JPH03159958A - Alumina-based sintered body - Google Patents

Alumina-based sintered body

Info

Publication number
JPH03159958A
JPH03159958A JP1296096A JP29609689A JPH03159958A JP H03159958 A JPH03159958 A JP H03159958A JP 1296096 A JP1296096 A JP 1296096A JP 29609689 A JP29609689 A JP 29609689A JP H03159958 A JPH03159958 A JP H03159958A
Authority
JP
Japan
Prior art keywords
alumina
sintered body
compound
oxide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1296096A
Other languages
Japanese (ja)
Inventor
Shinya Matsuno
信也 松野
Koichi Sarugaku
猿楽 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1296096A priority Critical patent/JPH03159958A/en
Publication of JPH03159958A publication Critical patent/JPH03159958A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide an alumina-based sintered body having average particle diameter of constituent particles in a given range, a sharp particle size distribution, high density and breakdown voltage of >=a specific value by adding given amounts of Mg compound and Zr compound to alumina powder and sintering. CONSTITUTION:Alumina powder of raw material is blended with given amounts of finely divided magnesium compound (e.g. magnesium oxide) and zirconium compound (e.g. zirconium oxide). Then the blend is molded and sintered to produce an alumina-based sintered body. The prepared alumina-based sintered body has 0.4-2mum average particle diameter of constituent particles, a sharp particle diameter distribution, >=3.9g/cm<3> density, 0.01-0.5wt.% magnesium oxide, 0.01-0.7wt.% zirconium oxide, >=98wt.% aluminum oxide and >=1,000KV/cm breakdown voltage and is useful as an alumina-based high dielectric strength spacer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アルミナ質高耐電圧スペーサに有用なアルミ
ナ質焼結体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an alumina sintered body useful for an alumina high voltage withstand spacer.

近年、セラミック材料の発達はめざましく、特にアルミ
ナ焼結体は、その電気絶縁性,化学的安定性,機械的強
度等において優れた物性を有するため、電子材料分野,
構造材料分野を問わずに広く利用されている。
In recent years, the development of ceramic materials has been remarkable, and alumina sintered bodies in particular have excellent physical properties such as electrical insulation, chemical stability, and mechanical strength, so they are being used in the electronic materials field.
It is widely used regardless of the field of structural materials.

電子材料分野では、セラミックの有する絶縁性とともに
、その耐電圧性が要求されることがある。
In the field of electronic materials, not only the insulating properties of ceramics but also their voltage resistance are sometimes required.

最近、絶縁材料の軽薄化がすすむとともに、その高耐電
圧化が求められている。
Recently, insulating materials have become lighter and thinner, and there is a demand for higher voltage resistance.

(従来技術) 従来、アルミナセラミックは、例えばアルミナ原料に酸
化マグネシウムなどの適当な焼結助剤を加えて焼結させ
ていた。しかしながら、この様にして得られるアルミナ
焼結体の耐電圧は、例えば各社のアルミナセラミックの
データ集にある様に150〜300Kv/cm程度であ
る。
(Prior Art) Conventionally, alumina ceramics have been produced by, for example, adding a suitable sintering aid such as magnesium oxide to an alumina raw material and sintering it. However, the withstand voltage of the alumina sintered body obtained in this manner is, for example, about 150 to 300 Kv/cm, as shown in data collections of alumina ceramics from various companies.

(発明が解決しようとする課題) 従来のアルミナ焼結体は、焼結体の粒径が数μm以上で
あるか、または、平均粒径は数μm以下であるが、lO
μm程度以上の粗大粒子が存在するといったものであっ
た。
(Problems to be Solved by the Invention) Conventional alumina sintered bodies have a grain size of several μm or more, or an average grain size of several μm or less, but lO
It was said that coarse particles of about μm or more were present.

