JPH03163301A - Position detecting method - Google Patents

Position detecting method

Info

Publication number
JPH03163301A
JPH03163301A JP30376389A JP30376389A JPH03163301A JP H03163301 A JPH03163301 A JP H03163301A JP 30376389 A JP30376389 A JP 30376389A JP 30376389 A JP30376389 A JP 30376389A JP H03163301 A JPH03163301 A JP H03163301A
Authority
JP
Japan
Prior art keywords
spot
light
sensor
detected
position detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30376389A
Other languages
Japanese (ja)
Other versions
JP2620982B2 (en
Inventor
Kazunari Yoshimura
一成 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1303763A priority Critical patent/JP2620982B2/en
Publication of JPH03163301A publication Critical patent/JPH03163301A/en
Application granted granted Critical
Publication of JP2620982B2 publication Critical patent/JP2620982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to detect the position of a spot light by providing a spot-position detecting sensor at a position which is different from the axis of a light projecting beam, removing the secondary reflecting light having the large amount of the spot, and selecting the signal having the weakest amount of light. CONSTITUTION:A incident light beam 2 projects a spot light. A lens and a spot position detecting sensor 5 are provided at a position A thus focusing an image. When the image is not formed on the sensor 5 at the position A, a part of a body to be detected 4 forms a dead angle between a point M of the spot light and the sensor 5. At this time, the positions of the lens and the sensor 5 are turned and changed with the beam 2 as an axis. The lens and the sensor 5 are moved to a position where the spot light on the body to be detected 4 is not shielded with another body. A formed image M' can be obtained on the sensor 5 at a position B. The spot light is shielded at a position A, and the signal to be detected is not detected. Then, the peak point of the amount of the light of the detected signal at the point B appears as the formed image. At this time, (a) and (b) are synthesized, and the synthesized output (c) is obtained. This operation is performed at a plurality of places, and the output signal whose amount of light has the smallest value is adopted.

Description

【発明の詳細な説明】 (産業上の技術分野) 本発明は、対象物の形状や位置を死角や2次反射等が発
生した受光スポット像から、正確に検出する位置検出方
法に関する. (従来の技術) 従来、対象物の物体表面の高さを光によって検出するに
は、光による三角測!(以下、光切断という)によって
検出することが多い.これは第7図に示すように、真上
がら光ビームを物体2oの表面に照射し、その反射光を
レンズ2lで位置検出センサー22上に結像させ、その
結像位置により物体20の高さを検出するようにしてい
た.しかしながら、この方法では物体2oの表面が光沢
面であると、第8図に示すような物体23の場合では、
傾斜面からの2次反射等が発生して位置検出センサー2
2上には複数のスポットが結像されるため、物体の真の
高さAを検出せずに2次反射Rにより実際の高さより低
いR”を検出してしまうという欠点があった. また、第9図に示すように、光ビームのスポットが他の
物体24の死角になり、検出不可能となる場合等を発生
することがあった. これ等の欠点を解決するために、特公昭63 − 22
241号公報に示された「形状mj&装置」が提案され
ている.この方法は第10図に示すように、異常反射は
被測定物面で生ずるため、その異常反射部はスリット輝
線より下に存在する事を利用し、選択的に光切IFr線
を抽出しようとするものであった.(発明が解決しよう
とするi[) しかしながらこの方法では、例えば第11図に示すよう
に、被検出物体25が一方側に傾斜面26を有し、また
、被検出物体25に凸曲面27があると、光ビームはA
点において反射しレンズ21を介して位置検出センサー
22にスポット像A′を結像し、また、傾斜面26に2
次反射をおこし別のスポット像R′を結像する.このR
′の結像は光ビームの入射光と反射点Rからの反射光の
交点R″の位置に見え、光の強さは大きく、真の輝点A
より上に存在してしまい、対象物体が複雑な形状をして
いる時はあてはまりにくいという欠点があった。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Technical Field) The present invention relates to a position detection method for accurately detecting the shape and position of an object from a received light spot image in which blind spots, secondary reflections, etc. have occurred. (Prior art) Conventionally, triangulation using light has been used to detect the height of the surface of an object using light! It is often detected by photosection (hereinafter referred to as photosection). As shown in FIG. 7, a light beam is irradiated onto the surface of the object 2o from directly above, and the reflected light is imaged on the position detection sensor 22 by the lens 2l. It was designed to detect. However, in this method, if the surface of the object 2o is a glossy surface, in the case of the object 23 as shown in FIG.
Secondary reflection from the inclined surface occurs and the position detection sensor 2
Since multiple spots are imaged on 2, there was a drawback that the true height A of the object was not detected, but the secondary reflection R resulted in the detection of a height R'' that was lower than the actual height. , as shown in Fig. 9, the spot of the light beam sometimes becomes a blind spot of another object 24, making detection impossible. 63-22
``Shape mj &device'' shown in Publication No. 241 has been proposed. As shown in Figure 10, this method attempts to selectively extract the light-cut IFr line by taking advantage of the fact that the abnormal reflection occurs below the slit emission line, since the abnormal reflection occurs on the surface of the measured object. It was something to do. (i[] to be solved by the invention) However, in this method, for example, as shown in FIG. If there is, the light beam is A
A spot image A' is reflected at the point and formed on the position detection sensor 22 via the lens 21, and a spot image A' is formed on the inclined surface 26.
Next, reflection occurs and another spot image R' is formed. This R
The image formed at ' is seen at the intersection point R'' of the incident light of the light beam and the reflected light from the reflection point R, and the intensity of the light is large and it is the true bright spot A.
This has the disadvantage that it is difficult to apply when the target object has a complex shape.

