JPH03152361A - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JPH03152361A
JPH03152361A JP29099289A JP29099289A JPH03152361A JP H03152361 A JPH03152361 A JP H03152361A JP 29099289 A JP29099289 A JP 29099289A JP 29099289 A JP29099289 A JP 29099289A JP H03152361 A JPH03152361 A JP H03152361A
Authority
JP
Japan
Prior art keywords
heat exchanger
generator
temperature
temperature generator
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29099289A
Other languages
Japanese (ja)
Other versions
JP2657703B2 (en
Inventor
Osayuki Inoue
修行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP29099289A priority Critical patent/JP2657703B2/en
Publication of JPH03152361A publication Critical patent/JPH03152361A/en
Application granted granted Critical
Publication of JP2657703B2 publication Critical patent/JP2657703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To effectively use quantity of heat and hold pressure in a high temperature generator within a predetermined range by branching dilute solution from an absorber to an intermediate temperature generator without circulating it in total quantity to the high temperature generator, and circulating it. CONSTITUTION:If vapor is used as an outer heat source 15, a high temperature generator 4 is heated, vapor heat source becoming drain is extracted from a tube 32, and used as a high temperature drain heat exchanger 10 provided for heating dilute solution discharged from a high temperature heat exchanger 9. Then, it is introduced into an intermediate temperature drain heat exchanger 11 provided between an intermediate temperature heat exchanger 8 and an intermediate temperature generator 5, discharged drain is introduced to a low temperature drain heat exchanger 12 provided between a low temperature heat exchanger 7 and a branch point, used to heat the dilute solution, sufficiently recovered for the discharge heat, and then discharged. A bypass valve 19 is provided in a bypass tube 31 between a tube 27 for discharging refrigerant vapor generated in the generator 4 and a tube 28 for discharging refrigerant vapor generated from the generator 5, and the bypass amount of the refrigerant is regulated in response to the pressure of the generator 4. Thus, it can be used as a double use cycle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸収冷凍機に係り、特に熱効率が良く、経済
的な三重効用吸収冷凍機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an absorption refrigerator, and particularly to a triple-effect absorption refrigerator that has good thermal efficiency and is economical.

〔従来の技術〕[Conventional technology]

従来、二重効用、三重効用等の多重効用吸収冷凍機は公
知であり、高温発生器、中温発生器、低温発生器、凝縮
器、吸収器、蒸発器及び熱交換器類を主要構成機器とす
る三重効用吸収冷凍機は、高温発生器の内圧(溶液の飽
和温度)が高くなりがちであり、また、吸収器から出た
希溶液は、熱交換器を通って全量高温発生器に導入され
ている。
Conventionally, multiple effect absorption refrigerators such as double effect and triple effect are well known, and the main components include a high temperature generator, a medium temperature generator, a low temperature generator, a condenser, an absorber, an evaporator, and a heat exchanger. In triple-effect absorption refrigerators, the internal pressure (saturation temperature of the solution) in the high-temperature generator tends to be high, and the dilute solution coming out of the absorber is completely introduced into the high-temperature generator through a heat exchanger. ing.

高温発生器の内圧は、圧力容器としての法規制により、
所定の圧力以下で運転するのが一般的である。これは、
圧力容器としての分類でも異なるが、高い圧力となるほ
ど機器の製作費が高くなるためである。
The internal pressure of a high-temperature generator is determined by regulations as a pressure vessel.
It is common to operate below a predetermined pressure. this is,
This is because the higher the pressure, the higher the production cost of the equipment, although the classification as a pressure vessel also differs.

しかし、高温発生器の内圧は、冷却水温度が高くなるに
連れて、高くなるし、また、負荷が増えるに従い、すな
わち全負荷近くになるに従い高くなるため、冷却水温度
が高いときとか、全負荷近くの場合の運転をどのように
するかという問題があった。
However, the internal pressure of the high-temperature generator increases as the cooling water temperature rises, and also increases as the load increases, that is, as it approaches full load. The problem was how to operate near the load.