セラミックに電圧を負荷していったとき、破壊の原因と
なるのは、粗大粒子,構造欠陥,不純物の偏析等構造の
不均一である。
When voltage is applied to ceramics, the causes of destruction are structural non-uniformities such as coarse particles, structural defects, and segregation of impurities.

耐電圧向上のためには、アルミナ原料の微粒・均一化、
高純度化はもちろん、焼結体中の粒子径が小さくかつ粒
径分布をシャープにする必要があると考えられる。しか
しながら、耐電圧向上のための決定的な対策は未だわか
っていないのが実情である。
In order to improve the withstand voltage, it is necessary to make the alumina raw material finer and more uniform.
It is thought that it is necessary not only to increase the purity but also to make the particle size in the sintered body small and the particle size distribution sharp. However, the reality is that no definitive measure for improving withstand voltage has yet been found.

(問題点を解決するための手段) 本発明者らは、アルミナ焼結体の耐電圧を向上させるべ
く研究を重ねた結果、原料アルミナ粉にマグネシウム化
合物とジルコニウム化合物を添加して焼成することによ
り、耐電圧が飛躍的に向上することを見出し、本発明を
なすに至った。
(Means for solving the problem) As a result of repeated research in order to improve the withstand voltage of alumina sintered bodies, the present inventors discovered that by adding magnesium compounds and zirconium compounds to raw material alumina powder and firing it. They have discovered that the withstand voltage is dramatically improved, and have come up with the present invention.

本発明は、アルミナ質焼結体を構成する粒子の平均粒径
が0.4〜2μmで、かつ粒度分布がシャープであり、
スペーサの密度が3.9g/cnr以上、焼結体に含ま
れる酸化マグネシウムの量が0.01〜0.5重量%、
酸化ジルコニウムの量が0.01〜0.7重量%であり
、破壊耐電圧がIOOOKV/cm以上のアルミナ質焼
結体を提供するものである。
In the present invention, the particles constituting the alumina sintered body have an average particle size of 0.4 to 2 μm and a sharp particle size distribution,
The density of the spacer is 3.9 g/cnr or more, the amount of magnesium oxide contained in the sintered body is 0.01 to 0.5% by weight,
The amount of zirconium oxide is 0.01 to 0.7% by weight, and an alumina sintered body having a breakdown voltage of IOOOKV/cm or more is provided.

本発明のアルミナ質焼結体は、これを構成する粒子の平
均粒径が0.4〜2μmで、かつ粒度分布がシャープで
ある。粒度分布がシャープであるとは、焼結体粒径の平
均値の2倍を越える粒子数が測定粒子数の6%以下であ
ることをいう。
The alumina sintered body of the present invention has particles constituting it having an average particle size of 0.4 to 2 μm and a sharp particle size distribution. A sharp particle size distribution means that the number of particles exceeding twice the average particle size of the sintered body is 6% or less of the number of measured particles.

アルミナ質焼結体の耐電圧を向上させるには、焼結体を
構成する粒子径を小さく、かつ均一にする必要がある。
In order to improve the withstand voltage of an alumina sintered body, it is necessary to make the particle size of the sintered body small and uniform.

粒子径が大きい、または不均一であると、耐電圧がいち
じるしく低下することが知られているからである。
This is because it is known that when the particle size is large or non-uniform, the withstand voltage is significantly reduced.

本発明のアルミナ質焼結体の密度は、3.9/c♂以上
である。アルミナ質焼結体の密度は、アルキメデス法に
よって求められる。
The density of the alumina sintered body of the present invention is 3.9/c♂ or more. The density of the alumina sintered body is determined by the Archimedes method.

本発明のアルミナ質焼結体の密度は、3. 9 / c
ITr以上であるが、これは、アルミナの理論密度3.
99g / cr&の98%にあたる。これより密度が
低いと、焼結体の粒界部分または内部にボアが存在する
ために、耐電圧が低下する。
The density of the alumina sintered body of the present invention is 3. 9/c
ITr or higher, which is the theoretical density of alumina 3.
99g/cr & 98%. If the density is lower than this, the withstand voltage will be lowered due to the presence of bores in the grain boundary portions or inside the sintered body.