本発明は上述の事情に鑑みてなされたもので、その目的
とするところは、対象物体が複雑な形状であっても2次
反射、死角等の影響で誤検出をしない位置検出方法を提
供しようとするLのである.(課題を解決するための手
段) 上記目的を達戊するため本発明の位置検出方法は、被検
出物体上に光ビームを投光し、この投光された光ビーム
の前記被検出物体による反射光を受光し、反射光の受光
スポットの位置変化を検出する位置検出方法において、
前記受光スボ−/ トの移動方向を検出するスポット位
置検出センサーを、投光用光ビームの軸に対して軸を中
心として相対的位置に配設し、それぞれのスポット位置
検出センサーの位置における被検出物体による受光スポ
ットの位置情報から、所定のスボソト位置検出センサー
を選択し被検出物体の位置検出を1テなうことを特徴と
するものである. (作用) 上述のように構戒された位置検出方法は、受光スポット
の移動方向を検出するスボソト位置検出センサーを、投
光用ビームの軸に対して相異なる位置に設け、このスポ
ット位置センサーの各情報の検出出力を合成し、2次反
射光のスポット光量の大きなものを除外して光量の1番
弱い信号を選訳するようにしたので、正確なスポット光
位置の検出ができる. (実施例) 以下、本発明の一実施例を第1図ないし第4図によって
説明する. 光切断においては光ビームの投光方向に対してスポット
位置検出センサーへの反射光の入射角度が一定であれば
、投光用光ビームを軸にしてスポット位置検出センサー
の位置を回転させても、同じスポット光位置を検出する
ことが可能である.ここで、スポシ゛ト位置検出センサ
ーにライン型のセンサーを用いれば、死角や2次反射が
なければ被検出物体に当たるスポット光位置は入射光ビ
ーム上にあり、前記ライン型センサーとこの人射光ビー
ムの位置が平面になるような位置にライン型センサーを
配設することにより、スポット光は必らずライン型セン
サー上に結像される.若し、2次反射が発生すれば上述
した平面上に2次反射スポット光が発生した時のみライ
ン型センサー上に2次反射スポット光が結像され、真の
スポット光位置は2次反射スポット光の影響を受け正確
な位置検出はできなくなる.しかし、ライン型センサー
の位置をレンズとともに入射光ビームを軸として回転さ
せると、入射光ビームとライン型センサーで形戒される
平面が回転し、2次反射光がこの平面上にない状態を実
現することができる。すなわち、第1図に示すように、
被検出物体1の1頃斜面la上の点Mの位置を検出する
場合、入射光ビーム2がMの垂直上より投光され、この
入射光ビーム2に対してレンズを介してライン型センサ
ー3がA位置にあって、ライン型センサー3上に2つの
結像M′およびN′を得たとすれば、このN′の結像は
入射光ビーム2がNにおいて2次反射したスポット光で
ある。これは入射光ビーム2と、M点におけるスポット
光による結像M′と、2次反射光スボソトによる結像N
′とを含む平面A上に2つの結像M′およびN′が現れ
たたことになる. このような場合、レンズとライン型センサー3との相対
関係を変えることなく入射光ビーム2を軸として回転し
、B位置においてライン型センサー3上に1つの結像だ
けが現れたとすると、この結像M1は点Mのスポット光
によるものである.これを図に示したものが第2図であ
る.この第2図において(a)は前記A位直における一
方のライン型センサーの結像で、(b)は前記B位置に
おける他方のライン型センサーの結像であって、この2
つの検出波形を比較することにより、M′およびM′の
波形が真のスポット光であることが分かる.死角補正に
ついても同様の方法で行なえる.第3図において、入射
光ビーム2が点Mにスポット光を投光し、A位置にレン
ズおよびスポット位置検出センサー5があって結像を求
めるのに、このA位置ではスポット位置検出センサー5
に結像が表れないときは、スポット光の点Mとスボント
位置検出センサー5との間に被検出物体4の一部が死角
となって入っており、この場合、レンズおよびスポット
位置検出センサー5の位置を入射光ビーム2を軸として
回転して変え、被検出物体上のスポット光が他の物体に
よってさえぎられない位置へ移動し、B位置においてス
ポット位置検出センサー5に結像M′を得ることができ
る.これにより第4図に示すように、A位置での検出信
号は(a)のように、スポット光がさえぎられて検出さ
れていない。次に、B位置での検出信号は中)のように
光量のピーク点が結像として表れる.この場合、前記(
a)と(b)とを合成することにより(C)の合戒出力
が得られる.この動作を複数ケ所で行ない、その出力信
号のうち一番光量の小さい出力信号を採用することで2
次反射光が入っていないセンサーを選択する.これによ
って死角補正が可能となる. このように、死角があっても入射光ビーム2を中心にレ
ンズとスポット位置検出センサー5との相対関係を変え
ることなく回転させることにより、その検出波形を選択
すれば死角による誤検出も除去することができる. 上述したライン型センサー3やスポット位置検出センサ
ー5の位置を変える方法は、1つのセンサーを回転させ
ることについて説明したが、予め複数個のセンサーを入
射光ビームの軸を中心として配置し、それぞれの検出波
形を合成して選沢しても同様の効果を得ることができる
. 次に、ライン型センサーやスポット位置検出センサーを
複数個用いた場合の選択方法について説明する。この複
数個の各センサーは死角の発生しにくいように、例えば
第3図に示したようにA位置とB位置とに予め配設して
おけば、以下は第4図に示したように、A位置の検出記
号とB位置の検出記号とが同時に検出でき、これの合威
することによって(C)で示した合戒出力を簡単に得る
ことができる.また、このA位置とB位置とに配設した
センサーを入射光ビームの軸を中心として一定角度回転
させることにより、各位置での検出信号を合威させ、さ
らにそれぞれを合成させることによって被検出物体がm
sな形態をしたものであっても正確な位置検出信号を検
出できる。この検出信号は各センサーがそれぞれ捉えた
出力信号のうち最も光量の少ないものを選択すればよい
.一般に2次反射が発生し、センサーに検出されると、
真のスポット光より2次反射のスポット光の光量が大き
くなる.こればスポット光が当たる面が、第5図に示す
ように、センサーと入射ビームが構或する面に対して垂
直になっており、反射光量が一番大きくなる方向となっ
ているためで、2次反射スポット光が入ったセンサーを
含む上述の合威出力信号は、全光量で比較した場合.他
の合戒出力信号より大きい.このことからして、合戒出
力信号の最も光量の弱い信号を選択すれば、正確なスポ
ット光位置の検出が可能となる.ここにライン型センサ
ーは細長く配設された受光素子からなるもので、スポッ
ト光のピーク値を直線上に表すものであり、これに対し
てスポット光の位置を直接検出するようなポジションセ
ンシティブディテクタ(PSD)のようなものを用いて
、その合成光量の最小のものを選択しても同し効果をえ
ることができる. また、スポット位置検出センサーとしてスポット移動方
向に多数の受光素子を列設したアレイセンサーを用い、
上述したように複数の位置にアレイセンサーを配設し、
死角が発生しにくいような構威として各アレイセンサー
の出力信号を合成する.そして、この合或出力信号を用
いて、ある値以上のピーク値の数の少ないアレイセンサ
ーを採用してもよい.この場合、第2図に示したように
2次反射ビーム光が入れば、真のスポット位置の他にピ
ーク値を持ち、その合或出力信号も当然複数のピーク値
を持つことになる.2次反射ビーム光が入射していない
合戒出力信号は、真のスポット光のピーク値のみで該信
号を用いることにより、容易に正確に真のスポット位置
を求めることが可能である.すなわち、各合戒出力信号
のうち最もピーク値の数の少ないアレイセンサーを採用
することで、被検出物体の2次反射ビームの影響を取り
除くことにより可能である. 上述したアレイセンサーを用いて各出力信号のうち、あ