また、二重効用吸収冷凍機においては、吸収器からの希
溶液を分岐して、一部を低温発生器に導入したり、排熱
回収を有効に行う方法等の技術が開発されているが、三
重効用吸収冷凍機においては、いまだ十分に熱量の有効
利用を図った省エネルギー面の研究はなされていなかっ
た。
In addition, for dual-effect absorption refrigerators, technologies have been developed such as branching off the dilute solution from the absorber and introducing a portion of it into the low-temperature generator, and methods for effectively recovering waste heat. As for triple-effect absorption refrigerators, no research has yet been conducted on the energy-saving aspects of the triple-effect absorption refrigerator.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで、本発明は、上記のような問題点を解決し、熱量
の有効利用を図り、高温発生器内の圧力を所定の圧力以
内に保持することができる三重効用吸収冷凍機を提供す
ることを目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention aims to solve the above-mentioned problems and provide a triple-effect absorption refrigerating machine that can effectively utilize heat and maintain the pressure within a high-temperature generator within a predetermined pressure. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明では、高温発生器、
中温発生器、低温発生器、凝縮器、吸収器、蒸発器及び
熱交換器類を主要構成機器とし、これらを溶液配管、冷
媒配管で結んだ三重効用吸収冷凍機において、溶液の配
管ラインを吸収器からの希溶液を低温熱交換器の被加熱
側を通した後、分岐して一部の希溶液を中温熱交換器の
被加熱側を経由して中温発生器に導入し、残りの希溶液
を高温熱交換器の被加熱側を経由して高温発生器に導入
し、また、中温発生器で濃縮された濃溶液は、中温熱交
換器の加熱側を経由して低温発生器に導入し、高温発生
器で濃縮された溶液は、高温熱交換器の加熱側を経由し
、低温発生器からの濃溶液と共に低温熱交換器の加熱側
に導入するように配管したことを特徴とする三重効用吸
収冷凍機、としたものであり、また、該吸収冷凍機にお
いて、高温発生器の熱源として蒸気を用い、溶液配管ラ
インの低温熱交換器の被加熱側出口と分岐点の間の希溶
液配管に、前記蒸気のドレンを用いる低温ドレン熱交換
器を設け、更に、中温熱交換器被加熱側出口と中温発生
器との間の希溶液配管に、中温ドレン熱交換器を設けた
ものである。
In order to achieve the above object, the present invention includes a high temperature generator,
The main components of the medium temperature generator, low temperature generator, condenser, absorber, evaporator, and heat exchanger are triple effect absorption refrigerators, which are connected by solution piping and refrigerant piping, which absorbs the solution piping line. After passing the dilute solution from the reactor through the heated side of the low-temperature heat exchanger, it is branched and a part of the dilute solution is introduced into the medium-temperature generator via the heated side of the medium-temperature heat exchanger, and the remaining dilute solution is The solution is introduced into the high temperature generator via the heated side of the high temperature heat exchanger, and the concentrated solution concentrated in the medium temperature generator is introduced into the low temperature generator via the heating side of the medium temperature heat exchanger. The solution concentrated in the high temperature generator is piped so as to be introduced into the heating side of the low temperature heat exchanger together with the concentrated solution from the low temperature generator via the heating side of the high temperature heat exchanger. This is a triple-effect absorption refrigerating machine, and in this absorption refrigerating machine, steam is used as the heat source of the high-temperature generator, and the low-temperature heat exchanger between the outlet on the heated side of the low-temperature heat exchanger of the solution piping line and the branch point is used. A low-temperature drain heat exchanger that uses the steam drain is installed in the solution piping, and a medium-temperature drain heat exchanger is further installed in the dilute solution piping between the heated side outlet of the medium-temperature heat exchanger and the medium-temperature generator. It is.