本発明のアルミナ質焼結体に含まれる酸化マグネシウム
および酸化ジルコニウムの量は、0.01〜0.5重量
%および0.01〜0.7重量%であり、好ましくは、
酸化マグネシウムか0,05〜0.2重量%、酸化ジル
コニウムが0. 1〜0.5重量%である。
The amounts of magnesium oxide and zirconium oxide contained in the alumina sintered body of the present invention are 0.01 to 0.5% by weight and 0.01 to 0.7% by weight, preferably,
0.05 to 0.2% by weight of magnesium oxide and 0.05% by weight of zirconium oxide. It is 1 to 0.5% by weight.

アルミナの焼結時に酸化マグネシウムを添加すると、ア
ルミナ粒子の異常粒或長を抑制することが知られている
。ジルコニアについては、アルミナに数十%程度添加す
れば高じん性化できることが報告されている。しかしな
がら、いずれにしても本発明にある様なアルミナ質焼結
体の耐電圧向上を目的として使用されたことはない。
It is known that adding magnesium oxide during sintering of alumina suppresses abnormal grain length of alumina particles. It has been reported that zirconia can be added to alumina in an amount of several tens of percent to increase its toughness. However, in any case, it has never been used for the purpose of improving the withstand voltage of an alumina sintered body as in the present invention.

アルミナ質焼結体中の酸化マグネシウムおよびジルコニ
ウムの量が特許請求の範囲外では、耐電圧は通常のアル
ミナ質焼結体と同程度にまで低下する。原因は断言でき
ないが、焼結体中のボア、粒子径、添加物の偏析等が推
定される。
If the amounts of magnesium oxide and zirconium in the alumina sintered body are outside the claimed range, the withstand voltage will drop to the same level as a normal alumina sintered body. Although the cause cannot be determined, it is assumed that the bore in the sintered body, particle size, segregation of additives, etc.

次に、本発明のアルミナ質焼結体の製造方法について述
べる。原料のアルミナ粉体は、焼結性に優れた微粒かつ
高純度のものを使用することが望ましい。さらに、本発
明におけるジルコニウムまたはその化合物は、原料のア
ルミナ粉体中に十分に均一に分散して含有されることが
必要であり、5 例えば、微粒なジルコニウムまたはその酸化物(比表面
積12〜25r&/g程度のもの)、窒化物、炭化物、
ホウ化物、等の粉末として、添加、混合する方法、ハロ
ゲン化物、酸素酸塩、有機酸塩等の種々のジルコニウム
塩の水溶液、有機溶液として、湿式で添加し、その後、
必要ならばジルコニウム塩を加熱分解する方法等、各種
の方法が考えられる。なお、最初からジルコニウムを均
一に含有して合成されたアルミナ粉体を用いても良い。
Next, a method for producing an alumina sintered body of the present invention will be described. It is preferable to use fine alumina powder with excellent sinterability and high purity as the raw material. Furthermore, zirconium or its compound in the present invention needs to be sufficiently uniformly dispersed and contained in the raw material alumina powder. /g), nitrides, carbides,
A method of adding and mixing a powder of borides, etc., a wet method of adding various zirconium salts such as halides, oxyacids, organic acid salts, etc. as an aqueous solution or an organic solution, and then,
If necessary, various methods can be considered, such as a method of thermally decomposing the zirconium salt. Note that alumina powder synthesized by uniformly containing zirconium from the beginning may be used.

本発明における酸化マグネシウムは、微粒な酸化マグネ
シウムの粉末、または熱処理によって酸化マグネシウム
になるようなマグネシウム塩、例えば、炭酸マグネシウ
ム、硝酸マグネシウム、硫酸マグネシウム、酢酸マグネ
シウム等を使用する。
The magnesium oxide used in the present invention is a fine powder of magnesium oxide, or a magnesium salt that becomes magnesium oxide through heat treatment, such as magnesium carbonate, magnesium nitrate, magnesium sulfate, magnesium acetate, and the like.

