JPH03148885A - Large-displacement electrostrictive element - Google Patents

Large-displacement electrostrictive element

Info

Publication number
JPH03148885A
JPH03148885A JP1287592A JP28759289A JPH03148885A JP H03148885 A JPH03148885 A JP H03148885A JP 1287592 A JP1287592 A JP 1287592A JP 28759289 A JP28759289 A JP 28759289A JP H03148885 A JPH03148885 A JP H03148885A
Authority
JP
Japan
Prior art keywords
displacement
electrostrictive
composition
history
electrostrictive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1287592A
Other languages
Japanese (ja)
Inventor
Atsushi Hagimura
厚 萩村
Mutsuo Nakajima
睦男 中島
Shigeki Nakahara
中原 重樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1287592A priority Critical patent/JPH03148885A/en
Publication of JPH03148885A publication Critical patent/JPH03148885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To enlarge the application field of an electrostrictive element through an electrostrictive material having large displacement and small hysteresis by adding a specific metal to a PBZT group composition which has not been researched approximately as a porcelain composition having small displacement. CONSTITUTION:An electrostrictive element is prepared of (PhyBa1-y)a Meb(ZrxTi1-x)cOd. In formula, (x), (y), (a) and (b) are specified respectively as follows. That is, y<(4/3)x holds, and the conditions of 0.60<=y<=0.80, 0.45<=x<=0.60, 0.85<=a<=1.15, 0.001<=b<=0.02 and 0.85<=c<=1.15 are satisfied. (d) represents a numeric value determined by the states of oxidation of each element. At least one kind of an element selected from a group consisting of La, Ce and Pb is used as Me. Such a composition is mixed sufficiently by a ball mill, calcined at 860-900 deg.C, pulverized by the ball mill again, dried and formed in a discoid shape by applying pressure of two ton/cm<2>, and the discoid fine particles are sintered at 1200-1350 deg.C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は大変位量電歪素子の製造に適した磁器組成物及
び該磁器組成物の焼結で得られる大変位量電歪素子に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a ceramic composition suitable for manufacturing a large displacement electrostrictive element and a large displacement electrostrictive element obtained by sintering the ceramic composition.

従来の技術 従来、アクチェエータとしては、電磁力で働くモータや
、この電磁モータの回転を歯車の組合せにより直進的な
動きに変換するものや、電磁コイルとバネを組み合わせ
たボイスコイル等が代表的なものである。これらのアク
チュエータは高速の連続回転や位置決めなどのために、
あらゆる機械において広く用いられている。近年、光学
精密機械、半導体素子等の分野を中心として次第に新し
い変位素子へのニーズが急増している。例えばレーザや
カメラ等の光学機器の加工精度や半導体製造機器におけ
る位置決め精度に対する要求や、光学、天文学などにお
ける光路長の511に対する要求はすでに1ミクロン以
下のレベルに達しており、その要求は今後ますますシビ
アなものになってい(ことは明かである。これまでのよ
うに電磁モータを利用した位置決めでは構造、制御とも
に複雑になるばかりであり、またボイスコイルでは発生
力や応答速度の点でそれぞれ問題がある。
Conventional technology Traditionally, typical actuators include motors that operate using electromagnetic force, those that convert the rotation of this electromagnetic motor into linear motion using a combination of gears, and voice coils that combine an electromagnetic coil and a spring. It is something. These actuators are used for high-speed continuous rotation, positioning, etc.
Widely used in all types of machinery. In recent years, the need for new displacement elements has been increasing rapidly, mainly in the fields of optical precision instruments, semiconductor devices, etc. For example, requirements for processing accuracy of optical equipment such as lasers and cameras, positioning accuracy for semiconductor manufacturing equipment, and requirements for optical path length of 511 in optics and astronomy have already reached the level of 1 micron or less, and these requirements will continue to increase in the future. It is clear that positioning using electromagnetic motors has become increasingly complex in terms of structure and control, and voice coils have different strengths in terms of generated force and response speed. There's a problem.

