提供する。その一例として、,
A r p 4由来の70アミノ酸よりなり、以下に示
すアミノ酸配列を有するポリベプチドおよびそれをコー
ドする遺伝子を提供する。
This also indicates that the isolated IgA-binding region has a function as it is, and provides a means to create a new protein with a new function by fusing it with another protein7. The present invention provides polypeptides with IgA binding activity. As an example,
A polypeptide consisting of 70 amino acids derived from A r p 4 and having the amino acid sequence shown below and a gene encoding the same are provided.

G 1 uLysAspProG 1 nTyrArg
A 1 aLeuMetG 1yG1 uAsnG 1
 nAspLeuArgLygArgG 1 uG 1
yG 1 nTyrG I nAspLys I le
G l uG 1 uLauCl ul,ysG1 u
ArgLysG 1 uLysG 1nG 1 uAr
gG 1nG l uG 1nLeuG IuArgG
1nTyrG In [1eG1uA1aAspLy+
tH i sTyrG1 nG 1 uG1 nG I
nLy+tLys!IjsG1nG1nGluG1nG
1nGlnLeuさらに、該アミノ酸配列を含有する蛋
白質、それに対応する遺伝子、さらには該遺伝子を含有
することを特徴とする組み換えプラスミドまたはウィル
ス、およびそれらの組み換えプラスミドを保持する組み
換え体を提供するものである。例えば、大腸菌を宿主と
する組み換え体を提供するものである。本発明はさらに
、遺伝子結合活性を有するアミノ酸配列を含有する蛋白
質の遺伝子を宿主細胞で発現させ、産生じた蛋白質を回
収することを特徴とする、IgA結合活性を有する蛋白
質の製造法を提供するものである。さらに好ましくは宿
主細胞としていは大腸菌DHIあるいはJMl09を用
いるIgA結合活性を有する蛋白質の製造法を提供する
。本発明によれば。IgA結合活性を有する蛋白質は、
以下のように製造することができる。
G 1 uLysAspProG 1 nTyrArg
A 1 aLeuMetG 1yG1 uAsnG 1
nAspLeuArgLygArgG 1 uG 1
yG 1 nTyrG I nAspLys I le
G l uG 1 uLauCl ul,ysG1 u
ArgLysG 1 uLysG 1nG 1 uAr
gG 1nG l uG 1nLeuG IuArgG
1nTyrG In [1eG1uA1aAspLy+
tH i sTyrG1 nG 1 uG1 nG I
nLy+tLys! IjsG1nG1nGluG1nG
In addition, the present invention provides a protein containing the amino acid sequence, a gene corresponding to the amino acid sequence, a recombinant plasmid or virus containing the gene, and a recombinant carrying such a recombinant plasmid. For example, it provides a recombinant that uses E. coli as a host. The present invention further provides a method for producing a protein having IgA binding activity, which comprises expressing a gene for a protein containing an amino acid sequence having gene binding activity in a host cell, and recovering the produced protein. It is something. More preferably, a method for producing a protein having IgA binding activity using E. coli DHI or JM109 as the host cell is provided. According to the invention. Proteins with IgA binding activity are
It can be manufactured as follows.

■ プロテインArp4の結合領域をコードする塩基配
列を1個ないし複数含むIgAを作或し、■ 予定した
宿主細胞内で安定に存在できるプラスミドまたはウィル
スベクターにこの[gAを組みこみ ■ この組み換えプラスミドまたはファージDNAを宿
主細胞内に導入し、 ■ ■で得られた組み換え体を培養し、産生じたIgA
結合活性を有する蛋白質を回収する。
■ Create IgA containing one or more nucleotide sequences encoding the protein Arp4 binding region; ■ Incorporate this [gA into a plasmid or viral vector that can stably exist in the intended host cell; ■ This recombinant plasmid or The phage DNA is introduced into host cells, the recombinant obtained in
Collect proteins with binding activity.

本発明を以下、段階的に説明する。The present invention will be explained step by step below.

l.重復変異体の作成 +gA結合領域を2個持つ重復変異体1gA結合領域を
コードするDNAWを適当な制限酵素で切断し、これを
複数個連結した後、適当な蛋白質をコードするIgAに
挿入することにより可能である。挿入される蛋白買をし
てArp4自身を用いた具体例を実施例に示す。
l. Creation of a repeat mutant + repeat mutant with two gA binding regions 1 Cut the DNAW encoding the gA binding region with an appropriate restriction enzyme, connect multiple pieces of this, and then insert into IgA encoding an appropriate protein. This is possible. A specific example in which Arp4 itself is used as the protein to be inserted is shown in Examples.

