JPH03141124A - Production of quartz glass preform and burner for producing quartz glass preform - Google Patents

Production of quartz glass preform and burner for producing quartz glass preform

Info

Publication number
JPH03141124A
JPH03141124A JP27689589A JP27689589A JPH03141124A JP H03141124 A JPH03141124 A JP H03141124A JP 27689589 A JP27689589 A JP 27689589A JP 27689589 A JP27689589 A JP 27689589A JP H03141124 A JPH03141124 A JP H03141124A
Authority
JP
Japan
Prior art keywords
chamber
burner
gas
glass
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27689589A
Other languages
Japanese (ja)
Inventor
Tetsuo Nozawa
哲郎 野澤
Yoshihiro Ouchi
大内 義博
Kuniharu Himeno
邦治 姫野
Ryozo Yamauchi
良三 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP27689589A priority Critical patent/JPH03141124A/en
Publication of JPH03141124A publication Critical patent/JPH03141124A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/22Inert gas details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/26Multiple ports for glass precursor
    • C03B2207/28Multiple ports for glass precursor for different glass precursors, reactants or modifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/46Comprising performance enhancing means, e.g. electrostatic charge or built-in heater
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/90Feeding the burner or the burner-heated deposition site with vapour generated from solid glass precursors, i.e. by sublimation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To obtain a quartz glass preform suitable for even use of a slightly volatile doping material by containing the slightly volatile compound as a raw material in a multitubular burner for producing a cellular preform according to a vapor axial deposition method and additionaly providing a chamber for vaporizing the aforementioned compound and feeding the resultant vapor to a pipe in the burner. CONSTITUTION:A slightly volatile compound 2 (e.g. AlCl3) in glass raw materials is contained in a chamber 3, provided near the outlet of a multitubular burner 1 and communicating with at least one pipe of the multitubular burner 1 and a carrier gas 7 (e.g. Ar) is fed while heating the chamber 3 with a heater 8 to vaporize the slightly volatile compound 2. The resultant vapor is subsequently fed to a pipe (4a) of the multitubular burner 1. Glass raw materials [e.g. BBr3 (4b) and SiCl4 (4c)] other than the slightly volatile compound 2 and combustion gases such as oxygen gas (4b) and hydrogen gas (4d) are then respectively fed to other pipes of the multitubular burner 1 to react the glass raw materials in a flame 9. Thereby, formed fine glass particles 10 are deposited to prepared a cellular preform.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、偏波面保持ファイバ用の応力付与母材とし
て使用されるA lzo 3− B to a  S 
io を系ガラス母材の製造などに好適な石英ガラス母
材の製造方法およびその方法において好適に使用される
石英ガラス母材製造用バーナに関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention is directed to the application of Alzo 3-B to a S which is used as a stress-applying base material for polarization-maintaining fibers.
The present invention relates to a method for manufacturing a quartz glass base material suitable for manufacturing a silica glass base material, and a burner for manufacturing a quartz glass base material suitably used in the method.

「従来の技術」 従来、偏波面保持ファイバ用の応力付与母材の材料とし
ては、ByOz  5ift系ガラスが主に用いられて
きた。
"Prior Art" Conventionally, ByOz 5ift glass has been mainly used as a stress-applying base material material for polarization maintaining fibers.

石英ガラス中にボロン(B*O*とじて)をドープする
ことによって、石英ガラスの熱膨張率を変化させ、これ
を別の石英ガラスと溶融一体化することにより、母材又
はファイバ内に応力歪を付与することができる。
By doping boron (as B*O*) into quartz glass, the coefficient of thermal expansion of quartz glass is changed, and by melting and integrating this with another quartz glass, stress is created in the base material or fiber. Distortion can be applied.

しかし、ボロンをドープした石英ガラスは、ボロンのド
ープ環に応じて屈折率が低下してしまうために、このボ
ロンをドープした応力母材は、用途が限定されてしまう
という欠点があった。
However, since boron-doped silica glass has a refractive index that decreases depending on the boron doping ring, this boron-doped stressed base material has the disadvantage that its applications are limited.

そこで、ボロンをドープする際に、ボロンの池に屈折率
をト昇さUoろことのできろドーパントを組み合わ仕る
ことて屈折率を制御した石英ガラスを作製する技術が要
求されている。
Therefore, there is a need for a technique for manufacturing silica glass in which the refractive index is controlled by increasing the refractive index of boron ponds and combining them with other dopants when doping with boron.

石英ガラスの屈折率を上昇さけ、かつボロンのドープに
よって変化さ仕た熱膨張率に悪影響を与えないようなド
ーパントとしては、Ge0tとAt。
Dopants that avoid increasing the refractive index of quartz glass and do not adversely affect the thermal expansion coefficient changed by boron doping include GeOt and At.