最近、電磁力を使わない新アクチュエータとして電磁ア
レチェエータかにわかに扉光を浴びており、エレクトロ
ニクスセラミックス市場においても新たなジャンルを拡
大すさくその将来性に対し大きな期待が寄せられている
Recently, electromagnetic arechiators have been attracting a lot of attention as new actuators that do not use electromagnetic force, and there are great expectations for their future potential as they expand into new genres in the electronics ceramics market.

このような変位素子に要求される一般的な条件は以下の
とおりである。
The general conditions required for such a displacement element are as follows.

(1)  変位量(31大型界における変位量)が大き
い。
(1) The amount of displacement (the amount of displacement in the 31 large field) is large.

(り 履歴(最大電界の半分における変位量差を最大変
位量で割った値)が小さい。
The history (value obtained by dividing the displacement difference at half of the maximum electric field by the maximum displacement) is small.

(3)  応答速度が速い。(3) Fast response speed.

(4)温度特性がよい。(4) Good temperature characteristics.

(5)  低エネルギーで駆動できる。(5) Can be driven with low energy.

10 発生応力が大きい。10 Generated stress is large.

ω サイズ、重量が小さい。ω Small size and weight.

(8》  使用における劣化がない。(8) No deterioration during use.

固体変位素子材料はその変位量が外部指令により制御可
能でなければならず、その外部指令要因としては温度、
磁界、電界が考えられる。温度変化を利用する変位素子
は大きなエネルギーを要し、また応答速度が遅いという
欠点を有している。磁界を利用する磁歪材料は変位量が
小さく、稼働用コイルが必要て装置の大型化につながる
欠点を有している。電界を利用して変位を得る材料とし
て圧電材料、電歪材料があるが、これらは最大変位量が
小さいという欠点がある。この欠点を克服するだめに数
々の研究がなされてきているが、未だ充分なレベルに達
していない。
The amount of displacement of the solid-state displacement element material must be controllable by external commands, and the external command factors include temperature,
Possible fields are magnetic fields and electric fields. Displacement elements that utilize temperature changes require a large amount of energy and have the drawbacks of slow response speed. Magnetostrictive materials that utilize a magnetic field have the disadvantage that the amount of displacement is small and that an operating coil is required, leading to an increase in the size of the device. There are piezoelectric materials and electrostrictive materials as materials that obtain displacement using an electric field, but these have the disadvantage that their maximum displacement is small. Many studies have been conducted to overcome this drawback, but they have not yet reached a sufficient level.

電歪材料は圧電材料に比べ (1)  ff歴が少ない、 (2)電界分極処理の必要が無い、 0)過酷な使用条件での劣化に対して強い、等の利点が
ある。
Electrostrictive materials have advantages over piezoelectric materials, such as (1) less ff history, (2) no need for electric field polarization treatment, and (0) resistance to deterioration under harsh usage conditions.

電歪材料としてP b (MgtzsNbxzs) O
s(PMN)が公知であり、更に(Pb、Ba)(Zr
、Ti)03(以下PBZTと略記する)系セラミック
スがある。この系についてはすでにハネウェル(HAN
EW 11!LL)社IMJ、LHllNGらによって
調査研究されている(Ferroelectric、 
t9ao。
P b (MgtzsNbxzs) O as electrostrictive material
s(PMN) is known, and (Pb, Ba)(Zr
, Ti)03 (hereinafter abbreviated as PBZT)-based ceramics. This system has already been developed by Honeywell (HAN).
EW 11! LL) IMJ, LHllNG et al. (Ferroelectric,
t9ao.

vol 27.pp41−43) 、  KJ、LIE
llNG  らは、組成は(P b*、t3B a s
−xt) @、lI?B i e、ezZ r s−t
sT i・、3・03のセラミックスの調査研究の結果
について論文に報告しているが、そのセラミックスの変
位量は小さく、l OkV/c+mの電圧に対し0.0
6%に過ぎない、また、上記組成式のセラミックスを焼
結すると、その焼結時における重Nti少が著しく10
%にも達する。この重量減少はpbの揮散によるものと
推定され、電歪材料を工業的に製造する場合においては
このようなPbの揮散は重要な問題となる。また、上記
組成式のセラミックスを用い、後記の実施例て述べる条
件で素子を作成してその性能を評価したところ、その誘
電率は5000〜6000であつた。誘電率は実装置に
組み込んだ場合に電気消費量と関係があり、誘電率の小
さい方が省エネルギーであり優れている。
vol 27. pp41-43), KJ, LIE
llNG et al. found that the composition was (P b *, t3B a s
-xt) @, lI? B ie, ezZ r s-t
The paper reports on the results of the research on ceramics in sTi・, 3.03, but the amount of displacement of the ceramics is small, 0.0 for a voltage of l OkV/c+m.
Furthermore, when ceramics having the above composition formula are sintered, the weight Nti decreases significantly by 10% during sintering.
%. This weight loss is presumed to be due to the volatilization of Pb, and such volatilization of Pb becomes an important problem when producing electrostrictive materials industrially. Further, when an element was prepared using the ceramic having the above composition formula under the conditions described in Examples below and its performance was evaluated, the dielectric constant was 5000 to 6000. The dielectric constant is related to electricity consumption when incorporated into an actual device, and a smaller dielectric constant is better because it saves energy.

特開昭60−144984においてPBZT+Pb−B
a−Bt−W系の電歪磁器組成物が開示されているが、
これらのものは後記の比較例において示すように、素子
性能の履歴が非常に太き(そのため素子の発熱が大きい
ばかりでなく、精密な位置制御が非常に困難となり、従
って、アクチェエータ用素子としては不適当である。
PBZT+Pb-B in JP-A-60-144984
Although an a-Bt-W based electrostrictive ceramic composition is disclosed,
As shown in the comparative example below, these devices have a very long history of device performance (therefore, not only do the devices generate a lot of heat, but also make precise position control very difficult), so they are not recommended as actuator devices. It's inappropriate.

更にPZTに各種金属を添加した磁器組成物について多
数の特許出願がなされており、またPbをアルカリ金属
、アルカリ土類金属で置き換えた磁器組成物についてい
(つかの特許出願がなされているが、いずれも大変位量
を特徴とするものではない、以上のように、大変位量で
かつミクロンオーダーの変位量を精密に制御できる圧電
材料、電歪材料は未だ現存しないのが実際のところであ
る。
Furthermore, numerous patent applications have been filed for porcelain compositions in which various metals are added to PZT, and there are also a number of patent applications filed for porcelain compositions in which Pb is replaced with alkali metals and alkaline earth metals (although a few patent applications have been filed). None of them are characterized by a large amount of displacement.As mentioned above, the reality is that there is still no piezoelectric material or electrostrictive material that can precisely control a large amount of displacement and a displacement on the micron order.

発明が解決しようとする課題 本発明の目的は変位量が太きく、かつ履歴が小さい電歪
材料を提供することにある。
Problems to be Solved by the Invention An object of the present invention is to provide an electrostrictive material that has a large amount of displacement and a small history.

課題を屏決するための手段 本発明者らは上述の目的を達成するために鋭意検討した
結果、従来は変位量が小さい磁器組成物であるとしてほ
とんど研究されていなかったPBZT系の組成が(Pb
xBa+−x)+sMet (ZrvTi+−v)であ
るものに特定の金属を添加することによって、履歴が市
販品とほとんど変わらずに変位量が約2倍になった電歪
素子が得られることを見いだし、本発明を完成させるに
至った。
Means for Solving the Problem The inventors of the present invention conducted intensive studies to achieve the above-mentioned object. As a result, the composition of the PBZT system, which had been little studied in the past because it is a porcelain composition with a small amount of displacement (Pb
We discovered that by adding a specific metal to xBa+-x)+sMet (ZrvTi+-v), it was possible to obtain an electrostrictive element whose history was almost the same as that of a commercially available product, but whose displacement was about twice as large. , we have completed the present invention.

すなわち、本発明は、組成式 %式%) (式中、x、y、a、b、及びCはそれぞれy< (4
/3)x、 0160≦y≦0.80. 0845≦X≦0.60゜ 0685≦a≦1.15. 0.001<boo、02  及び 0.85≦C≦1.15の条件を満足する数値である。
That is, the present invention provides a composition formula (% formula %) (where x, y, a, b, and C are each y< (4
/3) x, 0160≦y≦0.80. 0845≦X≦0.60°0685≦a≦1.15. This value satisfies the following conditions: 0.001<boo, 02 and 0.85≦C≦1.15.

dは各元素の酸化状態により定まる数値である。Meは
La%Ce、Prからなる群から選ばれた少なくとも一
種の元素である、)で表される磁器組成物である。
d is a numerical value determined by the oxidation state of each element. Me is at least one element selected from the group consisting of La%Ce and Pr.

また、本発明は、前記した磁器組成物を焼結してなる大
変位量電歪素子である。
Further, the present invention is a large displacement electrostrictive element formed by sintering the above-described ceramic composition.

本発明の電歪素子について”M歴は5 kV/cs+の
電界を印加した時の変位量差を10kV/cmの電界を
印加した時の変位量で割った値(%)を意味し、′変位
t″は10kV/cmの電界を印加した時のサンプルの
伸びを厚さで割った値(%)を意味する。
Regarding the electrostrictive element of the present invention, "M history" means the value (%) obtained by dividing the displacement difference when an electric field of 5 kV/cs+ is applied by the displacement amount when an electric field of 10 kV/cm is applied. The displacement t'' means the value (%) obtained by dividing the elongation of the sample by the thickness when an electric field of 10 kV/cm is applied.

本発明の磁器組成物は出発原料としてPb、Ba、Me
 (La、Ce、Pr) 、Zr及びTiの各々につい
てそれらの酸化物、窒化物、ぶつ化物、炭酸塩等から選
ばれた任意の化合物を用いて製造することが出来る。
The porcelain composition of the present invention uses Pb, Ba, Me as starting materials.
(La, Ce, Pr), Zr, and Ti can be produced using any compound selected from their oxides, nitrides, hybrids, carbonates, and the like.

本発明の磁器組成物においては、Me金属の添加量は0
.1m01%以上、2m01%以下が最適である。添加
量が0.1m01%未満である場合履歴が25%を越え
、また添加量が2m01%を越える場合最大変位量が0
.10%未満となる。
In the ceramic composition of the present invention, the amount of Me metal added is 0.
.. Optimal is 1m01% or more and 2m01% or less. If the added amount is less than 0.1m01%, the history exceeds 25%, and if the added amount exceeds 2m01%, the maximum displacement is 0.
.. It will be less than 10%.

上記組成式においてy≧4/3xもしくはyが0.60
未満である場合、またはa及びbがそれぞれ0.85未
満または1.15を越える場合本発明の特徴である大変
位量は達成されない、yが0.80をこえる場合または
Xが0.45未満である場合履歴の小さい電歪素子が得
られない、本発明の電歪磁器岨成物はその焼結時におい
てpbの揮散が少なく、重it減少が1%以下である。
In the above composition formula, y≧4/3x or y is 0.60
or when a and b are each less than 0.85 or more than 1.15, the large displacement characteristic of the present invention is not achieved, and when y exceeds 0.80 or X is less than 0.45 If this is the case, an electrostrictive element with a small history cannot be obtained.The electrostrictive porcelain composite of the present invention has little volatilization of PB during sintering, and the weight reduction is 1% or less.

また本発明の電歪素子は変位量が0.1θ%以上である
。実施例で示した範囲で最も変位量の大きいものでは0
.18%にも達し、また履歴は25%以下であり、誘電
率は3000〜4000である。
Further, the electrostrictive element of the present invention has a displacement amount of 0.1 θ% or more. The largest displacement in the range shown in the example is 0.
.. The dielectric constant is as high as 18%, the history is less than 25%, and the dielectric constant is 3000 to 4000.

本発明の電歪素子は従来の圧電材料に比べて履歴がほと
んど変わらないにもかかわらず、変位量が約2倍以上に
増加している。
Although the electrostrictive element of the present invention has almost no change in history compared to conventional piezoelectric materials, the amount of displacement increases by about twice or more.

実施例 一実施例1 出発原料としてpbo、B a COs、ZrO*、T
tO*及びMe金属の酸化物を用い、x、y、a%b及
びCの値が下記の標に示す値のなるように秤量混合、ボ
ールミル710時間混合した。得られた混合物を800
〜900℃で2時間仮焼した。そΦ後、再度ボールミル
で微粉砕し、乾燥後、2トン/dの圧力で円板上に成形
した。これを1200〜1350℃で3時間焼結した。
Example 1 Example 1 pbo, B a COs, ZrO*, T as starting materials
Using tO* and Me metal oxides, the mixture was weighed and mixed in a ball mill for 710 hours so that the values of x, y, a%b and C became the values shown in the table below. The resulting mixture was heated to 800
It was calcined at ~900°C for 2 hours. Thereafter, it was finely ground again using a ball mill, dried, and then molded into a disk at a pressure of 2 tons/d. This was sintered at 1200-1350°C for 3 hours.

焼結した円板を厚さ0.5閣に切断し、その表面に銀電
極を焼き付けた。この樺にして得られた試料について、
両端に電界を印加し、10kV/cmでの変位量及び履
歴を測定した。変位量及び履歴の測定はボテンシ芝メー
タにより行った。測定結果を下記の表に示す、表中、試
料No、1.4.7.9が本発明の範囲にある電歪素子
である。
The sintered disk was cut into 0.5 mm thick pieces, and a silver electrode was baked onto its surface. Regarding the sample obtained from this birch,
An electric field was applied to both ends, and the displacement amount and history at 10 kV/cm were measured. The amount of displacement and history were measured using a potency turf meter. The measurement results are shown in the table below. In the table, sample No. 1.4.7.9 is an electrostrictive element within the scope of the present invention.

比較例1 組成式 %式% (式中、Xは0.01であり、Aは0.21であり、B
は0.53である)を有する試料を実施例と同様に作成
し、同様にして変位量及び履歴を測定した。変位量は0
.09%であり、履歴は40%であった。
Comparative Example 1 Composition formula % Formula % (wherein, X is 0.01, A is 0.21, B
(0.53) was prepared in the same manner as in the example, and the amount of displacement and history were measured in the same manner. The amount of displacement is 0
.. 09%, and history was 40%.

[Me=Laの場合] 試料            変位量 履歴No、xy
abc(%)  (%) 1 0.550.730.970.0051.00 0
.12  152 0.550.730.970.00
51、OOO,081030,500,730,970
,0051,0G  OO0?   154 0.55
0.730.970.0051、OOO,122050
゜630.73 G、970.0051.00 0−0
8  216 0.550.730.970.0051
、OOOO0?   387 0.550.620.9
70.0051.00 0.10  1580゜550
.580−970.0051.00 0.02  10
9 0.460.610.970.0051.00  
LIO25100,550,731、OO0,0001
、OOO,0640110,550,730,970,
0251,000−0815120,550,730,
970,0051,180,0410130,550,
730,970,0050,830,0512140,
550,731,180,0051、OOO,0415
150,550,730,830,0051、OO0,
−0318[Me=Prの場合] 試料            変位量 履歴No、xy
abc(%)  (%) 1 0.550−730.970.005100 0−
.13  142  °0.55 0.75  G、9
7 0二oos  t、oo    OO0?    
  133 0.550−730.970.005i1
.GO0,071740,550,730,970,0
051,0G  0.13  205 0.630,7
30.970.0−051、OO000?   216
 0.550.730.970.0051、OOO,0
74170、,550J2G、97G、O051,00
0,111?g  o、sso、sao、q7o、oo
sx、oo  O,031090,460,61G、9
70.O051000,1225)0 0.S50.7
31.000.OO01、OOO,0646110,5
50,130,970,0251,000,08151
2G、550.730.970.0051.18 0.
04  1013  G、550.730.970.(
X)50,83 0.03  1314 0.550.
731.180.0051.00 0−04  151
5 0.550.730.830.0051.00 0
.04  18[Me=Ceの場合1 試料            変位量 履歴No、xy
abc(%)  (%) 1 0.550.730.970.0051.00 0
.15  142 0.550.750.970.00
51.00 0.08  183 0.550.730
.970.0051.00 000?   154 0
.550.730.970.0051.00 0.14
  225  0.63 0.73 0.97  G、
005 1.00  0.コフ    216 0.5
50.730.970.0051.0G  OO0? 
  387 0.550.620゜970.0051.
00 0.12  17B  0.550.580.9
70.0051、OOO,04129G−460,61
0,97G、O051、OOO,1225100,55
0,731,000,0001、OOO,064011
0,550,730−970,0251,00G、0B
   1512 0.550.730.970.005
1.18 0.04  1013 0.550.730
.970.0051.83 0.04  1314 0
.550.731.180.0051、OOO,031
5150,550,730,83(LOO51−000
,0218発明の効果 本発明の電歪素子は従来の圧電材料に比べて履歴がほと
んど変わらないにもかかわらず、変位量が約2倍以上に
増加している。この様な変位量の−大きい材料の応用分
野は非常に広い。
[When Me=La] Sample Displacement History No., xy
abc (%) (%) 1 0.550.730.970.0051.00 0
.. 12 152 0.550.730.970.00
51, OOO, 081030, 500, 730, 970
,0051,0G OO0? 154 0.55
0.730.970.0051, OOO, 122050
゜630.73 G, 970.0051.00 0-0
8 216 0.550.730.970.0051
,OOOO0? 387 0.550.620.9
70.0051.00 0.10 1580°550
.. 580-970.0051.00 0.02 10
9 0.460.610.970.0051.00
LIO25100,550,731,OO0,0001
,OOO,0640110,550,730,970,
0251,000-0815120,550,730,
970,0051,180,0410130,550,
730,970,0050,830,0512140,
550,731,180,0051,OOO,0415
150,550,730,830,0051,OO0,
-0318 [When Me=Pr] Sample Displacement History No., xy
abc (%) (%) 1 0.550-730.970.005100 0-
.. 13 142 °0.55 0.75 G, 9
7 02oos t,oo OO0?
133 0.550-730.970.005i1
.. GO0,071740,550,730,970,0
051,0G 0.13 205 0.630,7
30.970.0-051, OO000? 216
0.550.730.970.0051,OOO,0
74170, 550J2G, 97G, O051,00
0,111? g o, sso, sao, q7o, oo
sx,oo O,031090,460,61G,9
70. O051000,1225)0 0. S50.7
31.000. OO01,OOO,0646110,5
50,130,970,0251,000,08151
2G, 550.730.970.0051.18 0.
04 1013 G, 550.730.970. (
X) 50,83 0.03 1314 0.550.
731.180.0051.00 0-04 151
5 0.550.730.830.0051.00 0
.. 04 18 [When Me=Ce 1 Sample Displacement History No., xy
abc (%) (%) 1 0.550.730.970.0051.00 0
.. 15 142 0.550.750.970.00
51.00 0.08 183 0.550.730
.. 970.0051.00 000? 154 0
.. 550.730.970.0051.00 0.14
225 0.63 0.73 0.97 G,
005 1.00 0. Cough 216 0.5
50.730.970.0051.0G OO0?
387 0.550.620°970.0051.
00 0.12 17B 0.550.580.9
70.0051, OOO, 04129G-460,61
0,97G,O051,OOO,1225100,55
0,731,000,0001,OOO,064011
0,550,730-970,0251,00G,0B
1512 0.550.730.970.005
1.18 0.04 1013 0.550.730
.. 970.0051.83 0.04 1314 0
.. 550.731.180.0051,OOO,031
5150, 550, 730, 83 (LOO51-000
, 0218 Effects of the Invention Although the electrostrictive element of the present invention has almost no change in history compared to conventional piezoelectric materials, the amount of displacement increases by about twice or more. The application fields of materials with such a large amount of displacement are very wide.

Claims (1)

【特許請求の範囲】 1) 組成式 (Pb,Ba_1_−_y)_aMe_b(Zr_xT
i_1_−_x)_cO_4(式中、x、y、a、b、
及びcはそれぞれy<(4/3)x、 0.60≦y≦0.80、 0.45≦x≦0.60、 0.85≦a≦1.15、 0.001≦b<0.02及び 0.85≦c≦1.15の条件を満足する数値である。 dは各元素の酸化状態により定まる数値である。Meは
La、Ce、Prからなる群から選ばれた少なくとも一
種の元素である。)で表される磁器組成物。 2) 組成式 (Pb_yBa_1_−_y)_aMe_b(Zr_x
Ti_1_−_x)_cO_4(式中、x、y、A、b
N及びcはそれぞれy<(4/3)x、 0.60≦y≦0.80、 0.45≦x≦0.60、 0.85≦a≦1.15、 0.001≦b<0.02及び 0.85≦c≦1.15の条件を満足する数値である。 dは各元素の酸化状態により定まる数値である。Meは
La、Ce、Prからなる群から選ばれた少なくとも一
種の元素である。)で表される磁器組成物を焼結してな
る大変位量電歪素子。
[Claims] 1) Compositional formula (Pb, Ba_1_-_y)_aMe_b(Zr_xT
i_1_-_x)_cO_4 (in the formula, x, y, a, b,
and c are respectively y<(4/3)x, 0.60≦y≦0.80, 0.45≦x≦0.60, 0.85≦a≦1.15, 0.001≦b<0 This is a numerical value that satisfies the conditions of .02 and 0.85≦c≦1.15. d is a numerical value determined by the oxidation state of each element. Me is at least one element selected from the group consisting of La, Ce, and Pr. ) Porcelain composition represented by. 2) Composition formula (Pb_yBa_1_-_y)_aMe_b(Zr_x
Ti_1_-_x)_cO_4 (in the formula, x, y, A, b
N and c are respectively y<(4/3)x, 0.60≦y≦0.80, 0.45≦x≦0.60, 0.85≦a≦1.15, 0.001≦b< This value satisfies the conditions of 0.02 and 0.85≦c≦1.15. d is a numerical value determined by the oxidation state of each element. Me is at least one element selected from the group consisting of La, Ce, and Pr. ) A large displacement electrostrictive element made by sintering a ceramic composition represented by:
JP1287592A 1989-11-06 1989-11-06 Large-displacement electrostrictive element Pending JPH03148885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1287592A JPH03148885A (en) 1989-11-06 1989-11-06 Large-displacement electrostrictive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1287592A JPH03148885A (en) 1989-11-06 1989-11-06 Large-displacement electrostrictive element

Publications (1)

Publication Number Publication Date
JPH03148885A true JPH03148885A (en) 1991-06-25

Family

ID=17719290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287592A Pending JPH03148885A (en) 1989-11-06 1989-11-06 Large-displacement electrostrictive element

Country Status (1)

Country Link
JP (1) JPH03148885A (en)

Similar Documents

Publication Publication Date Title
KR0161988B1 (en) Piezoelectric ceramic composition for actuators
KR970009986B1 (en) Piezoelectric ceramics
CN112266246B (en) Method for preparing Hf, bi and Ca co-doped potassium-sodium niobate lead-free piezoelectric ceramic by solid-phase sintering method
JPH03148885A (en) Large-displacement electrostrictive element
KR100197150B1 (en) Piezoelectric ceramic composition for actuator
JP3569742B2 (en) Electrostrictive material and manufacturing method thereof
JP3214055B2 (en) Piezoelectric ceramic composition for actuator
Tsai et al. Doping effects of CuO additives on the properties of low-temperature-sintered PMnN-PZT-based piezoelectric ceramics and their applications on surface acoustic wave devices
JPH0558729A (en) Piezoelectric ceramic composition
JP2543569B2 (en) Electrostrictive element for fine positioning
JP2579334B2 (en) Electrostrictive material
JP2543568B2 (en) Electrostrictive element for fine positioning
JP2543570B2 (en) Electrostrictive element for fine positioning
JP2543572B2 (en) Electrostrictive element for fine positioning
JPH03147381A (en) Large displacement electrostrictive element
JPH04260662A (en) Piezoelectric ceramic composition
JPH01264282A (en) Electrostriction element for fine positioning
JP3259321B2 (en) Piezoelectric ceramic composition for actuator
KR20000013956A (en) Ceramic composition of piezoelectric actuator which has a excellent temperature stability
JPH05315669A (en) Piezoelectric porcelain composition
JP3161175B2 (en) Piezoelectric ceramic composition
CN114276134A (en) Lead-free piezoelectric ceramic material with high-temperature stable electrostriction and preparation method thereof
KR20000054267A (en) Piezoelectric ceramic composition for high power piezoelectric devices
KR20040049384A (en) A piezo ceramic composition
JPH02288279A (en) Piezoelectric material