2.重復変異体蛋白質の取得 1.で得られた重複変異体を持つプラスミドで大腸菌を
形質転換し、大腸菌で重複変異体を産生ずることができ
る。その際、重複変異体1gAのベクターとして種々の
公知のプラスミド、ウィルスDNAを用いることができ
る。また、大腸菌については種々のKl2株の亜種を宿
主とすることが可能である。このような形質転換株を培
養後、産生された重復変異体を通常のカラムクロマトグ
ラフィーにより分離・精製できる。陰イオン交換とゲル
濾過による重複変異体の精製の一興体例を実施例に示す
2. Obtaining repeating mutant protein 1. E. coli can be transformed with the plasmid containing the duplicate mutant obtained in E. coli, and the duplicate mutant can be produced in E. coli. In this case, various known plasmids and viral DNAs can be used as vectors for the duplication mutant 1gA. Furthermore, various subspecies of the Kl2 strain can be used as hosts for E. coli. After culturing such a transformed strain, the produced repeat mutant can be isolated and purified by conventional column chromatography. An example of the purification of duplicate mutants by anion exchange and gel filtration is provided in the Examples.

3,重複変異体蛋白質のIgA結合活性の評価重複変異
体蛋白質のIgA結合活性は種々の免疫生化学パラメー
ターにより評価できる。例えば、結合定数(アフィニテ
ィーコンスタント)、結合特異性、結合容量等であり、
これらは既知の方法で求めることができる。(E. h
ae lowら、”Ant’ibodies” (19
88) 、コールドスピリングハーバー、または実験操
作法1−13巻、日本免疫学会)。
3. Evaluation of IgA binding activity of duplicate mutant proteins The IgA binding activity of duplicate mutant proteins can be evaluated using various immunobiochemical parameters. For example, binding constant (affinity constant), binding specificity, binding capacity, etc.
These can be determined by known methods. (E. h
ae low et al., “Ant'ibodies” (19
88), Cold Spiring Harbor, or Experimental Procedures Volumes 1-13, Japanese Society of Immunology).

IgA結合領域を1持つ蛋白質および2持っ蛋白質の結
合容量を求め、それらを比較した一具体例を実施例5に
示す。
Example 5 shows a specific example in which the binding capacities of a protein with one IgA binding region and a protein with two IgA binding regions were determined and compared.

[発明の効果1 ■ IgA結合領域を同定することにより、この領域を
単独で切りはなし、他の蛋白質とIgA工学的に融合さ
せることにより、IgA結合活性を付加した、新規蛋白
質を創或できる。例えば、ある種の酵素活性を持たせれ
ば、この酵素活性を利用して、容易にl g Aを検出
できるようになる。
[Effect of the invention 1] By identifying the IgA-binding region, a new protein with added IgA-binding activity can be created by cutting out this region alone and fusing it with another protein using IgA engineering. For example, if a certain type of enzymatic activity is imparted, lgA can be easily detected using this enzymatic activity.

■ 同定されたIgA結合領域を同一蛋白質に複数個存
在させることにより、IgA結き活性を向上させること
ができる。例えば、結合容量が増加するとにより、該蛋
白質の用途と考える血中1gAの除去等がより効果的の
行なえるようになり、経済メリットは大きい。
(2) IgA binding activity can be improved by having multiple identified IgA binding regions present in the same protein. For example, by increasing the binding capacity, it becomes possible to more effectively remove 1 gA from the blood, which is considered to be the intended use of the protein, and this has great economic benefits.

■ [ g A結合領域のみの蛋白質を創製することに
より、高1gA結合活性を持たせることも可能である。
■ By creating a protein containing only the gA-binding region, it is also possible to impart high 1gA-binding activity.

■と同様の効果がある。It has the same effect as ■.

以下、実施例により本発明をさらに詳細に説明するが、
本発明はこれのみに限定されないことは言うまでもない
Hereinafter, the present invention will be explained in more detail with reference to Examples.
It goes without saying that the present invention is not limited to this.

実施例 A『4  欠 ・・ 体の作製 Arp4遺伝子を含むBam}11−HindlII 
 2.2kb断片をプラスミドpUcl8(C. Ya
nisch−Perronら、Gene. 33巻(1
985), 103)のBamHl/HindIIIサ
イトに挿入して作製したプラスミドpARP401の構
造を図1に示す(E.Frijhz ら,Mol.Mi
crobiol.,3 .  (1989).1111
1119参照)。このArp401DNA 2 μgに
制限酵素Kpnl,Bam旧各lO単位加え、TAバッ
フy−(33mM トリス酢酸(pH7.9)/66m
M酢酸カリウム/lomM酢酸マグネシウム/0.5m
M DTT)30 u l中37℃,2時間反応させた
。等量のフェノール・クロロホルム(l:1混和)を加
えて混和後、遠心し、上層を回収した。
Example A "4 Deletion...Bam containing Arp4 gene"11-HindlII
The 2.2 kb fragment was inserted into plasmid pUcl8 (C. Ya
Nisch-Perron et al., Gene. Volume 33 (1
The structure of plasmid pARP401 prepared by inserting it into the BamHl/HindIII site of 985), 103) is shown in Figure 1 (E. Frijhz et al., Mol. Mi
crobiol. ,3. (1989). 1111
1119). To 2 μg of this Arp401 DNA, 10 units of restriction enzymes Kpnl and Bam were added, and TA buffer y-(33mM Tris acetate (pH 7.9)/66mM
M potassium acetate/lomM magnesium acetate/0.5m
The reaction was carried out at 37° C. for 2 hours in 30 ul (MDTT). After adding and mixing an equal amount of phenol and chloroform (1:1 mixture), the mixture was centrifuged and the upper layer was collected.