る値以上のピーク値で同一場所に存在するピーク値の数
の最も多いものを採用することによって、真のスポット
位置を検出することができる.以下その方法について説
明する. 各アレイセンサーの出力信号は2次反射ビーム光により
、さまざまなピーク値が存在し、死角によって真のスポ
ット光も消えてしまうことがある.しかしながら、複数
のアレイセンサーの各ピーク位置を取り出し、最も発生
数の多いピーク位置から真のスポット位置になる確率は
高く、アレイセンサーの数が多い程確率は高くなる。こ
れによって真のスポット位置を検出することも可能であ
る。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a position detection method that does not cause false detection due to secondary reflections, blind spots, etc. even if the target object has a complex shape. This is L's. (Means for Solving the Problems) In order to achieve the above object, the position detection method of the present invention projects a light beam onto an object to be detected, and reflects the projected light beam by the object to be detected. In a position detection method that receives light and detects a change in the position of a receiving spot of reflected light,
A spot position detection sensor for detecting the moving direction of the light receiving boat/light is arranged at a position relative to the axis of the light beam for projection, and the spot position detection sensor detects the direction of movement of the light receiving boat/vehicle. This system is characterized in that a predetermined position detection sensor is selected based on the positional information of the light receiving spot of the detected object, and the position of the detected object is detected one step. (Function) In the position detection method as described above, position detection sensors for detecting the direction of movement of the light receiving spot are provided at different positions with respect to the axis of the light emitting beam, and the spot position sensors are The detection output of each information is combined, and the signal with the weakest light amount is selected by excluding the secondary reflected light with a large amount of spot light, so the spot light position can be detected accurately. (Embodiment) An embodiment of the present invention will be explained below with reference to FIGS. 1 to 4. In light cutting, as long as the angle of incidence of the reflected light on the spot position detection sensor is constant with respect to the direction of the light beam projection, it is possible to rotate the position of the spot position detection sensor around the projection light beam. , it is possible to detect the same spot light position. Here, if a line type sensor is used as the spot position detection sensor, the position of the spot light hitting the object to be detected will be on the incident light beam unless there is a blind spot or secondary reflection, and the position of the line type sensor and this human light beam will be By arranging the line sensor at a position where the line surface becomes flat, the spot light is always focused on the line sensor. If secondary reflection occurs, the secondary reflection spot light will be imaged on the line sensor only when the secondary reflection spot light is generated on the above-mentioned plane, and the true spot light position will be the secondary reflection spot. Accurate position detection becomes impossible due to the influence of light. However, if the position of the line sensor is rotated along with the lens around the incident light beam, the plane defined by the incident light beam and the line sensor will rotate, making it possible for the secondary reflected light to not lie on this plane. can do. That is, as shown in Figure 1,