また、上記の目的を達成するために、本発明では、前記
吸収冷凍機において、高温発生器で発生した冷媒蒸気を
、中温発生器加熱側を通さずにバイパスして低温発生器
の加熱側に導く冷媒蒸気配管を設け、該蒸気配管には、
ノs、Jイノでスする冷媒蒸気量を調節するための弁を
設けたものであり、そして、咳弁は、高温発生器の内圧
が、所定の圧力を越えないようにバイ/<スする冷媒蒸
気量を調節する機構を有するものである。
Further, in order to achieve the above object, in the present invention, in the absorption refrigerator, the refrigerant vapor generated in the high temperature generator is bypassed without passing through the heating side of the medium temperature generator, and is directed to the heating side of the low temperature generator. A refrigerant vapor pipe is provided to guide the refrigerant, and the vapor pipe includes:
It is equipped with a valve to adjust the amount of refrigerant vapor flowing in the high temperature generator, and the cough valve biases the internal pressure of the high temperature generator so that it does not exceed a predetermined pressure. It has a mechanism to adjust the amount of refrigerant vapor.

〔作 用〕[For production]

本発明によると、全量の希溶液を高温発生器に導かない
ので、沸騰までの顕熱加熱いわゆる損失熱量を減らすこ
とができ、省エネルギーとなり、また、溶液流量が少な
いことから、高温熱交換器のサイズも小型にでき、経済
的である。
According to the present invention, since the entire amount of the diluted solution is not led to the high-temperature generator, it is possible to reduce the amount of sensible heat heating to boiling, so-called loss of heat, resulting in energy savings. The size can be reduced and it is economical.

また、高温発生器の熱源として、蒸気を用いる場合、高
温発生器でドレンになった熱源の熱を回収するため、希
溶液ラインの各部にドレン熱交換器を設けることができ
る。
Further, when steam is used as the heat source of the high temperature generator, a drain heat exchanger can be provided at each part of the dilute solution line in order to recover the heat of the heat source that becomes drain in the high temperature generator.

このなかで、比較的、コストと効果の関係がよいものと
しては、低温熱交換器被加熱側出口と、分岐点の間の希
溶液ラインに、低温ドレン熱交換器を設け、さらに、中
温熱交換器被加熱側出口と、中温発生器との間の希溶液
ラインに、中温ドレン熱交換器を設けたものである。ま
ず、高温発生器からのドレンを中温ドレン熱交換器に導
き、ドレンの熱を希溶液に回収する、その後、ドレンを
低温ドレン熱交換器に導き、未回収のドレンの熱を希溶
液に回収するため、ドレン排熱を十分に回収できる。
Among these, a method with a relatively good relationship between cost and effectiveness is to install a low-temperature drain heat exchanger in the dilute solution line between the heated side outlet of the low-temperature heat exchanger and the branch point, and A medium temperature drain heat exchanger is installed in the dilute solution line between the heated side outlet of the exchanger and the medium temperature generator. First, condensate from the high-temperature generator is led to a medium-temperature condensate heat exchanger, and the heat of the condensate is recovered to a dilute solution.Then, condensate is led to a low-temperature condensate heat exchanger, and the heat of unrecovered condensate is recovered to a dilute solution. Therefore, drain exhaust heat can be sufficiently recovered.

なお、さらに省エネを図ろうとするなら、高温熱交換器
被加熱側出口と、高温発生器との間に、高温ドレン熱交
換器をもうけ、まずここで、ドレンの熱を希溶液に回収
し、その後、ドレンを、中温ドレン熱交換器、低温ドレ
ン熱交換器へと導いてもよい。
If you want to further save energy, you can install a high-temperature drain heat exchanger between the heated side outlet of the high-temperature heat exchanger and the high-temperature generator, and first recover the heat from the drain into a dilute solution. Thereafter, the drain may be directed to a medium temperature drain heat exchanger and a low temperature drain heat exchanger.

