JPH03153198A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH03153198A
JPH03153198A JP29269389A JP29269389A JPH03153198A JP H03153198 A JPH03153198 A JP H03153198A JP 29269389 A JP29269389 A JP 29269389A JP 29269389 A JP29269389 A JP 29269389A JP H03153198 A JPH03153198 A JP H03153198A
Authority
JP
Japan
Prior art keywords
powder
backing material
resin
piezoelectric element
ultrasonic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29269389A
Other languages
Japanese (ja)
Inventor
Shigetaka Nakao
成隆 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29269389A priority Critical patent/JPH03153198A/en
Publication of JPH03153198A publication Critical patent/JPH03153198A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an ultrasonic probe with a small volume by adopting configuration such that a packing member with resin mixed with cork powder therein is formed to a rear face of a piezoelectric element. CONSTITUTION:A packing member 2 with resin mixed with cork powder therein is formed to a rear face of a piezoelectric element 1. Moreover, the packing member 2 with resin mixed with cork powder and other powder with larger density than the resin therein is formed to a rear side of the piezoelectric element 1. Thus, it is possible to form an ultrasonic wave probe with small volume by using the packing member with a high attenuation. Thus, the small ultrasonic probe for a body hole is especially formed.

Description

【発明の詳細な説明】 〔概要〕 圧電素子の背面にバンキング材を設けた超音波探触子に
関し、 超音波探触子に用いるバンキング材として、樹脂にコル
ク粉を混入して減衰率の高いバッキング材を実現するこ
とを目的とし、 樹脂にコルク粉を混入したバッキング材を圧電素子の背
面に形成するように構成する。
[Detailed Description of the Invention] [Summary] Regarding an ultrasonic probe in which a banking material is provided on the back side of a piezoelectric element, as the banking material used in the ultrasonic probe, cork powder is mixed into a resin to achieve a high attenuation rate. For the purpose of realizing a backing material, a backing material made of resin mixed with cork powder is configured to be formed on the back surface of the piezoelectric element.

(産業上の利用分野〕 本発明は、圧電素子の背面にバッキング材を設けた超音
波探触子に関するものである。超音波断層像を得るだめ
の超音波探触子の背面に不要輻射を吸収するために設け
るバッキング材について、減衰効率の良好なものが望ま
れている。
(Industrial Application Field) The present invention relates to an ultrasonic probe in which a backing material is provided on the back surface of a piezoelectric element. A backing material provided for absorption is desired to have good damping efficiency.

〔従来の技術と発明が解決しようとする課題〕従来、超
音波探触子の背面輻射を吸収するための第4図に示すバ
ッキング材は、樹脂と金属粉あるいは酸化金属粉を混入
したものが典型的であった。これらの金属粉、酸化金属
粉を混入したバッキング材の減衰率は、文末の表の■に
示すように、硬度 5hore D 80の熱硬化性樹
脂に重量比で1:2の酸化金属物(平均ね径50μm)
を混入した場合、 0.6dB/mm−MHz  (片道)であり、往ti
で80dB減衰させるには、3.5Mt(zの超音波で 80/ (0,6dB/mm−MHz*3..5)/2
−20mm・・・・・・・・・・・ ・・fil必要で
ある。
[Prior art and problems to be solved by the invention] Conventionally, the backing material shown in Fig. 4 for absorbing the back radiation of an ultrasonic probe has been mixed with resin and metal powder or metal oxide powder. It was typical. The attenuation rate of the backing material mixed with these metal powders and oxidized metal powders is as shown in ■ in the table at the end of the article. thread diameter 50μm)
When mixed with 0.6 dB/mm-MHz (one way),
To attenuate 80 dB at
-20mm・・・・・・・・・fil is required.

この20mmという大きさは、第4図に示すようにPL
いが、例えば医療用超音波探触子の体外用の探触子には
充分に採用できる。しかし、体積の大きくとれない体腔
内用の探触=fへの適用は不可能であるという問題があ
った。
This size of 20 mm is determined by the PL as shown in Figure 4.
However, for example, it can be fully adopted as an extracorporeal probe for medical ultrasound probes. However, there is a problem in that it cannot be applied to a probe for use in a body cavity (f) which does not have a large volume.