これに2倍量の冷エタノールを加え、−20°0130
分後、遠心し、DNAを沈澱物として回収した。
Add twice the amount of cold ethanol to this and -20°0130
After a few minutes, the mixture was centrifuged and the DNA was collected as a precipitate.

このDNAに各種酵素処理を行なうことにより、Bam
H!サイトよりキロシーケンス用デレーションキット(
宝酒造)を用いて欠失を導入した。その後、これらのD
NAを大腸菌J Ml09に対し形質転換した。
By performing various enzyme treatments on this DNA, Bam
H! Kilo sequencing deletion kit (
(Takara Shuzo) was used to introduce the deletion. Then these D
NA was transformed into E. coli JM109.

アンピシリン耐性コロニーを選別し、培養後、アルカリ
溶出法によりプラスミドDNAを抽出し、制限酵素Ec
oRI. HindI[[にて分解した後、アガロース
ゲル電気泳動にかけた。(Maniatisら(前述)
の方法に従った)。エチジウムブロマイド染色後のDN
A断片のパターンから欠失変異を有するDNAを選別し
た。これらのDNAを0.2N水酸化ナトリウムにより
変性させ、エタノール浣澱により回収後、シーケネース
キット(東洋紡)を使用を使用したジデオキシヌクレオ
チドを用いたチューンターミネータ法により塩基配列を
解読した。得られた塩基配列とArp4遺伝子の全塩基
配列(E. Frithzら(前述))とを比較し、欠
失した塩基配列を同定した。
After selecting ampicillin-resistant colonies and culturing, plasmid DNA was extracted by alkaline elution method, and restriction enzyme Ec
oRI. After digestion with HindI, it was subjected to agarose gel electrophoresis. (Maniatis et al. (mentioned above)
). DN after ethidium bromide staining
DNA having a deletion mutation was selected from the pattern of the A fragment. These DNAs were denatured with 0.2N sodium hydroxide, recovered by ethanol filtration, and then their base sequences were decoded by the tune terminator method using dideoxynucleotides using a Sequence kit (Toyobo). The obtained nucleotide sequence was compared with the entire nucleotide sequence of the Arp4 gene (E. Frithz et al. (mentioned above)), and the deleted nucleotide sequence was identified.

これらの欠失変異体はすべてN末端側の欠失である。そ
れらの中で、ベクターpucta上のβガラクトンダー
ゼ遺伝子と融合するものを塩基配列を調べた上で選別し
7た。これらは、βガラクトシダーゼ遺伝子のプロモー
ター、SD配列により、その大腸菌での発現が支配され
る(C. Yan isch−Perronnら(前述
))。このような変異体を5種類選び、pLAC/.A
RPi5と命名した。また、次にArp4蛋白の中央部
を欠失した変異体を以下のようにして作製した。
All of these deletion mutants are N-terminal deletions. Among them, those fused with the β-galactonase gene on the vector pucta were selected after examining their base sequences. Their expression in E. coli is controlled by the promoter and SD sequence of the β-galactosidase gene (C. Yanisch-Perronn et al. (mentioned above)). Five such mutants were selected and pLAC/. A
It was named RPi5. Furthermore, a mutant in which the central region of the Arp4 protein was deleted was created as follows.