さらに、本発明においては、冷却水温度が低い場合、あ
るいは負荷が小さい場合など、高温発生器の内圧が低い
状態では、三重効用サイクルをさせ、内圧が上昇するに
従い、発生蒸気の一部につぎの発生器加熱側をバイパス
させて、低圧側に導き、内圧を低下させることができる
Furthermore, in the present invention, when the internal pressure of the high-temperature generator is low, such as when the cooling water temperature is low or the load is small, a triple effect cycle is performed, and as the internal pressure increases, a portion of the generated steam is The heating side of the generator can be bypassed and guided to the low pressure side to reduce the internal pressure.

バイパスさせた冷媒蒸気に対しては、二重効用サイクル
をさせた形となり、全体としては、二重、三重の混合サ
イクルになる。全量バイパスした場合は、二重効用サイ
クルになる。
The bypassed refrigerant vapor is subjected to a double effect cycle, resulting in a double or triple mixed cycle as a whole. If the total amount is bypassed, it becomes a double-effect cycle.

〔実施例〕〔Example〕

以下、図面を参照にして本発明を具体的に説明するが、
本発明はこれに限定されるものでない。
Hereinafter, the present invention will be specifically explained with reference to the drawings.
The present invention is not limited to this.

第1図は、本発明の吸収冷凍機の一例を示す概略工程図
である。
FIG. 1 is a schematic process diagram showing an example of an absorption refrigerator of the present invention.

第1図において、吸収器2からの希溶液は溶液ポンプ1
3により、低温熱交換器7の被加熱側に導入し、加熱側
の濃溶液と熱交換して温度を高め、低温熱交換器7を出
た後、分岐して一部の希溶液を管22で中温熱交換器8
を経由して中温発生器5に導き、残りの希溶液を管21
で高温熱交換器9の被加熱側を経由して高温発生器4に
導入し、また、中温発生器5で濃縮された濃溶液は、管
25で中温熱交換器8の加熱側を経由して管23を通り
、低温発生器6に導き、また高温発生器4で濃縮された
溶液は、管24で高温熱交換器9の加熱側を経由し、低
温発生器6からの濃溶液と共に、低温熱交換器7の加熱
側に導く。
In FIG. 1, the dilute solution from the absorber 2 is pumped to the solution pump 1.
3, it is introduced into the heated side of the low-temperature heat exchanger 7, heat exchanges with the concentrated solution on the heating side to raise the temperature, and after exiting the low-temperature heat exchanger 7, it is branched and a part of the dilute solution is piped. 22 medium temperature heat exchanger 8
The remaining dilute solution is introduced into the medium temperature generator 5 via the tube 21.
The concentrated solution is introduced into the high temperature generator 4 via the heated side of the high temperature heat exchanger 9, and the concentrated solution concentrated in the medium temperature generator 5 is introduced into the high temperature generator 4 via the heating side of the medium temperature heat exchanger 8 through the pipe 25. The concentrated solution in the high-temperature generator 4 passes through the tube 24 through the heating side of the high-temperature heat exchanger 9 together with the concentrated solution from the low-temperature generator 6. It is led to the heating side of the low temperature heat exchanger 7.

高温発生器4では、外部熱源15により加熱され、溶液
の濃縮が行われ、この際発生する冷媒蒸気は、管27か
ら中温発生器5の加熱側に導かれ、前述の中温発生器5
に導かれた希溶液を加熱濃縮し、加熱後の冷媒蒸気は凝
縮して、凝縮器3 (または、低温発生器6加熱側)に
導かれる。中温発生器5で発生した冷媒蒸気は、管28
で低温発生器6の加熱側に導かれ、前述の中温発生器5
から中温熱交換器8の加熱側を経由して導かれた溶液を
再度加熱濃縮し、加熱後の冷媒蒸気は凝縮し、凝縮器3
に導かれる。
The high-temperature generator 4 is heated by an external heat source 15 to concentrate the solution, and the refrigerant vapor generated at this time is guided from the pipe 27 to the heating side of the medium-temperature generator 5.
The dilute solution led to is concentrated by heating, and the refrigerant vapor after heating is condensed and led to the condenser 3 (or the heating side of the low temperature generator 6). The refrigerant vapor generated by the medium temperature generator 5 is transferred to the pipe 28
is guided to the heating side of the low-temperature generator 6, and the above-mentioned medium-temperature generator 5
The solution led through the heating side of the medium-temperature heat exchanger 8 is again heated and concentrated, and the refrigerant vapor after heating is condensed and transferred to the condenser 3.
guided by.