原料アルミナ粉体に、上記の様なジルコニウムまたはマ
グネシウムの化合物または塩を添加混合する。混合の方
法は、ボールミル、振動ミル、撹拌等の通常の方法で良
いが、それぞれの方法により適切な分散時間を選択しな
ければならない。
A zirconium or magnesium compound or salt as described above is added to and mixed with the raw material alumina powder. The mixing method may be a conventional method such as a ball mill, a vibration mill, or stirring, but an appropriate dispersion time must be selected for each method.

得られた混合物は、必要ならば濾過、脱泡、乾6 燥等の処理を施した後、加圧成型法、押し出し成型法、
射出成型法、ドクターブーレード法等通常の方法で所望
の形に成型する。成型体は、必要ならば、乾燥、切断、
仮焼等の処理を施した後、真空中、水素中、空気中、窒
素中、不活性ガス中等でl350〜l600℃で焼結す
る。焼或においては、焼成温度が高くなると、焼結体を
構成する粒子径が大きくなるので、十分に緻密化する範
囲でできるだけ低温度で焼成することが望ましい。粒子
径が大きくなるにつれて、耐電圧が低下するからである
The obtained mixture is subjected to treatments such as filtration, defoaming, and drying if necessary, and then subjected to pressure molding, extrusion molding,
It is molded into the desired shape using a conventional method such as injection molding or the Dr. Boulade method. The molded body is dried, cut,
After performing treatments such as calcination, it is sintered at 1350 to 1600°C in vacuum, hydrogen, air, nitrogen, inert gas, etc. In sintering, as the sintering temperature increases, the particle size constituting the sintered body increases, so it is desirable to sinter at as low a temperature as possible within a range that will sufficiently densify the sintered body. This is because as the particle size increases, the withstand voltage decreases.

(発明の効果) 本発明のアルミナ質スペーサは、非常に高い耐電圧を有
するため、絶縁材料の軽薄化を可能とし、ひいてはそれ
が組み込まれる機器、部品の小型化を可能とする。さら
に、それらの高信頼性化にも寄与するものである。
(Effects of the Invention) Since the alumina spacer of the present invention has a very high withstand voltage, it enables the insulating material to be made lighter and thinner, and in turn, the equipment and parts in which it is incorporated can be made smaller. Furthermore, it also contributes to increasing their reliability.

(実施例) 実施例l 旭化成工業■製の高純度アルミナ粉(平均粒径0.38
μ,比表面積8耐/g,純度99. 99%)に、比表
面積17m/gの微粒は酸化マグネシウム0. 1重量
%と比表面積20rn’/gの酸化ジルコニウム0,4
重量%を加え、回転ボールミルを用い、エタノール中で
20時間混合した。このようにして得られた粉体100
重量部に、結合剤としてポリビニルブチラールl2重量
部、可塑剤としてジブチルフタレート13重量部、溶媒
としてメチルエチルケトン45重量部、n−ブチルアル
コールl2重量部を加え、ボールミルで48時間混合し
た。
(Example) Example 1 High purity alumina powder manufactured by Asahi Kasei Corporation (average particle size 0.38
μ, specific surface area 8 resistance/g, purity 99. 99%), and the fine particles with a specific surface area of 17 m/g are magnesium oxide 0. Zirconium oxide 0,4 with 1% by weight and specific surface area 20rn'/g
% by weight and mixed in ethanol for 20 hours using a rotating ball mill. Powder 100 obtained in this way
To the weight part were added 12 parts by weight of polyvinyl butyral as a binder, 13 parts by weight of dibutyl phthalate as a plasticizer, 45 parts by weight of methyl ethyl ketone and 12 parts by weight of n-butyl alcohol as a solvent, and the mixture was mixed in a ball mill for 48 hours.