pARp401 DNA 2 μgを制限酵素Pstl
 10単位にて20μITAバッファ一中37℃、2時
間反応させ、分解産物を低融点アガロースゲル(ベセス
ダリサーチ)電気泳動し、Pstl−Pst[ l.5
kb断片を含むゲルを取り出し、65℃、30分保温し
てゲルを溶融し、等量の水飽和フェノールを加えて混和
後、上層を回収し、さらにエタノール沈澱を行ない、D
NAを回収した。pUc18 2 μgをpARP40
1と同様、Pstl消化し、フェノール・クロロホルム
抽出・エタノール/l:澱にて回収した。このpUc1
8 Pstl分解物と前記Pstl−Pstl  l.
5kb断片を0.1μgずつ混合し、T4 DNAリガ
ーゼキット(宝酒造)を用いて再結合を行なった。この
DNAを大腸菌JMl09に形質転換し、イソプロビル
チオガラクトシド(IPTG),Xgal存在下、アン
ピシリン耐性の白色コロニーを選択し、このプラスミド
DNAを回収、Pstl消化後アガロースゲル電気泳動
にて解析し、pUc18にA『p4遺伝子由来Pstl
−Pst[ l.5kb断片が挿入されたプラスミドp
ARP420あるいはPstl断片が逆向きに挿入され
たpARP420Rを得た。pARP420を制限酵素
Sph[, Stul消化後、前記の方法にて欠失を導
入した。これにより、Arp4遺伝子のC末端側が欠失
した変異体が得られる。この欠失のC末端側にはHin
dIIIサイトが存在する。また、別途pARP401
を制限酵素Nru[でArp4遺伝子の中央部で切断し
、Hind■リンカー(宝酒造)存在下T4DNAリガ
ーセキット(宝酒造)を用いて再結合する。このように
してNrulサイトを旧ndI[[サイトに変換した後
、Arp4遺伝子のC末端を含む旧ndlI[ − H
indllI、1. Okbを分離・回収し、これを前
述の欠失変異体の旧nd■サイトに導入する。このよう
にして1辱られた欠失変異体の中から、塩基配列を解読
することにより、Arp4蛋白の113−218番目の
アミノ酸に相当する塩基配列が欠失した変異体を選択し
、pARP−105と命名した。また前記pARP42
0Rを制限酵素Kpnl,Bam旧にて消化した後前記
デレーションキットによるArp4遺伝子のC末端側か
らの欠失導入・再結合に際し、合戊ストップコドン(ユ
ニバーサルターミネーター、ファルマシア)を存在させ
ることにより、欠失端にて蛋白合或が停止させるように
したプラスミドpARP420Dを得た。このプラスミ
ドはArp4蛋白のN末端側前半のみコードする。
Add 2 μg of pARp401 DNA to the restriction enzyme Pstl.
The reaction was carried out at 37°C for 2 hours at 10 units in 20 μITA buffer, and the decomposition products were electrophoresed on a low melting point agarose gel (Bethesda Research). 5
The gel containing the kb fragment was taken out, kept at 65°C for 30 minutes to melt the gel, and an equal amount of water-saturated phenol was added and mixed. The upper layer was collected, and further ethanol precipitated.
NA was collected. pUc18 2 μg pARP40
As in 1, Pstl digestion was performed, phenol/chloroform extraction, and ethanol/l were collected on the lees. This pUc1
8 Pstl decomposition product and the Pstl-Pstl l.
0.1 μg of each 5 kb fragment was mixed and religated using a T4 DNA ligase kit (Takara Shuzo). This DNA was transformed into Escherichia coli JMl09, white colonies resistant to ampicillin were selected in the presence of isoprobyl thiogalactoside (IPTG) and Xgal, the plasmid DNA was collected, digested with Pstl, and analyzed by agarose gel electrophoresis. A 'p4 gene-derived Pstl
-Pst[l. Plasmid p with 5kb fragment inserted
pARP420R in which the ARP420 or Pstl fragment was inserted in the opposite direction was obtained. After pARP420 was digested with restriction enzymes Sph[, Stul, deletions were introduced by the method described above. As a result, a mutant in which the C-terminal side of the Arp4 gene is deleted is obtained. The C-terminal side of this deletion contains Hin
dIII sites are present. In addition, separately pARP401
is cut at the center of the Arp4 gene with the restriction enzyme Nru[, and religated using a T4 DNA ligator kit (Takara Shuzo) in the presence of a Hind linker (Takara Shuzo). After converting the Nrul site into the old ndl[[[ site, the Nrul site was converted into the old ndlI[-H
indllI, 1. Okb is isolated and recovered, and introduced into the old nd■ site of the aforementioned deletion mutant. By decoding the nucleotide sequence from among the deletion mutants that had been humiliated in this way, we selected a mutant in which the nucleotide sequence corresponding to amino acids 113-218 of the Arp4 protein was deleted, and pARP- It was named 105. In addition, the pARP42
After digesting 0R with the restriction enzymes Kpnl and Bam, by introducing a deletion from the C-terminal side of the Arp4 gene and recombining it using the deletion kit, a joint stop codon (universal terminator, Pharmacia) is present. A plasmid pARP420D was obtained in which protein synthesis was stopped at the deleted end. This plasmid encodes only the first half of the N-terminal side of the Arp4 protein.