一方、超音波探触Yからの背面不要輻射を吸収するバッ
キング材として、空気層の混入による乱反nすの影響を
考慮して当該空気層の混入を避け、−射的に樹脂の密度
よりも大きい微小粒径(例えば50μm)の金属酸化物
などを混入するよう乙こしていた。これでは、上述した
ように体腔内用の探触子として充分な減衰率を持つバッ
キング材が得れなかった。このため、本発明杼は、従来
の一般的な考え力に従った減衰率を大きくする手法でな
く、空気層をある一定の分散状態に形成した減衰−11
の高いと思ねねるバッキング材を求めて各種実験を繰り
返した。その結果、樹脂にコルク粉を混入することに、
Lす、減衰率の高いバッキング材を形成できることを見
つけた。
On the other hand, as a backing material that absorbs unnecessary radiation from the back surface from the ultrasonic probe Y, it is necessary to avoid the inclusion of air layers in consideration of the effect of irregular reflection due to the inclusion of air layers. Also, metal oxides with large microparticle diameters (for example, 50 μm) were mixed in. With this method, as described above, a backing material having a sufficient attenuation rate as a probe for use in a body cavity could not be obtained. For this reason, the shuttle of the present invention does not use the conventional method of increasing the damping rate according to the general idea, but instead uses a damping method that forms the air layer in a certain dispersed state.
We repeated various experiments in search of a backing material that was reasonably priced. As a result, we decided to mix cork powder into the resin.
We have discovered that it is possible to form a backing material with a high attenuation rate.

本発明は、超高波探触子に用いるバッキング材として、
(シ4脂にコルク粉を混入して減衰率の高いバッキング
材を実現することを目的としている。
The present invention provides a backing material for use in ultrahigh wave probes.
(The aim is to create a backing material with a high damping rate by mixing cork powder into the oil.

[課題を解決する手段〕 第1図は、本発明の原f!1構成図を示す。[Means to solve problems] FIG. 1 shows the original f! of the present invention. 1 shows a configuration diagram.

第1図乙、−すいて、圧電素子1は、超音波を放114
したり/受信したりするものである。
FIG.
It is something that can be sent/received.

バッキング材2は、樹脂にコルク粉、更乙ご、J2−要
に尾、して当該樹脂の密度よりも大きい粉体を混入i−
て圧電素f’−1の背面に形成したものである。
Backing material 2 is made by mixing resin with cork powder, powder powder, and powder having a density higher than that of the resin.
It is formed on the back surface of the piezoelectric element f'-1.

〔作用〕[Effect]

本発明は、第1図に示すようC1こ、+84鮨にコルク
粉を混入したバッキング材2を圧電素子lの背面に形成
するようにしている。また、樹脂へてコルク扮および当
該樹脂の密度よりも大ぎい粉体の両者を混入1〜だバッ
キング材2を圧電素r−1の背面に形成するようにして
いる。
In the present invention, as shown in FIG. 1, a backing material 2 made of C1+84 mixed with cork powder is formed on the back surface of a piezoelectric element 1. Further, a backing material 1 to 2 is formed on the back surface of the piezoelectric element r-1 by mixing both cork and powder having a density higher than that of the resin.

従って、樹脂にコルク粉および必要に応して当該樹脂の
密度よりも大きい粉体を混入してバッキング材2を圧電
素子1の背面に形成することにより、減衰率の高いバッ
キング材を用いて体積の小さい超音波探触子を作成する
ことが可能となる。
Therefore, by forming the backing material 2 on the back surface of the piezoelectric element 1 by mixing cork powder and, if necessary, powder with a density higher than that of the resin, the backing material with a high damping rate can be used to increase the volume. This makes it possible to create small ultrasonic probes.

これにより、特に体腔内用の小さな超音波探触子を作成
することができる。
This makes it possible to create small ultrasound probes, especially for use in body cavities.

〔実施例〕〔Example〕

次に、第1図から第3図を用いて本発明の1実施例の構
成および動作を順次詳細に説明する。
Next, the configuration and operation of one embodiment of the present invention will be explained in detail using FIGS. 1 to 3.