When detecting the position of a point M on the slope 1a of the object to be detected 1, an incident light beam 2 is projected from perpendicularly above M, and a line type sensor 3 is directed to the incident light beam 2 through a lens. is at position A, and two images M' and N' are formed on the line sensor 3. This image of N' is a spot light obtained by secondary reflection of the incident light beam 2 at N. . This consists of the incident light beam 2, the image formed by the spot light at point M, M', and the image formed by the secondary reflected light Subosoto.
This means that two images M' and N' have appeared on the plane A containing '. In such a case, if the lens is rotated around the incident light beam 2 without changing the relative relationship between the line sensor 3 and only one image appears on the line sensor 3 at position B, then this Image M1 is caused by the spot light at point M. This is illustrated in Figure 2. In FIG. 2, (a) is an image formed by one line type sensor at the A position, and (b) is an image formed by the other line type sensor at the B position.
By comparing the two detected waveforms, it can be seen that the M' and M' waveforms are true spot lights. Blind spot correction can be done in the same way. In FIG. 3, the incident light beam 2 projects a spot light onto a point M, and a lens and a spot position detection sensor 5 are located at a position A to obtain an image.
When no image is formed, a part of the object to be detected 4 is a blind spot between the spot light point M and the subbond position detection sensor 5, and in this case, the lens and the spot position detection sensor 5 rotates around the incident light beam 2 to move to a position where the spot light on the object to be detected is not blocked by other objects, and an image M' is formed on the spot position detection sensor 5 at position B. be able to. As a result, as shown in FIG. 4, the detection signal at position A is not detected because the spot light is blocked, as shown in (a). Next, in the detection signal at position B, the peak point of the light amount appears as an image as shown in (middle). In this case, the above (
By combining a) and (b), the combined precept output of (C) can be obtained. By performing this operation at multiple locations and using the output signal with the smallest amount of light among the output signals, two
Next, select a sensor that does not receive reflected light. This allows blind spot correction. In this way, even if there is a blind spot, by rotating the lens around the incident light beam 2 without changing the relative relationship between the lens and the spot position detection sensor 5, erroneous detection due to the blind spot can be removed by selecting the detection waveform. be able to. The method of changing the position of the line type sensor 3 or the spot position detection sensor 5 described above involves rotating one sensor, but multiple sensors are arranged in advance around the axis of the incident light beam, and each A similar effect can be obtained by combining and selecting detected waveforms. Next, a selection method when a plurality of line type sensors or spot position detection sensors are used will be explained. If these plurality of sensors are arranged in advance at positions A and B, as shown in Fig. 3, so that blind spots are less likely to occur, then, as shown in Fig. 4, The detection symbol at position A and the detection symbol at position B can be detected simultaneously, and by combining them, the combined output shown in (C) can be easily obtained. In addition, by rotating the sensors placed at positions A and B by a certain angle around the axis of the incident light beam, the detection signals at each position are combined, and the signals to be detected are further synthesized. The object is m