欠失変異 の遺伝 結合領域の 定 以上の操作で得たArp4遺伝子の欠失変異体を保持す
る大腸菌JMl09形質転換体を100μg/dアンピ
シリン含有(pLAC/,ARPI−5の場合は1mM
IPTGも含む)L培地( 10g/ 1  バクトト
リプトン、5g#’酵母エキス、5 g/l NaCl
(pH7.2)) 、37℃で振とう培養し定常期まで
増殖させた。培養液1−の菌体を集め、0.3−のサン
プルバッファ一(62. 5mMTトリス塩酸(pH6
. 8). 2XSDS , 5X2−メルfy フト
エタノール)に懸濁後、l00’c、2分間処理して溶
解し、20Itl分をlaemmli ?去(Natu
re, 227 、680(1970)) +,:従ッ
テ、SOS存在化、10−20Xノポリアクリル電気泳
動(以下、SOS−PAGEと略す)含有蛋白質を分離
後、クマジーブリリアン.トブルーで染色後、含有蛋白
質を検出した。また、上記のようにして得たゲルを別途
、ニトロセルロースフィルターに重ね、25mM トリ
ス/192mMグリシン(8. 3)/20てメタノー
ル溶液中で通電(IOOV 、1時間)し、フィルター
に蛋白質を移した。このフィルター上の蛋白質の遺伝子
結合活性を、ヒト遺伝子(カッペル)、アルカリフォス
ファターゼ標識抗1gA抗体(KPL)を用いた酵素抗
体染色法により検出した。
An E. coli JMl09 transformant carrying a deletion mutant of the Arp4 gene obtained by further manipulation of the genetic binding region of the deletion mutation was treated with 100 μg/d of ampicillin (pLAC/, 1 mM in the case of ARPI-5).
(Also includes IPTG) L medium (10g/l Bactotryptone, 5g#' yeast extract, 5g/l NaCl
(pH 7.2)) and was cultured with shaking at 37°C and grown to the stationary phase. Collect the bacterial cells in culture solution 1-1 and add them to 0.3-sample buffer 1 (62.5mMT Tris-HCl (pH 6).
.. 8). After suspending in 2X SDS, 5X 2-merfy ethanol), dissolve by treating at 100'C for 2 minutes, and dissolve 20Itl in laemmli? Natu
re, 227, 680 (1970)) +: Jutte, SOS presence, 10-20X nopolyacrylic electrophoresis (hereinafter abbreviated as SOS-PAGE)-containing protein, and Coomassie Brilliant. After staining with blue, the contained proteins were detected. In addition, the gel obtained as described above was separately layered on a nitrocellulose filter, and electricity was applied (IOOV, 1 hour) in a methanol solution containing 25 mM Tris/192 mM glycine (8.3)/20 to transfer the protein to the filter. did. The gene-binding activity of the protein on this filter was detected by enzyme-antibody staining using human gene (Kappel) and alkaline phosphatase-labeled anti-1gA antibody (KPL).

このようにして、前記Arp4蛋白質欠失変異体のIg
Aを検討し、その結果を第2図に示した。
In this way, the Ig of the Arp4 protein deletion mutant
A was investigated and the results are shown in Figure 2.

第2図に示すように、Arp4蛋白質のIgA結合領域
は43−1.12番目の70個のアミノ酸からなるアミ
ノ酸配列中に存在することが判明した。
As shown in FIG. 2, the IgA binding region of the Arp4 protein was found to exist in an amino acid sequence consisting of 70 amino acids at positions 43-1.12.

また、作製したArp4蛋白質欠失変異体のなかで[g
A結合活性を有する最も分子量が小さいものは、pAR
P420Dにより産生される蛋白質である。この蛋白質
は、プロテインArp4の1−165番目のアミノ酸配
列さらに合成ストップコドンに由来するArgLeu1
1eAsnがC末端に結合している。
In addition, among the Arp4 protein deletion mutants that were created, [g
The one with the smallest molecular weight that has A-binding activity is pAR
This is a protein produced by P420D. This protein is derived from ArgLeu1, which is derived from the amino acid sequence 1-165 of protein Arp4 and a synthetic stop codon.
1eAsn is attached to the C-terminus.