このようにして作製したスリップをドクターブレード法
により製膜し、水素中で1500℃で2時間焼威した。
The thus produced slip was formed into a film by the doctor blade method and burned in hydrogen at 1500° C. for 2 hours.

得られた焼結体の厚みは40μmであった。また、SE
M観察により、焼結体の平均粒径は、1.01μであり
、2.0μを越える粒子は全測定粒子(400個)の2
%であった。また、焼結体の密度は、アルキメデス法に
よる測定で、3.98g/cnfであった。
The thickness of the obtained sintered body was 40 μm. Also, SE
According to M observation, the average particle size of the sintered body was 1.01μ, and particles exceeding 2.0μ accounted for 2 of the total measured particles (400 particles).
%Met. Further, the density of the sintered body was 3.98 g/cnf as measured by the Archimedes method.

得られた焼結体を2 cm X 2 cmの大きさに切
り、中心部に直径1 cmの大きさに銀電極を塗付し、
焼?つけて、菊水電子工業(掬製の耐電圧測定装置によ
り耐電圧を測定したところ、2000KV/cm (A
C50Hz )の値が得られた。
The obtained sintered body was cut into a size of 2 cm x 2 cm, and a silver electrode with a diameter of 1 cm was applied to the center.
Baked? When the withstand voltage was measured using a withstand voltage measuring device manufactured by Kikusui Electronics Co., Ltd. (Kiku), it was 2000 KV/cm (A
C50Hz) values were obtained.

また、得られた焼結体の化学分析を行ったところ、焼結
体に含まれている酸化マグネシウムは、0. 1重量%
、酸化ジルコニウムは、0. 4重量%、酸化アルミニ
ウムは、99.4重量%であり、その他にNa2060
ppm, Fe20a 7ppm. Si0■7ppm
が含まれていることがわかった。
In addition, chemical analysis of the obtained sintered body revealed that the amount of magnesium oxide contained in the sintered body was 0. 1% by weight
, zirconium oxide is 0. 4% by weight, aluminum oxide is 99.4% by weight, and Na2060 is also 99.4% by weight.
ppm, Fe20a 7ppm. Si0■7ppm
was found to be included.

なお、本発明において、焼結体を構成する粒子の平均粒
径は、焼結体表面の電子顕微鏡写真に任意の直線を引き
、この直線の長さをL、直線を横切る粒子の個数をnと
したとき、直線の分割長さlを次式によって求めた。
In the present invention, the average particle diameter of the particles constituting the sintered body is determined by drawing an arbitrary straight line on an electron micrograph of the surface of the sintered body, taking the length of this straight line as L, and calculating the number of particles crossing the straight line as n. Then, the dividing length l of the straight line was determined by the following formula.

1! = L / n さらに次式により直線の分割長さの平均Iを求め、 T=Σ1/m このTを1.5倍して平均粒径dを求めた。1! = L/n Furthermore, calculate the average I of the division length of the straight line using the following formula, T=Σ1/m The average particle diameter d was determined by multiplying this T by 1.5.

d=1.5XT 9 本発明ではnはIO以上で、 lの測定点数mは 200としてdを求めた。d=1.5XT 9 In the present invention, n is greater than or equal to IO, The number of measurement points m of l is d was calculated as 200.

Claims (1)