第1図において、バッキング材2は、樹脂にコルク粉(
例えば平均粒径600μm位)、更に必要ビこ応して当
該樹脂の密度よりも大きい粉体(金属粉、酸化金属粉の
平均1;ijや50μm位)を混入しY圧電素(1)の
一51i゛向に形成したものである。樹脂?胃、て、文
末の表tン) (D hニー示ず5hore硬度Dl’
IOの軌硬化性樹脂などべmmいた6 第2図は、バッキング材の減衰特性の測定例であり、横
←にコルク含有率の重量%、縦軸に減衰率を示す6本図
で用いた材料は、樹脂としてエボギシ樹脂、粉体として
酸化鉄粉(平均粒径50μm)、コルク粉(平均粒径6
00/Jm)を用いた。
In FIG. 1, the backing material 2 consists of resin and cork powder (
For example, the average particle size is about 600 μm), and if necessary, a powder larger than the density of the resin (average of metal powder, metal oxide powder, about 1; ij or about 50 μm) is mixed to form the Y piezoelectric element (1). It is formed in the direction of -51i. resin? stomach, te, table at the end of the sentence) (D h knee not shown 5hore hardness Dl'
Figure 2 shows an example of measuring the damping characteristics of a backing material. The materials are Evogishi resin as a resin, iron oxide powder (average particle size 50 μm) as powder, and cork powder (average particle size 6).
00/Jm) was used.

コルク粉の重YをX、l!=Lで、 (エボキン樹脂):(酸化鉄粉)二(コルク粉)=10
0:  (100−x):x・−−−−(1)の関係の
コルク扮の重量%を示している。
The weight of cork powder Y is X, l! = L, (Evokin resin): (iron oxide powder) 2 (cork powder) = 10
0: (100-x):x·----(1) indicates the weight percent of the cork dressing.

コクル粉の適正な含有量として、10%(重量%)以内
が適当である。10%を越えると粘性が高くなり、■撹
拌が困難、■脱泡が困難、■注型が困イとなり、結果的
?、こバッキング材中に大きな気泡が発生し、空気層に
よるインピーダンスの不繁合が牛しるためである。
The appropriate content of cocur powder is within 10% (wt%). If it exceeds 10%, the viscosity becomes high, ■difficult to stir, ■difficult to degas, and ■difficult to pour. This is because large air bubbles are generated in the backing material, causing impedance imbalance due to the air layer.

また、第1図構成において、バッキング材2とし−r、
文末の表の■乙こ示す5hore硬度080の執硬化性
樹脂、酸化企属粉(平均粒径50μm)、二+ルク扮(
平均粒径600μm)を重量比で1010.1を混入j
7、圧電素子1の背面に形成j7た場合、7F復で:3
 、 5 M HZ lこおいて80dBの凋衰−仁を
得るオニめの当該ハイ−1ング材2の厚さLを求めると
ト代(2)のよ−買こ3.2rom(−なる。
In addition, in the configuration of FIG. 1, the backing material 2 -r,
In the table at the end of the article, 5hole hardening resin with hardness of 080, oxidized powder (average particle size 50 μm),
(average particle size 600 μm) mixed with 1010.1 by weight
7. When formed on the back surface of piezoelectric element 1, 7F repeats: 3
, 5 MHz, the thickness L of the high-temperature material 2 that obtains 80 dB of attenuation is calculated as follows: 3.2 ROM (-) as shown in (2).

t = 80 d B / (3、6×3 、 5 )
 / 23、’ln目n・ ・ ・  ・ ・ ・ ・
 ・ ・ ・ ・  +21力、(f来の文末の表の■
に示ずSl+ore硬度[]80の執硬化性樹n:”j
 %酸化金属粉(平均粒径50!Im)をIT!量比で
I・2を混入し、圧電素子lの背面C,二形成した場合
、往IS!で80 d I3のθy衰−1′−を得るノ
5二めの当=’Aハフ・キンク祠2の厚さt“を求めろ
と既述した式(1)から2Qrnmとなる。
t = 80 dB / (3, 6 x 3, 5)
/ 23,'lnth n・ ・ ・ ・ ・ ・ ・
・ ・ ・ ・ +21 power, (■ in the table at the end of the sentence
Hardening tree n with Sl + ore hardness [ ] 80 shown in
% oxidized metal powder (average particle size 50!Im) IT! If I/2 is mixed in the quantity ratio and the back side C,2 of the piezoelectric element l is formed, then IS! Then, obtain the θy decay -1'- of 80 d I3.The second equation = 'A thickness t of the Hough-kink shrine 2' is obtained from the equation (1) already stated, which yields 2Qrnm.

tiLっで、本実施例の文末の表の■樹脂+金属酸化粉
トコルク粉によれば、文末の表の■樹脂士金属酸化粉に
比較してバッキング材の厚さが20[nmから3. 2
mmと、約1/6.25という非鹿に薄くすることが可
能となる。
According to tiL, the thickness of the backing material is 20 [nm to 3.5 nm] compared to the resin + metal oxide powder and cork powder in the table at the end of this example. 2
It becomes possible to make it as thin as a non-deer, which is about 1/6.25 mm.