重複変異 Ar4の ′ l g A結合領域を2単位持つ重複変異体Arp4S
の作製を以下のようにして行った。pARP40 1D
NAを制限酵素Stu Iでl肖化した後、Sac I
リンヵー(8mer、宝酒造〉存在化、T4DNAリガ
ーゼキット(宝酒造)を用いてSac Iリンヵーを結
合させ、Stu■サイトをSac Iサイトに変換した
。このDNAをSac T消化し、生じたSac r 
−Sac Iの0. 3Kb断片を低融点アガロースゲ
ル電気泳動で分離・回収した。この断片にはArp4蛋
白質のIgA結合領域を含む28−132番目のアミノ
酸がコードされている。一方、pARP401を制限酵
素EcoR I 、BamH I消化後、クレノーフラ
グメント(宝酒造)にて粘着末端を平滑末端に変更し、
T4DNAリガーゼで再結合することによりpARP4
0 1のベクターpucl8部分に存在するSac I
サイトにて切断し、さらに大腸菌アルカリフォスファタ
ーゼ(宝酒造)にて5゜リン酸基を除去した後、上記の
Sac I−SacIの0. 3Kb断片の存在下でT
4DNAリガーゼを用いて再結合させ、Arp4遺伝子
上のSac IサイトにSac I−SacIの0.3
Kb断片が挿入されたプラスミドpARP401sを構
築した。pARP401sにはArp4蛋白質の27−
132番目のアミノ酸が重複した変異体Arp4Sがコ
ードされている。Arp4S蛋白質は、SOS−PAG
E上で分子量s. soooを示す。
Duplication mutant Arp4S, a duplication mutant with two units of Ar4' l g A-binding region
was prepared as follows. pARP40 1D
After restriction of NA with restriction enzyme Stu I, Sac I
A linker (8mer, Takara Shuzo Co., Ltd.) was present, and a Sac I linker was attached using a T4 DNA ligase kit (Takara Shuzo Co., Ltd.) to convert the Stu ■ site into a Sac I site. This DNA was digested with Sac T, and the resulting Sac r
-0 of Sac I. The 3 Kb fragment was separated and recovered by low melting point agarose gel electrophoresis. This fragment encodes amino acids 28-132, which include the IgA-binding region of the Arp4 protein. On the other hand, pARP401 was digested with restriction enzymes EcoR I and BamH I, and sticky ends were changed to blunt ends using Klenow fragment (Takara Shuzo).
pARP4 by religating with T4 DNA ligase
Sac I present in the vector pucl8 part of 01
After cutting at the above Sac I-Sac I site and removing the 5° phosphate group with E. coli alkaline phosphatase (Takara Shuzo), T in the presence of a 3 Kb fragment
4 DNA ligase, and 0.3 of Sac I-Sac I was added to the Sac I site on the Arp4 gene.
A plasmid pARP401s into which the Kb fragment was inserted was constructed. pARP401s contains the 27-
A mutant Arp4S in which the 132nd amino acid is duplicated is encoded. Arp4S protein is SOS-PAG
Molecular weight s. Indicates sooo.

A『4、Ar4Sの一製 Arp4、Arp4S IgAを含むプラスミドpAR
P40 1、pARP401sを大腸菌D}II(D.
 Hanahann. J. Mol. Biol.1
66  ,557 (1983))に形質転換し、その
形質転換体を3f,LB培地にて37℃、定常増殖期に
達するまで振とう培養した後、菌体を回収した。3l培
養液より12−14gの湿菌体が得られた。これらの湿
菌体より浸透圧ショック(Nossal&Heppel
,J.B.C..影11  .3055 (1966)
)によりペリプラズム画分を回収した。この画分にAr
p4、Arp4S蛋白質が含まれていることをSOS−
PAGEで確認した。次にこの画分をバッフ7−A(1
0mMトリス塩酸(pH7.6))で5倍希釈後、バッ
ファ一Aで平衡化した陰イオン交換カラム(Qセファロ
ース(ファルマシア))、径1.0cmX8.Ocm)
に吸着された。0−20Xのバッファ一B (10mM
T トリス塩酸(pH7.6)/0.5M NaCI)
の濃度勾配を30分かけて溶出を行った。SOS−PA
GEにより溶出画分を確認し、Arp4、Arp4S蛋
白質を含む画分をYM−30(アミコン)で限外ろ過濃
縮した後、ゲルろ過力ラム(TSK−3000SW 、
φ2.8 X60cm、東ソー)にかけPBS(−)(
NaCI.8g/ l , KCI,0.2g/ l 
, NatHPO.  − 12H.0 2.9g/ 
1、KH2PO4. 0.2g/ l ) テ展開した
。SOS−PAGEi.:よる解析から、Arp4、A
rp4S蛋白質は、第1のピークに存在することが確認
された。これらを精製品とした。回収量は、培養液11
当りArp4蛋白質が5■、Arp4S蛋白質が4■で
あった。蛋白質濃度の定量は精製ウシIgG (Bio
Rad )を標準としたBCAl去キット(ピアス)を
用いて行った。
A'4, Arp4 manufactured by Ar4S, plasmid pAR containing Arp4S IgA
P401, pARP401s was infected with E. coli D}II (D.
Hanahann. J. Mol. Biol. 1
66, 557 (1983)), and the transformant was cultured with shaking in 3f, LB medium at 37°C until reaching the stationary growth phase, and then the bacterial cells were collected. 12-14 g of wet bacterial cells were obtained from 3 liters of culture solution. Osmotic shock (Nossal & Heppel)
, J. B. C. .. Shadow 11. 3055 (1966)
), the periplasmic fraction was collected. Ar in this fraction
p4, Arp4S protein is included.
Confirmed with PAGE. Next, this fraction was added to buffer 7-A (1
Anion exchange column (Q Sepharose (Pharmacia)), diluted 5 times with 0mM Tris-HCl (pH 7.6) and equilibrated with buffer A, diameter 1.0cm x 8. Ocm)
was adsorbed to. 0-20X Buffer B (10mM
T Tris-HCl (pH 7.6)/0.5M NaCI)
Elution was performed using a concentration gradient of 30 minutes. SOS-PA
The eluted fractions were confirmed by GE, and the fractions containing Arp4 and Arp4S proteins were concentrated by ultrafiltration using YM-30 (Amicon), followed by gel filtration ram (TSK-3000SW,
φ2.8 x 60cm, Tosoh) and PBS(-)(
NaCI. 8g/l, KCI, 0.2g/l
, NatHPO. - 12H. 0 2.9g/
1.KH2PO4. 0.2 g/l). SOS-PAGEi. : From the analysis, Arp4, A
The rp4S protein was confirmed to be present in the first peak. These were made into refined products. The recovered amount is 11
The amount of Arp4 protein and Arp4S protein was 5 and 4, respectively. Protein concentration was quantified using purified bovine IgG (Bio
Rad) was used as a standard for the BCAl removal kit (Pierce).