Accurate position detection signals can be detected even if the position detection signal is in an s-shaped configuration. As this detection signal, the one with the least amount of light can be selected from among the output signals captured by each sensor. Generally, secondary reflection occurs and when detected by the sensor,
The light intensity of the secondary reflected spot light is larger than that of the true spot light. This is because the surface on which the spot light hits is perpendicular to the surface where the sensor and the incident beam are located, as shown in Figure 5, and the direction in which the amount of reflected light is greatest. The above-mentioned combined output signal including the sensor with the secondary reflected spot light is compared in terms of total light intensity. It is larger than other joint output signals. Based on this, if the signal with the weakest light intensity of the combined output signals is selected, accurate detection of the spot light position becomes possible. Here, a line type sensor consists of a light receiving element arranged in a long and narrow manner, and it expresses the peak value of the spot light on a straight line. The same effect can be obtained by using something like PSD) and selecting the one with the minimum combined light intensity. In addition, as a spot position detection sensor, an array sensor in which a large number of light receiving elements are arranged in a row in the direction of spot movement is used.
Array sensors are placed in multiple positions as described above,
The output signals of each array sensor are combined in a configuration that reduces the possibility of blind spots. Then, using this combined output signal, an array sensor with a small number of peak values above a certain value may be employed. In this case, as shown in FIG. 2, if the secondary reflected beam light enters, it will have a peak value in addition to the true spot position, and the resultant output signal will naturally have a plurality of peak values. By using only the peak value of the true spot light as the combined output signal without incident secondary reflected beam light, it is possible to easily and accurately determine the true spot position. In other words, this is possible by removing the influence of the secondary reflected beam from the object to be detected by employing the array sensor that has the least number of peak values among the combined output signals. The true spot position can be detected by using the array sensor described above and selecting among the output signals the one with the highest number of peak values that are greater than a certain value and that exist at the same location. The method will be explained below. The output signal of each array sensor has various peak values due to the secondary reflected beam light, and the true spot light may disappear due to blind spots. However, when each peak position of a plurality of array sensors is extracted, the probability that the peak position that occurs most often becomes the true spot position is high, and the probability increases as the number of array sensors increases. This also makes it possible to detect the true spot position.