文末の表は、■ないし■の材料を使用し2てバッキング
材2を形成したLきの減衰率(片iりを実測した結果の
一部を示す。
The table at the end of the article shows some of the results of actual measurement of the attenuation rate (one side i) of L when the backing material 2 was formed using the materials ``■'' to ``■''.

、―こで、■、■がtiL来のバッキング+tcこ使用
しているものである。
, - Here, ■ and ■ are the backings from TiL + tc.

ω)、■で本実施例でバッキング材に使用しているもの
であり、従来の■、■に比較して減衰率をJきくしてバ
ッキング4A’ 2の厚さを薄くすることができる。こ
こで、コルク粉は、0%から20%位1:て樹脂乙暫r
l!人できたが、混入するゴルフ粉の割合が増える乙こ
従って樹脂の粘性が高くなってし1、い、圧電素子lの
背面にバッキング材2を形成するための流;−込みが1
]いNl <なり、実用1−2重世比で’!り l 0
%位が作業がし易かった。コルク扮のm入量があまり少
ないと、充分な汐友衰率が得ら11、ないので、適度な
り1合のコルク粉を混入する必要かある。
ω) and 2 are used as the backing material in this embodiment, and the attenuation rate can be increased by J compared to the conventional 2 and 3, and the thickness of the backing 4A'2 can be made thinner. Here, the cork powder is about 0% to 20%.
l! However, the proportion of golf powder mixed in increases, which increases the viscosity of the resin.
] Nl <, in practical use 1-2 times! ri l 0
% was easy to work with. If the amount of cork powder is too small, a sufficient decay rate will not be obtained, so it is necessary to mix in a moderate amount of cork powder.

第3図は、本発明Q二係る体腔内探触r−例を示す。FIG. 3 shows an example of an intrabody cavity probe r according to the present invention Q2.

これば、文末の表の■の材料をバッキング材2として使
用し、これを圧電素子1の背面に形成したものである。
In this case, the material shown in ■ in the table at the end of the article is used as the backing material 2, and this is formed on the back surface of the piezoelectric element 1.

バッキング材2による超音波のハ;y率を3.5MHz
で80 d Bとすると、′11感バッキング材2の厚
さは既述した式(2)からi 、、、、−3、2mmと
非常に薄くなり、従来の2Qmmでは体積が大き過ぎて
体腔内探触子をft成できなかつたちのを、本発明に係
るバッキング材2を使用ずろごとにより、初めて作成i
iJ能となったものである。
Ultrasonic wave c;y rate by backing material 2 is 3.5MHz
If the thickness is 80 dB, the thickness of the '11 backing material 2 will be very thin, i, , -3, 2 mm from the equation (2) mentioned above, and the conventional 2 Q mm will have too large a volume and will not fit into the body cavity. Although it was not possible to make an internal probe, it was made for the first time by using the backing material 2 according to the present invention.
This became iJ Noh.

また、体腔内探触子だげでなく、本発明に係るバッキン
グ材を体腔外用の探触子に使用すれば、体積が小さくな
り、窒いた空間に各種回路などを設置でき、超音波1ズ
触子の全体をコンパクトにてきる。
Furthermore, if the backing material according to the present invention is used not only for intrabody cavity probes but also for probes for use outside body cavities, the volume will be reduced, and various circuits etc. can be installed in a stuffy space. The entire tentacle can be made compact.

表 (発明の効果: 以十説明した3↓、うで、=、本発明によれば、樹脂に
二」ルク扮および鋸・Σ゛(、二斤:、 u−C当該樹
脂の密度よりも大きい粉体を混入j−1γバッキング材
2を圧電素子lの背面に形成する構成を採用(]ている
ため、減衰率の高いバンキング材2を用いて体積の小さ
い超音波探触子を作成することができる。これにより、
特に体腔内用の小さな超音波探触子を作成することが可
能となった。
Table (Effect of the invention: 3↓, arm, =, as described above, according to the present invention, the resin has a density of 2" and a saw Σ゛(, 2 loaf:, u-C) than the density of the resin. Since a configuration is adopted in which a large powder is mixed in and a backing material 2 is formed on the back surface of a piezoelectric element l, an ultrasonic probe with a small volume is created using a banking material 2 with a high attenuation rate. This allows you to
In particular, it has become possible to create small ultrasound probes for use inside body cavities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理構成図、第2図は本発明に係るバ
ッキング材の減衰特定を示す図、第3図は本発明に係る
体腔内縁触子例、第4図は従来技術の説明図を示す。 図中、1は圧電素子、2はバッキング材を表す。
Fig. 1 is a diagram showing the principle configuration of the present invention, Fig. 2 is a diagram showing the attenuation specification of the backing material according to the present invention, Fig. 3 is an example of the body cavity inner edge contact according to the present invention, and Fig. 4 is an explanation of the prior art. Show the diagram. In the figure, 1 represents a piezoelectric element and 2 represents a backing material.