低温発生器6で発生した冷媒蒸気は、凝縮器3に導かれ
、冷却水17により、冷却されて凝縮する。高温発生器
4で濃縮された溶液は濃溶液となって、前述の高温熱交
換器9の加熱側にはいり、被加熱側の希溶液を加熱する
。高温熱交換器9を出た濃溶液は、低温発生器6からの
溶液と共に低温熱交換器7の加熱側にはいり、被加熱側
の希溶液を加熱する。低温熱交換器7を出た濃溶液は、
吸収器2に入る。
Refrigerant vapor generated by the low temperature generator 6 is led to the condenser 3, where it is cooled and condensed by the cooling water 17. The solution concentrated in the high temperature generator 4 turns into a concentrated solution, enters the heating side of the aforementioned high temperature heat exchanger 9, and heats the dilute solution on the heated side. The concentrated solution leaving the high temperature heat exchanger 9 enters the heating side of the low temperature heat exchanger 7 together with the solution from the low temperature generator 6, and heats the dilute solution on the heated side. The concentrated solution leaving the low temperature heat exchanger 7 is
Enters absorber 2.

凝縮器3の冷媒は管29より蒸発器1に導かれ、ここで
、冷水18から熱を奪い冷凍効果を発揮して、蒸発する
。蒸発した冷媒蒸気は、吸収器2にて、溶液に吸収され
る。吸収の際の吸収熱は吸収器を流れる冷却水16によ
り冷却される。蒸発しない冷媒は、冷媒ポンプ14によ
り管20を通り蒸発器1に循環され、また、冷媒を吸収
した希溶液は溶液ポンプ13で熱交換器を通って循環さ
れる。
The refrigerant in the condenser 3 is led to the evaporator 1 through a pipe 29, where it takes heat from the cold water 18, exhibits a freezing effect, and evaporates. The evaporated refrigerant vapor is absorbed into a solution in the absorber 2. The heat absorbed during absorption is cooled by cooling water 16 flowing through the absorber. The refrigerant that does not evaporate is circulated by the refrigerant pump 14 through the pipe 20 to the evaporator 1, and the dilute solution that has absorbed the refrigerant is circulated by the solution pump 13 through the heat exchanger.

このような冷凍機において、外部熱源15として蒸気を
用いた場合は、高温発生器4を加熱してドレンになった
蒸気熱源を管32から引き出し、高温熱交換器9を出た
希溶液の加熱用に設けた高温ドレン熱交換器10として
用い、次で、10を出たドレンは、中温熱交換器8と中
温発生器5との間に設けた中温ドレン熱交換器11に入
り、更に11を出たドレンは、低温熱交換器7と分岐点
との間に設けた低温ドレン熱交換器12に入って希溶液
の加熱に用いられて、十分に排熱回収をしたのち、排出
される。
In such a refrigerator, when steam is used as the external heat source 15, the steam heat source that heats the high temperature generator 4 and becomes a drain is drawn out from the pipe 32, and the dilute solution exiting the high temperature heat exchanger 9 is heated. Next, the drain that exits 10 enters the medium temperature drain heat exchanger 11 provided between the medium temperature heat exchanger 8 and the medium temperature generator 5, and is further transferred to 11. The drain that has exited the drain enters the low-temperature drain heat exchanger 12 installed between the low-temperature heat exchanger 7 and the branch point, is used to heat the dilute solution, and is discharged after sufficiently recovering waste heat. .