実施例4で得た精製Arp4、Arp4S蛋白質をCN
Br活性化セファロース(ファルマシア)に固定化した
。固定化は添付の説明書に従った。両蛋白質とも5mg
/−ゲルの固定化立であった。この固定化したゲル20
μlにPBS(−)に溶解した様々な濃度のヒト血清1
gAを500μl加えて室温、越夜結合させた。未結合
のIgAを遠心分離してBCA法にて定量し、加えたI
gA量との差から結合IgA量を求めた。その値から最
大結合時での固定化Arp4、Arp4S蛋白質に対す
る結合1gAのモル比を求めた。その結果を下表に示す
。その際、Arp4、Arp4S 、Ig.へ蛋白質の
分子量を4万、5万5千、l5万として計算した。
The purified Arp4 and Arp4S proteins obtained in Example 4 were purified by CN
It was immobilized on Br-activated Sepharose (Pharmacia). Fixation was performed according to the attached instructions. 5mg of both proteins
/- The gel was immobilized. This fixed gel 20
Various concentrations of human serum 1 dissolved in PBS(-) in μl
500 μl of gA was added and allowed to bind overnight at room temperature. Unbound IgA was centrifuged and quantified by the BCA method, and the added IgA
The amount of bound IgA was determined from the difference from the amount of gA. From this value, the molar ratio of 1 gA bound to the immobilized Arp4 and Arp4S proteins at the time of maximum binding was determined. The results are shown in the table below. At that time, Arp4, Arp4S, Ig. The molecular weight of the protein was calculated as 40,000, 55,000, and 150,000.

ヒ ト1gA に対する結合容量 Arp4 0.4l Arp4S 0.50 上の表に示すように固定化Arp4Sは固定化Arp4
より20X IgAに対する結合容量が増加した。これ
は、Arp4S蛋白質にrgA結合蛋白質が2存在する
ことによる効果と考えられた。
Binding capacity for human 1gA Arp4 0.4l Arp4S 0.50 As shown in the table above, immobilized Arp4S is
The binding capacity for 20X IgA was increased. This was considered to be an effect due to the presence of two rgA binding proteins in the Arp4S protein.

mold

【図面の簡単な説明】[Brief explanation of the drawing]

?1図はプラスミドpARP401の構造を示す。 1は、Arp44遺伝子の位置を、■はpUc18を示
す。E, B, H, Sc, St, Nはそれぞれ
制限酵素EcoRI , BamHI , HindI
IT、Sac I、StuI%NruIの切断部位を示
す。 第2図は、Arp4の各種欠損変異体の構造および遺伝
子結合后性を示す。最上段がIgA蛋白質を示す。CI
,2.3  は、Arp4蛋白質に特徴的な繰り返し配
列を示す。園はβ−ガラクトシダーゼ由来のArp4配
列を、それ以外はArp4由来のアミノ酸配列を示す。 数字は末端のアミノ酸の番号である。 2 8 段は欠失変異体を表し、 最下段には結論とし て得られるIgA 結合領域を圀圀にて表した。 第 1 図 トー→
? Figure 1 shows the structure of plasmid pARP401. 1 indicates the position of the Arp44 gene, and ■ indicates pUc18. E, B, H, Sc, St, and N are restriction enzymes EcoRI, BamHI, and HindI, respectively.
The cleavage sites of IT, Sac I, StuI%NruI are shown. FIG. 2 shows the structure and gene binding properties of various deletion mutants of Arp4. The top row shows IgA protein. C.I.
, 2.3 shows a repetitive sequence characteristic of Arp4 protein. Sono shows the Arp4 sequence derived from β-galactosidase, and the others show the amino acid sequences derived from Arp4. The numbers are the numbers of the terminal amino acids. The 28th row represents the deletion mutant, and the bottom row represents the IgA binding region obtained as a result. Figure 1 To →

Claims (1)