第6図は上述した各検出方法に用いられるスポット位置
を演算するための装置のブロック図で、スポット位置演
算部6は最小ピーク値数センサー検出部と最小検出光量
センサー検出部と最多発生頻度ピーク位置検出部とスボ
ソト位置位置算出部とよりなり、n列の受光素子(スポ
ット位置検出センサー)の出力をn列ラインメモリを介
してスボソト位置演算部6に人力され、最小ピーク値、
最小光量、最多発生頻度に応して各ブロックへ人力され
る.この各検出後の出力はスポット位置算出部へ入力さ
れ真のスポット位置を求め、スポット位置メモリ部へ入
力されて記憶される構或になっている.このスポット位
置演算部6内の前記最小ピーク値数センサー検出部、最
小検出光量センサー検出部、最多発生頻度ピーク位置検
出部はスポット位置検出センサーの構造により、それに
対応する各方式にあわせたもので構戒してもよい。
FIG. 6 is a block diagram of a device for calculating the spot position used in each of the above-mentioned detection methods. It consists of a position detection section and a sub-position position calculation section, and the outputs of the n-row light receiving elements (spot position detection sensors) are manually input to the sub-position position calculation section 6 via the n-row line memory, and the minimum peak value,
It is manually applied to each block according to the minimum amount of light and the maximum frequency of occurrence. The output after each detection is input to a spot position calculating section to determine the true spot position, and is input to a spot position memory section and stored therein. The minimum peak value number sensor detection section, the minimum detected light amount sensor detection section, and the most frequently occurring peak position detection section in the spot position calculation section 6 are adapted to each method corresponding to the structure of the spot position detection sensor. You may take precautions.