また、高温発生器4で発生する冷媒蒸気を排出する管2
7と、中温発生器5から発生する冷媒蒸気を排出する管
28との間にバイパス管31が設けられ、バイパス管3
1には、バイパス弁19が設けられ、高温発生器4に圧
力に応じて、冷媒のバイパス量を調節している。
Also, a pipe 2 for discharging refrigerant vapor generated in the high temperature generator 4 is provided.
7 and a pipe 28 for discharging refrigerant vapor generated from the medium temperature generator 5, a bypass pipe 31 is provided between the bypass pipe 3
1 is provided with a bypass valve 19, which adjusts the bypass amount of refrigerant in accordance with the pressure of the high temperature generator 4.

第2図に本発明の冷凍サイクル図を示す。FIG. 2 shows a refrigeration cycle diagram of the present invention.

第2図において、吸収器2を出た希溶液は濃度、温度と
も一番低く  (a点)、低温熱交換器て高温発生器4
に入る。高温発生器4では外部熱源15により、沸騰点
d及び濃縮されてe点に到る。この高温濃縮液は高温熱
交換器9の加熱側に入り、希溶液を加熱して1点まで冷
却される。一方、中温熱交換器8と分岐した希溶液はC
′点まで8で加熱されて中温発生器5に入り、高温発生
器で発生した冷媒蒸気により加熱されe′点に到る。こ
の濃溶液は中温熱交換器8の加熱側に入り、f′点まで
冷却されて低温発生器6に入り、中温発生器で発生した
冷媒蒸気で加熱されてg点に到り、高温熱交換器で冷却
された濃溶液と一緒になってh点になり、低温熱交換器
7の加熱側でi点まで冷却されて吸収器2に到る。吸収
器2では冷媒を吸収して濃度が希くなりa点る到るサイ
クルをとる。これを、第3図に示す通常の三重効用冷凍
サイクルと比較すると、沸騰までに用する熱量C−dへ
の熱量が少なくてよいことがわかる。
In Fig. 2, the dilute solution leaving the absorber 2 has the lowest concentration and temperature (point a), and is transferred to the low-temperature heat exchanger and the high-temperature generator 4.
to go into. In the high temperature generator 4, the external heat source 15 reaches the boiling point d and condensation to the point e. This high-temperature concentrated liquid enters the heating side of the high-temperature heat exchanger 9, heats the dilute solution, and cools it down to a single point. On the other hand, the dilute solution branched from the medium temperature heat exchanger 8 has C
It is heated to point 8 at 8 and enters the medium temperature generator 5, and is heated by the refrigerant vapor generated in the high temperature generator to reach point e'. This concentrated solution enters the heating side of the medium-temperature heat exchanger 8, is cooled to point f', enters the low-temperature generator 6, is heated by the refrigerant vapor generated in the medium-temperature generator, and reaches point g, where it undergoes high-temperature heat exchange. Together with the concentrated solution cooled in the vessel, it reaches the h point, is cooled to the i point on the heating side of the low temperature heat exchanger 7, and reaches the absorber 2. The absorber 2 absorbs the refrigerant and its concentration becomes dilute, leading to a complete cycle. Comparing this with the normal triple-effect refrigeration cycle shown in FIG. 3, it can be seen that the amount of heat required for boiling C-d may be small.

〔発明の効果〕〔Effect of the invention〕

本発明によると、吸収器からの希溶液を全量高温発生器
に循環せずに、中温発生器に分岐して循環しているから
、損失熱量を減らすことができ、また、高温発生器への
循環量が少なくなるから、これらの装置のサイズを小型
にでき経済的である。
According to the present invention, the dilute solution from the absorber is not circulated in its entirety to the high-temperature generator, but is branched and circulated to the medium-temperature generator, which reduces the amount of heat loss, and also reduces the amount of heat lost to the high-temperature generator. Since the amount of circulation is reduced, the size of these devices can be made smaller and economical.