【特許請求の範囲】[Claims]  スペーサを構成する粒子の平均粒径が0.4〜2μm
で、かつ粒径分布がシャープであり、スペーサの密度が
3.9g/cm^3以上、焼結体に含まれる酸化マグネ
シウムの量が0.01〜0.5重量%、酸化ジルコニウ
ムの量が0.01〜0.7重量%で、焼結体中に少なく
とも98%の酸化アルミニウムが含まれる破壊耐電圧が
1000KV/cm以上のアルミナ質焼結体。
The average particle diameter of the particles constituting the spacer is 0.4 to 2 μm
and the particle size distribution is sharp, the density of the spacer is 3.9 g/cm^3 or more, the amount of magnesium oxide contained in the sintered body is 0.01 to 0.5% by weight, and the amount of zirconium oxide is An alumina sintered body containing at least 98% aluminum oxide in the sintered body at 0.01 to 0.7% by weight and having a breakdown voltage of 1000 KV/cm or more.
JP1296096A 1989-11-16 1989-11-16 Alumina-based sintered body Pending JPH03159958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1296096A JPH03159958A (en) 1989-11-16 1989-11-16 Alumina-based sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1296096A JPH03159958A (en) 1989-11-16 1989-11-16 Alumina-based sintered body

Publications (1)

Publication Number Publication Date
JPH03159958A true JPH03159958A (en) 1991-07-09

Family

ID=17829077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1296096A Pending JPH03159958A (en) 1989-11-16 1989-11-16 Alumina-based sintered body

Country Status (1)

Country Link
JP (1) JPH03159958A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247729A (en) * 1999-02-23 2000-09-12 Ngk Spark Plug Co Ltd Alumina base sintered compact
JP2007510617A (en) * 2003-11-12 2007-04-26 フェデラル−モーグル コーポレイション Ceramic with advanced high temperature electrical properties for use as a spark plug insulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247729A (en) * 1999-02-23 2000-09-12 Ngk Spark Plug Co Ltd Alumina base sintered compact
JP2007510617A (en) * 2003-11-12 2007-04-26 フェデラル−モーグル コーポレイション Ceramic with advanced high temperature electrical properties for use as a spark plug insulator

Similar Documents

Publication Publication Date Title
Kolar et al. High stability, low loss dielectrics in the system BaO-Nd2O3-TiO2-Bi2O5
CN101663252B (en) Dielectric porcelain and laminated ceramic capacitor
US7939007B2 (en) Ceramics based on lanthanum-doped barium titanate, method of preparation and uses
KR20130118239A (en) Composite ceramics and a component member for semiconductor manufacturing apparatus
CN109231985A (en) A kind of preparation method of low-loss X8R type dielectric substance
CN111925187A (en) Lead-free high-pressure medium-temperature sintered strontium bismuth titanium-based dielectric material and preparation method thereof
Chen et al. Microwave dielectric properties and its compatibility with silver electrode of LiNb 0.6 Ti 0.5 O 3 with B 2 O 3 and CuO additions
CN104098327B (en) Dielectric ceramic composition, dielectric ceramics, electronic unit and signal equipment
JPH03159958A (en) Alumina-based sintered body
Hoch et al. Densification characteristics of ultrafine powders
CN109437888A (en) A kind of preparation method of low-loss huge dielectric constant X8R type dielectric substance
CN112979286B (en) Alumina ceramic for high-density packaging shell, preparation method thereof and raw porcelain tape
KR101925215B1 (en) Polycrystal zirconia compounds and preparing method of the same
CN110304916B (en) Anti-reduction BaTiO3Base medium ceramic and preparation method thereof
JPS59141459A (en) Sodium beta alumina electrolytic elements and manufacture
US3558332A (en) Low firing phosphate-bonded alumina dielectric having improved adhesion to metal
JP4368975B2 (en) High voltage endurance alumina-based sintered body and method for producing the same
JP2000313657A (en) Alumina-based sintered compact having high dielectric strength
RU2030369C1 (en) Charge for preparing of porous refractory material
EP0200484B1 (en) Ultralow fire ceramic composition
Zhou et al. Effect of B 2 O 3 and CuO additions on the sintering temperature and microwave dielectric properties of 3Li 2 O–Nb 2 O 5–3TiO 2 ceramics
CN113135746B (en) High-insulation low-heat-conduction high-compressive-strength ceramic material and preparation method thereof
JP3121996B2 (en) Alumina sintered body
JPS6121965A (en) Alumina sintered body and manufacture
JPH01270566A (en) Alumina sintered material