(発明の効果) 以上詳細に説明したように、本発明の位置検出方法は、
被検出物体上に光ビームを投光し、この投光された光ビ
ームの前記被検出物体による反射光を受光し、反射光の
受光スボフトの位置変化を検出する位置検出方法におい
て、前記受光スポットの移動方向を検出するスポット位
置検出センサーを、投光用光ビームの軸に対して軸を中
心として相対的位置に配設し、それぞれのスポット位置
検出センサーの位置における被検出物体による受光スポ
ットの位置情報から、所定のスボソト位置検出センサー
を選択し被検出物体の位置検出を行なうことを特徴とし
たので、対称物体が複雑な形状であっても2次反射、死
角等の影響による誤検出を発生することのない利点があ
る.
(Effects of the Invention) As explained in detail above, the position detection method of the present invention has the following features:
In a position detection method that projects a light beam onto an object to be detected, receives reflected light of the projected light beam by the object to be detected, and detects a change in the position of a light-receiving subwoofer of the reflected light, the light-receiving spot A spot position detection sensor for detecting the moving direction of the light beam is arranged at a position relative to the axis of the emitting light beam, and the spot position detection sensor detects the light receiving spot of the object to be detected at the position of each spot position detection sensor. The feature is that a predetermined position detection sensor is selected from the position information to detect the position of the detected object, so even if the object to be detected has a complex shape, false detection due to secondary reflections, blind spots, etc. can be avoided. The advantage is that it never occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第6図は本発明の実施例で、第l図はセン
サー位置を変更したときの結像状態を示す斜視図、第2
図(a)、(b)は各センサー位置における検出波形図
で、(a)は2次反射を伴うもの、(b)は2次反射の
ないもの、第3図は死角補正のための検出位置を示す平
面図、第4図(a)、(b), (C)は第3図各セン
サー位置での波形図で、(a)は死角内い)は死角外、
(C)は(a)と(b)とを合威したもの、第5図は傾
斜面等に発生する反射強度の分布を示す平面図、第6図
はブロック図であり、第7図ないし第11図は従来例で
、第7図は三角2!!I量図、第8図は鏡面物体の2次
反射例、第9図は死角例、第10図は2次反射による結
像図、第11図は複雑な形状物体の反射例を示したもの
である. l・・・・・被検出物体 3・・・・・ライン型センサー 5・・・・・スポット位置検出センサー第 〕 図 光量 第2図 (0) 7 図 B 8 図 第9図 第11図 第10図
1 to 6 show examples of the present invention, and FIG. 1 is a perspective view showing the image formation state when the sensor position is changed, and FIG.
Figures (a) and (b) are detection waveform diagrams at each sensor position, where (a) is with secondary reflection, (b) is without secondary reflection, and Figure 3 is detection for blind spot correction. A plan view showing the position, Figure 4 (a), (b), and (C) are waveform diagrams at each sensor position in Figure 3. (a) is inside the blind spot) is outside the blind spot,
(C) is a combination of (a) and (b), Figure 5 is a plan view showing the distribution of reflection intensity generated on inclined surfaces, etc., Figure 6 is a block diagram, and Figures 7 to 7 are Figure 11 shows the conventional example, and Figure 7 shows the triangle 2! ! Figure 8 shows an example of secondary reflection from a specular object, Figure 9 shows an example of a blind spot, Figure 10 shows an image formed by secondary reflection, and Figure 11 shows an example of reflection from a complex-shaped object. It is. l...Object to be detected 3...Line type sensor 5...Spot position detection sensor] Figure light intensity Figure 2 (0) 7 Figure B 8 Figure 9 Figure 11 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 被検出物体上に光ビームを投光し、この投光された光ビ
ームの前記被検出物体による反射光を受光し、反射光の
受光スポットの位置変化を検出する位置検出方法におい
て、前記受光スポットの移動方向を検出するスポット位
置検出センサーを、投光用光ビームの軸に対して軸を中
心として相対的位置に配設し、それぞれのスポット位置
検出センサーの位置における被検出物体による受光スポ
ットの位置情報から、所定のスポット位置検出センサー
を選択し被検出物体の位置検出を行なうことを特徴とす
る位置検出方法。
In a position detection method that projects a light beam onto an object to be detected, receives reflected light of the projected light beam by the object to be detected, and detects a change in position of a light receiving spot of the reflected light, wherein the light receiving spot A spot position detection sensor for detecting the moving direction of the light beam is arranged at a position relative to the axis of the emitting light beam, and the spot position detection sensor detects the light receiving spot of the object to be detected at the position of each spot position detection sensor. A position detection method characterized by selecting a predetermined spot position detection sensor from position information and detecting the position of an object to be detected.
JP1303763A 1989-11-22 1989-11-22 Position detection method Expired - Lifetime JP2620982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1303763A JP2620982B2 (en) 1989-11-22 1989-11-22 Position detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1303763A JP2620982B2 (en) 1989-11-22 1989-11-22 Position detection method

Publications (2)

Publication Number Publication Date
JPH03163301A true JPH03163301A (en) 1991-07-15
JP2620982B2 JP2620982B2 (en) 1997-06-18

Family

ID=17924983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303763A Expired - Lifetime JP2620982B2 (en) 1989-11-22 1989-11-22 Position detection method

Country Status (1)

Country Link
JP (1) JP2620982B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145158A (en) * 2006-12-07 2008-06-26 Keyence Corp Optical displacement sensor and optical displacement gauge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244610A (en) * 1985-08-22 1987-02-26 Sumitomo Metal Ind Ltd Measuring method for cross sectional size of shape steel
JPS62172214A (en) * 1986-01-24 1987-07-29 N T T Gijutsu Iten Kk Visual sensor using laser beam
JPS63225117A (en) * 1987-03-14 1988-09-20 Matsushita Electric Works Ltd Optical scanning type displacement measuring instrument
JPH01213506A (en) * 1988-02-22 1989-08-28 Ntt Technol Transfer Corp Method for measuring shape of object using optical beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244610A (en) * 1985-08-22 1987-02-26 Sumitomo Metal Ind Ltd Measuring method for cross sectional size of shape steel
JPS62172214A (en) * 1986-01-24 1987-07-29 N T T Gijutsu Iten Kk Visual sensor using laser beam
JPS63225117A (en) * 1987-03-14 1988-09-20 Matsushita Electric Works Ltd Optical scanning type displacement measuring instrument
JPH01213506A (en) * 1988-02-22 1989-08-28 Ntt Technol Transfer Corp Method for measuring shape of object using optical beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145158A (en) * 2006-12-07 2008-06-26 Keyence Corp Optical displacement sensor and optical displacement gauge

Also Published As

Publication number Publication date
JP2620982B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
US6559936B1 (en) Measuring angles of wheels using transition points of reflected laser lines
US20040246473A1 (en) Coded-light dual-view profile scanning apparatus
JP2006276012A (en) Measuring system for obtaining six degrees of freedom of object
US4410268A (en) Apparatus for automatically measuring the characteristics of an optical system
JP3690260B2 (en) Vehicle distance measurement method
JPH03163301A (en) Position detecting method
JPH09203631A (en) Distance-measuring sensor
JPH10170636A (en) Optical scanner
JP4366254B2 (en) Scanning optical system inspection apparatus and method
JPH07190735A (en) Optical measuring device and its measuring method
JPS62222117A (en) Multipoint distance measuring sensor
US20230036431A1 (en) BLOOM COMPENSATION IN A LIGHT DETECTION AND RANGING (LiDAR) SYSTEM
JP3136216B2 (en) Non-uniform pitch spring orientation detector
JP7442752B1 (en) Shape inspection method of inspected object
JPS61225607A (en) Method and device for measuring optical multidimensional shape of body
JPH0875857A (en) Obstacle detecting device
JP2950226B2 (en) Height measuring device
JP3110263B2 (en) Center position detection method for recognition target
JP3381420B2 (en) Projection detection device
JPH07243977A (en) Floating threshold value calculating method for foreign matter detection
JP2716795B2 (en) Moving object position measurement system
JPH0715374B2 (en) Shape detection method
JPH03163305A (en) Method for detecting soldered shape
JPH07191145A (en) Obstacle detection device
JPH07208949A (en) Apparatus and method for measurement of shape