また、外部熱源の蒸気のドレンを希溶液の加熱用にそれ
ぞれ用いているのでドレン排熱まですべて回収できる。
In addition, since the steam drain from the external heat source is used for heating the dilute solution, all of the waste heat from the drain can be recovered.

さらに、高温発生器からの冷媒蒸気を中温発生器を通さ
ずに低温発生器の加熱側にバイパスするためのバイパス
管を設けているため、高温発生器の内圧が高いときは、
発生蒸気をバイパスさせて低圧側に導くことができ二重
効用サイクルとして使用できる。
Furthermore, a bypass pipe is provided to bypass the refrigerant vapor from the high temperature generator to the heating side of the low temperature generator without passing through the medium temperature generator, so when the internal pressure of the high temperature generator is high,
The generated steam can be bypassed and guided to the low pressure side, allowing it to be used as a dual-effect cycle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の吸収冷凍機の一例を示す概略工程図
である。第2図は、本発明の冷凍サイクル図を示し、第
3図は通常の三重効用の冷凍サイクル図を示す。
FIG. 1 is a schematic process diagram showing an example of an absorption refrigerator of the present invention. FIG. 2 shows a refrigeration cycle diagram of the present invention, and FIG. 3 shows a conventional triple effect refrigeration cycle diagram.

Claims (1)

【特許請求の範囲】 1、高温発生器、中温発生器、低温発生器、凝縮器、吸
収器、蒸発器及び熱交換器類を主要構成機器とし、これ
らを溶液配管、冷媒配管で結んだ三重効用吸収冷凍機に
おいて、溶液の配管ラインを吸収器からの希溶液を低温
熱交換器の被加熱側を通した後、分岐して一部の希溶液
を中温熱交換器の被加熱側を経由して中温発生器に導入
し、残りの希溶液を高温熱交換器の被加熱側を経由して
高温発生器に導入し、また、中温発生器で濃縮された濃
溶液は、中温熱交換器の加熱側を経由して低温発生器に
導入し、高温発生器で濃縮された溶液は、高温熱交換器
の加熱側を経由し、低温発生器からの濃溶液と共に低温
熱交換器の加熱側に導入するように配管したことを特徴
とする三重効用吸収冷凍機。 2、高温発生器の熱源として蒸気を用い、溶液配管ライ
ンの低温熱交換器の被加熱側出口と分岐点の間の希溶液
配管に、前記蒸気のドレンを用いる低温ドレン熱交換器
を設け、更に、中温熱交換器被加熱側出口と中温発生器
との間の希溶液配管に、中温ドレン熱交換器を設けたこ
とを特徴とする請求項1記載の三重効用吸収冷凍機。 3、高温発生器で発生した冷媒蒸気を、中温発生器加熱
側を通さずにバイパスして低温発生器の加熱側に導く冷
媒蒸気配管を設け、該蒸気配管には、バイパスする冷媒
蒸気量を調節するための弁を設けたことを特徴とする請
求項1又は2記載の三重効用吸収冷凍機。 4、前記冷媒蒸気量を調節するための弁は、高温発生器
の内圧が、所定の圧力を越えないようにバイパスする冷
媒蒸気量を調節する機構を有することを特徴とする請求
項3記載の三重効用吸収冷凍機。
[Claims] 1. A triplex system with a high-temperature generator, a medium-temperature generator, a low-temperature generator, a condenser, an absorber, an evaporator, and a heat exchanger as main components connected by solution piping and refrigerant piping. In an absorption refrigerator, the solution piping line passes the dilute solution from the absorber through the heated side of the low-temperature heat exchanger, and then branches to allow some of the dilute solution to pass through the heated side of the medium-temperature heat exchanger. The remaining dilute solution is introduced into the high temperature generator via the heated side of the high temperature heat exchanger, and the concentrated solution concentrated in the medium temperature generator is passed through the medium temperature heat exchanger. The solution concentrated in the high temperature generator passes through the heating side of the high temperature heat exchanger and is introduced into the heating side of the low temperature heat exchanger together with the concentrated solution from the low temperature generator. A triple effect absorption refrigerating machine characterized by being piped so that it can be introduced into the system. 2. Using steam as the heat source of the high temperature generator, providing a low temperature drain heat exchanger using the steam drain in the dilute solution piping between the heated side outlet of the low temperature heat exchanger of the solution piping line and the branch point, 2. The triple effect absorption refrigerating machine according to claim 1, further comprising a medium temperature drain heat exchanger installed in the dilute solution piping between the heated side outlet of the medium temperature heat exchanger and the medium temperature generator. 3. Provide refrigerant vapor piping that bypasses the refrigerant vapor generated in the high-temperature generator and leads it to the heating side of the low-temperature generator without passing through the heating side of the medium-temperature generator. The triple effect absorption refrigerator according to claim 1 or 2, further comprising a valve for adjustment. 4. The valve for adjusting the amount of refrigerant vapor has a mechanism for adjusting the amount of refrigerant vapor bypassed so that the internal pressure of the high temperature generator does not exceed a predetermined pressure. Triple effect absorption refrigerator.
JP29099289A 1989-11-10 1989-11-10 Absorption refrigerator Expired - Fee Related JP2657703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29099289A JP2657703B2 (en) 1989-11-10 1989-11-10 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29099289A JP2657703B2 (en) 1989-11-10 1989-11-10 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH03152361A true JPH03152361A (en) 1991-06-28
JP2657703B2 JP2657703B2 (en) 1997-09-24