【特許請求の範囲】 (1)下記アミノ酸配列を含み、免疫グロブリンA結合
活性を有する蛋白質 【遺伝子配列があります。】 (2)請求項第1記載のアミノ酸配列を2以上含む請求
項第1項記載の蛋白質 (3)請求項第1又は第2記載の蛋白質をコードするこ
とを特徴とするDNA (4)請求項第3項のDNAを宿主で発現させ得る発現
ベクター (5)請求項第4項の発現ベクターを含む宿主細胞(6
)請求項第3項記載のDNAを含有し、宿主にて発現さ
せうるプラスミド又はウィルスを用いて、該遺伝子を発
現させ、その産物を回収することによる請求項第1項お
よび第2項記載の蛋白質の製造方 (7)宿主が大腸菌である請求項第6項記載の製造方 (8)プロテインArp4の1から165番のアミノ酸
配列、それにそのC末端にArgLeuIleAsnの
4個のアミノ酸が付加している構造を有することを特徴
とする請求項第1項記載の蛋白質
[Claims] (1) A protein containing the following amino acid sequence and having immunoglobulin A binding activity [there is a gene sequence]. (2) A protein according to claim 1 which contains two or more amino acid sequences according to claim 1. (3) A DNA encoding the protein according to claim 1 or 2. (4) A DNA characterized by encoding the protein according to claim 1 or 2. An expression vector capable of expressing the DNA of claim 3 in a host (5) A host cell containing the expression vector of claim 4 (6
) The method according to claims 1 and 2 by expressing the gene using a plasmid or virus that contains the DNA according to claim 3 and which can be expressed in a host, and recovering the product. (7) The method for producing the protein according to claim 6, wherein the host is Escherichia coli (8) The amino acid sequence from 1 to 165 of protein Arp4, and the four amino acids ArgLeuIleAsn are added to the C-terminus. The protein according to claim 1, characterized in that it has a structure that
JP1303641A 1989-11-22 1989-11-22 Protein containing human iga binding region and production thereof Pending JPH03164178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1303641A JPH03164178A (en) 1989-11-22 1989-11-22 Protein containing human iga binding region and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1303641A JPH03164178A (en) 1989-11-22 1989-11-22 Protein containing human iga binding region and production thereof

Publications (1)

Publication Number Publication Date
JPH03164178A true JPH03164178A (en) 1991-07-16

Family

ID=17923445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303641A Pending JPH03164178A (en) 1989-11-22 1989-11-22 Protein containing human iga binding region and production thereof

Country Status (1)

Country Link
JP (1) JPH03164178A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063383A1 (en) * 1999-04-19 2000-10-26 Affitech As. IgA BINDING POLYPEPTIDE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063383A1 (en) * 1999-04-19 2000-10-26 Affitech As. IgA BINDING POLYPEPTIDE

Similar Documents

Publication Publication Date Title
US6072039A (en) Hybrid polypeptide comparing a biotinylated avidin binding polypeptide fused to a polypeptide of interest
US5643758A (en) Production and purification of a protein fused to a binding protein
Nygren et al. Analysis and use of the serum albumin binding domains of streptococcal protein G
JP2686090B2 (en) Novel fusion protein and purification method thereof
US4977247A (en) Immobilized protein G variants and the use thereof
KR100203512B1 (en) Recombinant core-streptavidin
EP0262192B1 (en) Method and means for producing a protein having the same igg specificity as protein g
JP2981286B2 (en) Expression of tetanus toxin fragment C
EP0331961B1 (en) Method for protein synthesis using CKS fusion proteins
EP0286239B1 (en) Production and purification of a protein fused to a binding protein
NO178894B (en) Recombinant DNA molecule, expression vector, host cell, fusion protein, and method for producing the protein
EP0414134A1 (en) Method for producing antiviral protein utilizing E.coli transformant, and gene and E.coli vector used in the method
WO1991009952A1 (en) Lipoprotein signal peptide fused to antigenic polypeptides
JP2887238B2 (en) Polypeptide
US4828988A (en) Hybrid polypeptides comprising somatocrinine and alpha1 -antitrypsin, method for their production from bacterial clones and use thereof for the production of somatocrinine
US5082773A (en) Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G
WO1987005025A1 (en) Cloned streptococcal genes encoding protein g and their use to construct recombinant microorganisms to produce protein g
Jackson et al. Analysis of the membrane‐binding domain of penicillin‐binding protein 5 of Escherichia coli
US5888775A (en) Peptide synthesis and purification by fusion to penI protein or precipitation effective portion thereof
JPH03164178A (en) Protein containing human iga binding region and production thereof
PL181695B1 (en) Method of expression and purification of p2 protein from type b haemophilus influenzae
EP0327522A2 (en) Production of fused proteins or polypeptides
EP0234592A1 (en) Plasmid containing DNA fragment coding for human immunoglobulin G Fc region protein and use thereof for production of said protein
JP2671260B2 (en) Method for producing foreign proteins in Streptomyces fungi
JPH05168478A (en) Making of recombinant iga-protease and method of decomposing fused protein obtained by art of recombinant iga- protease, recombinant dna, recombinant vector, cell and gene.