Claims (2)

【特許請求の範囲】[Claims] (1)圧電素子の背面にバッキング材を設けた超音波探
触子において、 樹脂にコルク粉を混入したバッキング材(2)を圧電素
子(1)の背面に形成するように構成したことを特徴と
する超音波探触子。
(1) An ultrasonic probe in which a backing material is provided on the back surface of a piezoelectric element, characterized in that a backing material (2) made of resin mixed with cork powder is formed on the back surface of the piezoelectric element (1). Ultrasonic probe.
(2)上記バッキング材(2)が、樹脂、この樹脂より
密度の大きな粉体、およびコルク粉体からなるように構
成したことを特徴とする請求の範囲第(1)項記載の超
音波探触子。
(2) The ultrasonic probe according to claim (1), wherein the backing material (2) is composed of a resin, a powder having a higher density than the resin, and cork powder. Tentacles.
JP29269389A 1989-11-10 1989-11-10 Ultrasonic probe Pending JPH03153198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29269389A JPH03153198A (en) 1989-11-10 1989-11-10 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29269389A JPH03153198A (en) 1989-11-10 1989-11-10 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH03153198A true JPH03153198A (en) 1991-07-01

Family

ID=17785081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29269389A Pending JPH03153198A (en) 1989-11-10 1989-11-10 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH03153198A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962567B2 (en) 1993-02-01 2005-11-08 Volcano Therapeutics, Inc. Ultrasound transducer assembly
JP2019180786A (en) * 2018-04-09 2019-10-24 コニカミノルタ株式会社 Ultrasound probe and ultrasound diagnostic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962567B2 (en) 1993-02-01 2005-11-08 Volcano Therapeutics, Inc. Ultrasound transducer assembly
JP2019180786A (en) * 2018-04-09 2019-10-24 コニカミノルタ株式会社 Ultrasound probe and ultrasound diagnostic apparatus

Similar Documents

Publication Publication Date Title
Zhong et al. Mechanisms of differing stone fragility in extracorporeal shockwave lithotripsy
Wu et al. Dual-frequency intravascular Sonothrombolysis: An in vitro study
HU224218B1 (en) Improvements in or relating to contrast agents
JPH03153198A (en) Ultrasonic probe
CN105232090A (en) High frequency ultrasonic energy transducer with optimized performance and manufacturing method thereof
JP6701506B1 (en) Resin composition for acoustic matching layer
US20050225211A1 (en) Matching layer systems and methods for ultrasound transducers
CA2186443A1 (en) Synthetic resin powder
US4494091A (en) Damping package for surface acoustic wave devices
Ahuja et al. Effects of red cell shape and orientation on propagation of sound in blood
JPS6240495A (en) Sound wave absorbing body
Suaste-Gómez et al. Effect of Q in piezoelectric transducers based on Pb0. 88 (Ln) 0.08 Ti0. 98 Mn0. 02 O3 (Ln= La, Eu, Nd, Sm, Gd) ceramics used in human tissue
Eisner Resonant vibration of a cone
Harpaz Ultrasound enhancement of thrombolytic therapy: observations and mechanisms
CHEN The residual shear strength and compressive strength of C/E composite sandwich structure after low velocity impact
JPS60125302A (en) Ferromagnetic composite sintered material having superior vibration damping capacity
JPH0230923Y2 (en)
JP3712534B2 (en) Ultrasonic horn
JPH0117320B2 (en)
JPH0534011B2 (en)
Ngo et al. Evaluation of liquid perfluorocarbon nanoparticles as a blood pool contrast agent utilizing power Doppler harmonic imaging
JPS61123199A (en) Radio-wave shileding material
JP2826314B2 (en) Sound absorbing material for home appliances
Fowlkes et al. New acoustical approaches to perfusion and other vascular dynamics
Kim A Study on Mechanical Properties of Strand/Particle Composites (II)-Measuring of Young's Moduli and Estimating of Anisotropy Using an Ultrasonic Method