Family

ID=17763059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29099289A Expired - Fee Related JP2657703B2 (en) 1989-11-10 1989-11-10 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2657703B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056934A (en) * 2001-08-07 2003-02-26 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2003097861A (en) * 2001-09-26 2003-04-03 Daikin Ind Ltd Absorption type refrigeration unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056934A (en) * 2001-08-07 2003-02-26 Sanyo Electric Co Ltd Absorption refrigerating machine
JP4557468B2 (en) * 2001-08-07 2010-10-06 三洋電機株式会社 Absorption refrigerator
JP2003097861A (en) * 2001-09-26 2003-04-03 Daikin Ind Ltd Absorption type refrigeration unit

Also Published As

Publication number Publication date
JP2657703B2 (en) 1997-09-24

Similar Documents

Publication Publication Date Title
JP2696575B2 (en) Absorption refrigerator
US4470269A (en) Absorption refrigeration system utilizing low temperature heat source
JP3103225B2 (en) Absorption heat pump using low-temperature heat source
JP2000154945A (en) Triple effect absorption refrigeration machine
JP2657703B2 (en) Absorption refrigerator
KR100512827B1 (en) Absorption type refrigerator
JP2696574B2 (en) Absorption refrigerator
JP2654833B2 (en) Absorption refrigeration equipment
KR20090103740A (en) Absorption heat pump
JP2000154946A (en) Triple effect absorption refrigeration machine
JP2696576B2 (en) Absorption refrigeration equipment
JP3280169B2 (en) Double effect absorption refrigerator and chiller / heater
JPH11337214A (en) Absorption cold/hot water device and operation thereof
KR20180085363A (en) Low load control system for 2-stage low temperature hot water absorption chiller
JP2000088391A (en) Absorption refrigerating machine
JP2673729B2 (en) Absorption refrigeration equipment
JP2654832B2 (en) Absorption refrigerator
JP3811632B2 (en) Waste heat input type absorption refrigerator
KR0124786B1 (en) Diluting operation apparatus for air-cooling absorptive type refrigerator and heater
JPS5857667B2 (en) Dual effect absorption refrigeration device and its control method
JP2696581B2 (en) Absorption refrigeration equipment
JP3401545B2 (en) Absorption refrigerator
JP2892519B2 (en) Absorption heat pump equipment
KR0173495B1 (en) Absorptive type air conditioner
JP2001208443A (en) Absorption freezer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees