JPH03144306A - Length measuring device - Google Patents

Length measuring device

Info

Publication number
JPH03144306A
JPH03144306A JP28266589A JP28266589A JPH03144306A JP H03144306 A JPH03144306 A JP H03144306A JP 28266589 A JP28266589 A JP 28266589A JP 28266589 A JP28266589 A JP 28266589A JP H03144306 A JPH03144306 A JP H03144306A
Authority
JP
Japan
Prior art keywords
waveguide
length measuring
probes
measuring device
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28266589A
Other languages
Japanese (ja)
Inventor
Koichi Hayashi
康一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP28266589A priority Critical patent/JPH03144306A/en
Publication of JPH03144306A publication Critical patent/JPH03144306A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable highly-precise and direct detection of a position even when a length-measuring device is made long, by a method wherein a standing wave of an electromagnetic wave is generated in a waveguide, the electromagnetic wave is taken out by a probe provided in a slider and a current is thereby detected. CONSTITUTION:An electromagnetic wave which has a wavelength lambda being 1/3 of the axial length l of a waveguide 12 is injected by an oscillator 11 into the waveguide 12 provided with a slit, so that a standing wave be generated therein. In a slider 13, on the other side, probes 14A to 14D are projected at an interval of lambda/8 and diodes 15A to 15D are connected to the respective end parts of the probes. Part of the electromagnetic wave is taken out by these probes 14A to 14D and detected by the diodes 15A to 15D and thereby detection currents Ia to Id being proportional substantially with the square of field strengths at the positions of the probes are obtained respectively. With these currents Ia to Id used, sine and cosine values corresponding to the amount of displacement of relative movement are obtained by a prescribed calculation formula, and by combining a prescribed counting circuit with this constitution, an absolute position is detected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、大型の工作機械等の長ストロークの位置計測
に適した測長器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a length measuring device suitable for measuring the position of a long stroke such as a large machine tool.

(従来の技術) 従来、工作機械等で直線位置を直接的に計測する場合、
一般に光学式や磁気式の測長器が使用されている。これ
らの測長器では測長ストローク以上の範囲に細かい格子
パターン又は交互に極性を変えた着磁パターンを設けた
メインスケールを必要とする。
(Conventional technology) Conventionally, when directly measuring the linear position with a machine tool, etc.
Generally, optical or magnetic length measuring devices are used. These length measuring devices require a main scale provided with a fine grid pattern or a magnetization pattern with alternating polarities in a range larger than the length measurement stroke.

第5図は、従来の光学式の測長器の一例を示す斜視図と
その検出回路の一例を示すブロック図であり、一般に工
作機械等の移動軸の位置検出では相対移動する部材の一
方に第1の格子4を設けたメインスケール3が固定され
、他方の部材に第2の格子5を設けたインデックススケ
ール6と、光源1及びコリメータレンズ2から構成され
る発光手段と、受光素子7から構成される光電変換手段
とを有するスライダが固定されている。そして、′ff
Jlの格子4と第2の格子5との相対移動によって生ず
る光量変化が光電変換され、得られた信号が増幅回路8
^、8B、内挿回路9及び計数回路lOにより相対移動
の変位量を表わすデジタル値とされ、移動軸の位置が検
出されるようになっている。
FIG. 5 is a perspective view showing an example of a conventional optical length measuring device and a block diagram showing an example of its detection circuit. A main scale 3 provided with a first grating 4 is fixed, an index scale 6 provided with a second grating 5 on the other member, a light emitting means composed of a light source 1 and a collimator lens 2, and a light receiving element 7. A slider having a photoelectric conversion means configured as shown in FIG. And'ff
The change in light amount caused by the relative movement between the Jl grating 4 and the second grating 5 is photoelectrically converted, and the obtained signal is sent to the amplifier circuit 8.
^, 8B, the interpolation circuit 9 and the counting circuit 10 convert the value into a digital value representing the amount of displacement of the relative movement, and the position of the moving axis is detected.

このような測長器及びその検出回路において、メインス
ケール3に設けられた第1の格子4に対するインデック
ススケール6に設りられた第2の格子5の位相は第1の
格子4のピッチpを360゜とすると例えばO’ 、 
90’ 、180’ 、270°の区分りが施されてい
るので、増幅回路0八、flBはメインスケール3のZ
方向への変位量2に対応してほぼ正弦値5in(2i 
Z/p) 、余弦値cos (2rc Z/p)で近似
できる2相の検出信号を差動増幅により出力する。
In such a length measuring device and its detection circuit, the phase of the second grating 5 provided on the index scale 6 with respect to the first grating 4 provided on the main scale 3 is determined by the pitch p of the first grating 4. For example, if it is 360 degrees, O',
Since it is divided into 90', 180', and 270°, amplifier circuit 08 and flB are connected to Z of main scale 3.
Corresponding to the displacement amount 2 in the direction, approximately the sine value 5 inches (2i
Z/p) and a two-phase detection signal that can be approximated by a cosine value cos (2rc Z/p) is output by differential amplification.

内挿回路9は増幅回路8^、8Bからの2相の検出信号
により次式(1)の演算処理を行い、第1の格子4のピ
ッチpの範囲内をO〜255の数値で表わすアブソリュ
ート位置データPLを出力する。
The interpolation circuit 9 performs arithmetic processing according to the following equation (1) using the two-phase detection signals from the amplifier circuits 8^ and 8B, and calculates an absolute value that represents the range of pitch p of the first grating 4 as a value from O to 255. Output position data PL.

S= 5in(2yc Z/p)、C= cos(2窪
Z/p)とおくと、さらに、内挿回路9は次式(2)の
判定処理を行い、アップカウントパルスup又はダウン
カウントパルス0.を出力する。
When S = 5in (2yc Z/p) and C = cos (2kubo Z/p), the interpolation circuit 9 further performs the determination process of the following equation (2) to determine whether the up-count pulse is up or the down-count pulse 0. Output.

但し、p、は前回検出したPL そして、計数回路10は内挿回路9からのアップカウン
トパルスUP又はダウンカウントパルスDPにより、ア
ップカウント又はダウンカウントした計数値Pu、即ち
移動変位が第1の格子4のピッチρの何個分に相当する
かを出力する。
However, p is the previously detected PL. Then, the counting circuit 10 uses the up-count pulse UP or down-count pulse DP from the interpolation circuit 9 to set the up-count or down-count count value Pu, that is, the movement displacement to the first grid. The number of pitches ρ corresponding to 4 is output.

以上の処理により得られるアブソリュート位置データP
Lとアップカウント又はダウンカウントした計数値PU
とを合わせることにより相対移動の変位量2をデジタル
値化した値P2を得ることができる。
Absolute position data P obtained by the above processing
L and up-count or down-count count value PU
By combining these values, it is possible to obtain a value P2 that is a digital value of the displacement amount 2 of the relative movement.

以上は光学式の測長器について説明したが、磁気式の測
長器の場合はメインスケールが強磁性体で成り、メイン
スケール上の格子に替えてN極とS極を交互に着磁した
パターンが設けられ、受光素子及びインデックススケー
ルの替わりにインデックススケール上のパターンと同様
なパターンを持つMR素子等が用いられているので、メ
インスケールとスライダの相対移動によって変化する磁
気強度変化を電気信号に変換することによフて光学式の
測長器と同等な信号を得ることができる。
The above explained an optical length measuring device, but in the case of a magnetic length measuring device, the main scale is made of ferromagnetic material, and the N and S poles are alternately magnetized instead of a grid on the main scale. A pattern is provided, and an MR element or the like having a pattern similar to the pattern on the index scale is used in place of the light receiving element and the index scale, so changes in magnetic intensity caused by relative movement of the main scale and the slider are converted into electrical signals. By converting it to , it is possible to obtain a signal equivalent to that of an optical length measuring device.

したがって、磁気式の測長器の検出回路は光学式で使用
されるものと同様な構成となる。
Therefore, the detection circuit of the magnetic type length measuring device has a configuration similar to that used in the optical type.

(発明が解決しようとする課題) 上述した従来の光学式の測長器や磁気式の測長器ではメ
インスケールの測長ストローク以上の範囲に細かい格子
パターン又は交互に極性を変えたsinパターンを設け
ねばならないので、メインスケール長が長くなるほど製
造が難しくまた手間もかかる上、精度的にも短いものに
比べ悪くなるという問題があった。また、パターン繰返
しピッチを広くとり、アブソリュート検出できる範囲の
拡大とパターン形成の手間を少なくしようとすると、変
位に対する正弦値及び余弦値に相等する出カイ8号が得
られにくくなったり、パターン繰返しピッチを広げるに
つれてパターン繰返しピッチ1周期あたりの分解精度が
悪化するという問題もあった。
(Problems to be Solved by the Invention) The conventional optical length measuring instruments and magnetic length measuring instruments described above have a fine grating pattern or a sine pattern with alternating polarity in a range larger than the length measuring stroke of the main scale. Therefore, the longer the length of the main scale, the more difficult and time-consuming it is to manufacture, and the accuracy is also worse than that of a shorter main scale. In addition, if you try to widen the pattern repetition pitch to expand the range that can be absolutely detected and reduce the effort required for pattern formation, it may become difficult to obtain an output of 8, which is equivalent to the sine and cosine values for displacement, or the pattern repetition pitch There is also a problem in that as the pattern repetition pitch increases, the resolution accuracy per period of the pattern repetition pitch deteriorates.

木発明は上述した事情から成されたものであり、木発明
の目的は、長ストロークを高精度に直接位置検出でき、
かつ製造が簡単で低価格な測長器を提供することにある
The wooden invention was made due to the above-mentioned circumstances, and the purpose of the wooden invention was to be able to directly detect the position of long strokes with high precision,
Another object of the present invention is to provide a length measuring device that is easy to manufacture and inexpensive.

(課題を解決するための手段) 木発明は、大型の工作機械等の長ストロークの位置51
測に適した測長器に関するものであり、本発明の上記目
的は、軸方向にスリットが設けられた導波管と、この導
波管内に電磁波の定在波を発生させる発振器と、前記電
611波を取出す複数本の探針及び各探側に発生ずる電
流を検波する検波器を備え、前記スリットに沿フて移動
可能なスライダ部とを具備することによって達成される
(Means for solving the problem) The wooden invention provides a long stroke position 51 for large machine tools, etc.
The present invention relates to a length measuring device suitable for measurement, and the object of the present invention is to include a waveguide provided with a slit in the axial direction, an oscillator that generates a standing electromagnetic wave within the waveguide, and the electric waveguide. This is achieved by providing a plurality of probes for extracting the 611 waves, a detector for detecting the current generated on each probe side, and a slider portion movable along the slit.

(作用) 本発明の測長器は、変位量に対する電磁波の強度変化の
パターンが均一化する定在波を利用しているので、電磁
波の強度変化の繰返しピッチ璽周期内を内挿した場合、
その分解精度は高く、繰返しピッチを広くしても分解精
度はほとんど悪化しない。さらに、この点を利用し、複
数個の木発明の測長器をそれぞれ導波管内の7rim波
の波長を変えて複合することで、長ストロークをアブソ
リュート変位量で検出することができる。
(Function) The length measuring device of the present invention uses a standing wave that makes the pattern of electromagnetic wave intensity change uniform with respect to the amount of displacement, so when the repeating pitch period of the electromagnetic wave intensity change is interpolated,
The resolution accuracy is high, and even if the repetition pitch is widened, the resolution accuracy hardly deteriorates. Furthermore, by utilizing this point and combining a plurality of length measuring devices of the invention with different wavelengths of the 7rim waves in the waveguide, it is possible to detect a long stroke with an absolute displacement amount.

(実施例) 第1図は本発明の測長器の一例を示す斜視図、第2図(
^)はそのX、−X、断面図、同図(It)はその7、
 、−7. 、断面図である。一端が閉じ他端に穴のあ
る導波管12の他端側に接続されている発振器IIによ
り導波管12内へ導波管I2の軸長ρの1/3の波長λ
のマイクロ波等の電磁波が注入されるようになっており
、これにより導波管I2内には第2図(ロ)に示すよう
なTE、。波の定在波が生じる。また、導波管12の上
面中央部にはスリットが導波管12の軸方向くZ軸方向
)へ壁面電流に影響を与えtjいように設けられており
、λ/8の間隔をあけて配置される4木の探針14^、
14B、14G、14Dは、各一端が導波管12のスリ
ットを通して導波管12内へ突出され、各他端がダイオ
ード15A、15B、15C,150に接続されている
。そして、各ダイオード15A、158.15C,15
Dはスリットに沿って移動可能な導体から成るスライダ
13に絶縁体からなる支持体16八、168.16[;
、160を介して固定されている。
(Example) Fig. 1 is a perspective view showing an example of the length measuring device of the present invention, and Fig. 2 (
^) is its X, -X, cross-sectional view, the same figure (It) is part 7,
, -7. , is a cross-sectional view. A wavelength λ of 1/3 of the axial length ρ of the waveguide I2 is transmitted into the waveguide 12 by an oscillator II connected to the other end side of the waveguide 12 with one end closed and a hole at the other end.
Electromagnetic waves such as microwaves are injected into the waveguide I2, thereby creating a TE as shown in FIG. 2(b). A standing wave of waves is created. In addition, slits are provided at the center of the upper surface of the waveguide 12 so as to influence the wall current in the axial direction (Z-axis direction) of the waveguide 12, and are spaced at intervals of λ/8. 4 wooden probes placed 14^,
One end of each of 14B, 14G, and 14D protrudes into the waveguide 12 through the slit of the waveguide 12, and each other end is connected to the diodes 15A, 15B, 15C, and 150. And each diode 15A, 158.15C, 15
D is a slider 13 made of a conductor movable along the slit and a support made of an insulator 168, 168.16 [;
, 160.

このような構成において、探針14A−14Dが導波管
12内の′rvLm波の一部を取出し、ダイオード15
八〜+50かその非線形領域のほぼ2乗特性に近い部分
で検波するため、各探針14A−140の位置の電界強
度のほぼ2乗に比例した検波電流を得ることかでざる。
In such a configuration, the probes 14A-14D take out a portion of the 'rvLm wave in the waveguide 12, and the diode 15
Since the detection is performed at a portion close to the square characteristic of the nonlinear region of 8 to +50, it is necessary to obtain a detection current that is approximately proportional to the square of the electric field strength at the position of each probe 14A-140.

ここで、各探針14八、14B、14c、140の位置
での電界強度E、、 Eb、 Ee、 Eaは、導波管
12内の入射波をE、反射係数をr、導波管12とスラ
イダ13の相対移動の変位量を2とすると定在波の関係
式から次式(3)で表わされる。
Here, the electric field strength E, Eb, Ee, Ea at the position of each probe 148, 14B, 14c, 140 is E, the reflection coefficient is E, the reflection coefficient is R, and the waveguide 12 is Assuming that the displacement amount of the relative movement of the slider 13 is 2, it is expressed by the following equation (3) from the standing wave relational expression.

上式(3) より各ダイオード15^、15B、15C
,150で検波された検波電流Ia、 Ib、 L、 
Idは、!、QCI E、 l 2Ib ocll:b
12 、1coclll:c12. L”1E41’ 
J:すl0CEとおくと次式(4)で表わされる。
From the above formula (3), each diode 15^, 15B, 15C
, 150 detected currents Ia, Ib, L,
Id is! , QCI E, l 2Ib ocll:b
12, 1cocll:c12. L"1E41'
If we set J: sl0CE, it is expressed by the following equation (4).

つぎに、検波電流1a、 Ib、 Ic、 Iaは増w
I器17A。
Next, the detection currents 1a, Ib, Ic, and Ia are increased by
I vessel 17A.

17Bにより11と■。、IbとIdのそれぞれが差動
増幅されるので、それらの出力電圧V、、Vbは上式(
4)より次式(5)で表わされる。
11 and ■ by 17B. , Ib and Id are differentially amplified, so their output voltages V, , Vb are expressed by the above equation (
4), it is expressed by the following equation (5).

ここで、V(X:tI’r、φ=π/4とすると、とな
り、第5図に示す光学式の測長器と同じ相対移動の変位
量2に対応した正弦値と余弦値の信号を得ることができ
る。したがって、第1図に示す本発明の測長器に第5図
に示す内挿回路9と計数回路10を組み合わせると、相
対移動の変位f!Ezをデジタル値化した値で検出する
ことができる。
Here, if V(X: tI'r, φ=π/4, then the signal of sine value and cosine value corresponding to the displacement amount 2 of the relative movement, which is the same as the optical length measuring device shown in Fig. 5) is obtained. Therefore, by combining the length measuring device of the present invention shown in FIG. 1 with the interpolation circuit 9 and counting circuit 10 shown in FIG. It can be detected by

第3図は本発明の測長器の別の一例を示す斜視図、第4
図(A)はそ(Dh−12断面図、同図(B)はその2
3−13断面図である。この測長器は、第1図に示す測
長器2個が各導波管の軸方向が平行となるように並設さ
れ、各スライダ部が結合された構成となっており、一方
の発振器11Aにより導波管12^内へ導波管12Aの
軸長lの1/8の波長λ1のマイクロ波等の電磁波が注
入され、他方の発振器11Bにより導波管12B内へ導
波管12Bの軸長1の177.5の波長λ、のマイクロ
波等の’1FiIi波が注入されるようになっている。
FIG. 3 is a perspective view showing another example of the length measuring instrument of the present invention;
Figure (A) is a sectional view of Dh-12, Figure (B) is part 2.
3-13 sectional view. This length measuring device has a configuration in which two length measuring devices shown in Fig. 1 are arranged in parallel so that the axial directions of each waveguide are parallel, and each slider section is connected, and one oscillator 11A injects electromagnetic waves such as microwaves with a wavelength λ1, which is 1/8 of the axial length l of the waveguide 12A, into the waveguide 12^, and the other oscillator 11B injects the waveguide 12B into the waveguide 12B. '1FiIi waves such as microwaves having an axial length of 1 and a wavelength λ of 177.5 are injected.

また、導波管12A内の電磁波の一部を取出す探針14
^^、14^B、14AC,14^0は導波管12^の
軸方向にλ^/8の間隔をあけて配置され、導波管12
[1内の電磁波の一部を取出す探針148^、1488
,148G、14BDは導波管12Bの軸方向にλ67
8の間隔をあけて配置されている。
Also, a probe 14 that takes out a part of the electromagnetic waves within the waveguide 12A.
^^, 14^B, 14AC, and 14^0 are arranged at intervals of λ^/8 in the axial direction of the waveguide 12^.
[Probes 148^, 1488 that take out part of the electromagnetic waves within 1
, 148G, 14BD are λ67 in the axial direction of the waveguide 12B.
They are arranged at intervals of 8.

このような構成において、導波管12^内及び12B内
の電界強度の2乗に比例した信号IAa、■All+I
Ae+IAd1及びr8a 、tab 、TBc 、I
!ldを第1図に示す増幅器17^、 17[1と第5
図に示す内挿回路9で処理することによりλA/2の範
囲内及びλ、/2の範囲内、即ち1/16の範囲内及び
fl/15の範囲内をアブソリュートな位置で検出する
ことができる。ここで、第5図に示す内挿回路9が、人
力される正弦値と余弦値の1周期内を0〜255の数値
で出力するとし、It/L6の範囲内のアブソリュート
位fl チータラPAL((+ ≦PAL ≦255 
(Q整a)J2/isの範囲内のアブソリュート位置デ
ータをPaL(0≦pat、≦255の整数)とすれば
、次式(7)を整数演算で行なうことにより、1/16
とJ2/152/15として検出することができる。
In such a configuration, signals IAa, ■All+I proportional to the square of the electric field strength within the waveguides 12^ and 12B
Ae+IAd1 and r8a, tab, TBc, I
! Amplifiers 17^, 17 [1 and 5] shown in FIG.
By processing with the interpolation circuit 9 shown in the figure, absolute positions can be detected within the range of λA/2 and within the range of λ,/2, that is, within the range of 1/16 and within the range of fl/15. can. Here, it is assumed that the interpolation circuit 9 shown in FIG. 5 outputs the manually inputted sine and cosine values within one cycle as a numerical value from 0 to 255, and the absolute position fl within the range of It/L6 is calculated by Cheetara PAL ( (+ ≦PAL ≦255
(Q integer a) If the absolute position data within the range of J2/is is PaL (an integer of 0≦pat, ≦255), then by performing the following equation (7) with integer arithmetic, 1/16
It can be detected as J2/152/15.

上式(7)は実際にはPAL及びPBLの内挿による分
解精度が良くなければ成立しないが、この測長器では電
磁波の定在波という変位に対する強度変化パターンが均
一化したものから変位を間接測定しているため、PAL
及びPILLのアブソリュート検出できる範囲を広くし
ても、内挿による分解精度が良く、測定範囲λの広い領
域をアブソリュートな位置で測定することができる。
In reality, the above equation (7) does not hold true unless the decomposition accuracy by interpolation of PAL and PBL is good, but this length measuring device calculates displacement from a standing wave of electromagnetic waves, which has a uniform intensity change pattern with respect to displacement. Due to indirect measurement, PAL
Even if the absolute detection range of PILL and PILL is widened, the decomposition accuracy by interpolation is good, and a wide area of the measurement range λ can be measured at an absolute position.

なお、上述した実施例においては、並設する測長器の個
数を2個としたが、任意の個数の測長器を並設するよう
にしてもよい。
In the above-described embodiment, the number of length measuring devices arranged in parallel is two, but any number of length measuring devices may be arranged in parallel.

(発明の効果) 以上のように本発明の測長器によれば、細かい格子パタ
ーンや交互に極性を変え着磁したパターンを設けたメイ
ンスケール等が不要となるため、測長器を長くしても単
純な構造で、かつ低価格とすることができる。また、内
挿による分解精度が高くなるので、広い測長範囲をアブ
ソリュート位lで検出することかできる。
(Effects of the Invention) As described above, according to the length measuring device of the present invention, there is no need for a main scale with a fine grid pattern or a magnetized pattern with alternating polarity, so the length measuring device can be made longer. However, it has a simple structure and can be made at low cost. Furthermore, since the resolution accuracy due to interpolation is increased, a wide length measurement range can be detected at the absolute position l.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の測長器の一例を示す斜視図、第2図(
A)はそのX、−X、断面図、同図(B)はその2、−
2.断面図、第3図は本発明の測長器の別の一例を示す
斜視図、第4図(A)はそのZ2−22断面図、同図(
B)はその23−23断面図、第5図は従来の測長器の
一例を示す斜視図とその検出回路である。 1・・・光源、2・・・コリメータレンズ、3・・・メ
インスケール、4.5・・・格子、6・・・インデック
ススケール、7・・・受光素子、8^、8B、17^、
17B・・・増幅器、9・・・内挿回路、10・・・計
数回路、11,11^、IIB・・・発振器、12.1
2A、12B・・・導波管、13・・・スライダ、14
A。 14B、14C,14D、14^^、14^B、14^
C,14AD、14B^、14BB。 14BC,14BD・・・探針、15A、15B、15
C,15D・・・ダイオード、16A、16B、16C
,16D・・・絶縁体。
Fig. 1 is a perspective view showing an example of the length measuring device of the present invention, and Fig. 2 (
A) is its X, -X, cross-sectional view, and the same figure (B) is its 2, -
2. 3 is a perspective view showing another example of the length measuring device of the present invention, and FIG. 4(A) is a Z2-22 sectional view thereof, and FIG.
B) is a 23-23 sectional view thereof, and FIG. 5 is a perspective view showing an example of a conventional length measuring device and its detection circuit. 1... Light source, 2... Collimator lens, 3... Main scale, 4.5... Grid, 6... Index scale, 7... Light receiving element, 8^, 8B, 17^,
17B... Amplifier, 9... Interpolation circuit, 10... Counting circuit, 11, 11^, IIB... Oscillator, 12.1
2A, 12B... Waveguide, 13... Slider, 14
A. 14B, 14C, 14D, 14^^, 14^B, 14^
C, 14AD, 14B^, 14BB. 14BC, 14BD... probe, 15A, 15B, 15
C, 15D...Diode, 16A, 16B, 16C
, 16D...Insulator.

Claims (1)

【特許請求の範囲】 1、軸方向にスリットが設けられた導波管と、この導波
管内に電磁波の定在波を発生させる発振器と、前記電磁
波を取出す複数本の探針及び各探針に発生する電流を検
波する検波器を備え、前記スリットに沿って移動可能な
スライダ部とから成ることを特徴とする測長器。 2、前記探針が前記電磁波の波長の1/8の間隔をあけ
て4本配置されている請求項1に記載の測長器。 3、複数個の請求項1に記載の測長器が各導波管の軸方
向が平行となるように並設され、かつ各スライダ部が機
械的に結合され、各発振器が各導波管内に波長の異なる
電磁波の定在波を発生させるようにした測長器。
[Claims] 1. A waveguide provided with a slit in the axial direction, an oscillator that generates a standing electromagnetic wave within the waveguide, a plurality of probes for extracting the electromagnetic waves, and each probe. 1. A length measuring instrument comprising: a detector for detecting a current generated in the slit; and a slider section movable along the slit. 2. The length measuring instrument according to claim 1, wherein the four probes are arranged at intervals of 1/8 of the wavelength of the electromagnetic wave. 3. A plurality of the length measuring devices according to claim 1 are arranged in parallel so that the axial directions of the respective waveguides are parallel to each other, and each slider portion is mechanically coupled, and each oscillator is connected within each waveguide. A length measuring device that generates standing waves of electromagnetic waves with different wavelengths.
JP28266589A 1989-10-30 1989-10-30 Length measuring device Pending JPH03144306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28266589A JPH03144306A (en) 1989-10-30 1989-10-30 Length measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28266589A JPH03144306A (en) 1989-10-30 1989-10-30 Length measuring device

Publications (1)

Publication Number Publication Date
JPH03144306A true JPH03144306A (en) 1991-06-19

Family

ID=17655464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28266589A Pending JPH03144306A (en) 1989-10-30 1989-10-30 Length measuring device

Country Status (1)

Country Link
JP (1) JPH03144306A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339698B1 (en) * 2000-04-18 2002-06-07 심윤종 Displacement measuring apparatus using electromagnetic standing wave
US7145502B2 (en) 2002-06-07 2006-12-05 Shima Seiki Manufacturing Limited Distance measurement method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339698B1 (en) * 2000-04-18 2002-06-07 심윤종 Displacement measuring apparatus using electromagnetic standing wave
US7145502B2 (en) 2002-06-07 2006-12-05 Shima Seiki Manufacturing Limited Distance measurement method and device

Similar Documents

Publication Publication Date Title
JP2619593B2 (en) Position measuring device
US7049924B2 (en) Electromagnetic induction type position sensor
KR101950704B1 (en) Circuits and methods for processing a signal generated by a plurality of measuring devices
JPH0125010B2 (en)
US9835473B2 (en) Absolute electromagnetic position encoder
JP4138138B2 (en) Absolute displacement measuring device
JPH09119823A (en) Position sensor
Lassahn et al. Vectorial calibration of 3D magnetic field sensor arrays
JPH03144306A (en) Length measuring device
JPH08178613A (en) Photodetector for interferometer
CN109716072A (en) Inductance type transducer equipment
US3271676A (en) Three detector cycle counting means
JPH0143243B2 (en)
JP2003247862A (en) Induction-type position transducer
CN109100664A (en) A kind of measurement method of space small magnetic field
JP2003004409A (en) Position-measuring method and position-measuring apparatus
Long Direct subdivision of moiré fringe with CCD
JPS63158477A (en) Measuring element for three-dimensional magnetic field vector
Roubal et al. Resonant Impedance Evaluation Methods for Sensors
JPS6182112A (en) Length measuring machine
JP3030651B2 (en) Linear position detector
JPS6215401A (en) Non-contact diameter measuring instrument
SU789949A1 (en) Gradientometer
JP2020148460A (en) Non-destructive inspection measurement system and non-destructive inspection measurement method
SU788058A1 (en) Differential meter of non-uniformities of sinusoidal magnetic field