03がある。There is 03.

これらのドーパントのうちG e Otは、反応率に温
度依存性があるため、気相軸付は法をITIいた場合、
径方向に祖折率分布をしったけ材が形成されてしまう。
Among these dopants, G e Ot has a temperature dependence in its reaction rate, so when the gas phase axis is attached to the ITI method,
A material with a radial index distribution is formed.

一方、AltOaにおいては、上述の欠点は少ないもの
の、原料として用いるアルミ化合物は一般に沸点及び昇
華点が150℃以上の高温域にあるため、気相反応系へ
の原料ガスの安定供給に・碓かあり、目的物を得ること
が困難な問題があった。
On the other hand, although AltOa does not have the above-mentioned drawbacks, the aluminum compound used as the raw material generally has a boiling point and sublimation point in the high temperature range of 150°C or higher, so it is suitable for stable supply of raw material gas to the gas phase reaction system. There was a problem that it was difficult to obtain the desired object.

本発明は、上記事情に鑑みてなされたちので、Alz0
3など、石英ガラス中にドープすべき材料の原料化合物
が、気化し雉い難気化性化合物である場合において好適
な石英ガラス母Hの製造方法の提供を目的としている。
The present invention was made in view of the above circumstances, and therefore Alz0
It is an object of the present invention to provide a method for producing a quartz glass mother H suitable for cases such as No. 3 in which the raw material compound of the material to be doped into the quartz glass is a difficult-to-vaporize compound that is difficult to vaporize.

「課題を解決するための手段」 請求項1記載の発明は、多重管バーナにガラス原料を供
給し、火炎加水分解もしくは熱酸化反応させることによ
り生成されたガラス微粒子を堆積させて多孔質母材を作
製する石英ガラス母材の製造方法において、上記多重管
バーナの出口近傍に設けられ、該多重管バーナの少なく
とも1つの管路に連通したチャンバ内に、上記ガラス原
料のうちの難気化性化合物を収容し、かつ該チャンバを
加熱しつつキャリアガスを供給して該難気化性化合物を
気化せしめて多重管バーナの管路に送るとともに、該多
重管バーナの他の管路に、難気化性化合物以外のガラス
原料ガスと、酸素ガス、水素ガスなどの燃焼用ガスをそ
れぞれ供給し、該多重管バーナで火炎を形成し、該火炎
中でガラス原料を反応させることにより生成されたガラ
ス微粒子を堆積させて多孔質母材を作製することを、上
記課題を解決するための手段とした。
"Means for Solving the Problem" The invention as set forth in claim 1 provides a porous base material by supplying a glass raw material to a multi-tube burner and depositing glass fine particles produced by flame hydrolysis or thermal oxidation reaction. In the method for producing a quartz glass base material, a non-vaporizable compound of the glass raw materials is placed in a chamber provided near the outlet of the multi-tube burner and communicating with at least one pipe of the multi-tube burner. and supplies a carrier gas while heating the chamber to vaporize the difficult-to-vaporize compound and send it to the conduit of the multi-tube burner. A glass raw material gas other than a compound and a combustion gas such as oxygen gas or hydrogen gas are supplied, a flame is formed in the multi-tube burner, and the glass fine particles are generated by reacting the glass raw material in the flame. The method for solving the above problem was to create a porous matrix by deposition.

またこの製造方法においては、請求項2に記載したよう
に、難気化性化合物を収容するチャンバと、複数の管路
のうち少なくとし1つの管路をチャンバ内に連通さu1
他の管路を稚気化性化合物以外のガラス原料ガスと、酸
素ガス、水素ガスなとの燃焼用ガスの供給路に接続さU
oた多重管と、該チャンバ内にキャリアガスを供給する
キャリアガス管路と、該チャンバを加熱する加熱装置と
を備えた石英ガラス母(オ製造用バーナか好適に使用さ
れる。
Further, in this manufacturing method, as described in claim 2, the chamber containing the difficult-to-vaporize compound and at least one of the plurality of conduits are communicated with the chamber.
Connect other pipes to the supply lines for glass raw material gases other than evaporative compounds and combustion gases such as oxygen gas and hydrogen gas.
A burner for manufacturing a quartz glass mother is preferably used, which is equipped with multiple tubes, a carrier gas pipe line for supplying carrier gas into the chamber, and a heating device for heating the chamber.

また、上記石英ガラス母材製造用バーナとしては、請求
項3に記載したように、上記チャンバおよびチャンバ内
に挿通された管路を石英ガラスで形成するとともに、加
熱装置を赤外線lll5IJll装置とし、かつ該赤外
線加熱装置に、キャリアガス洪給管路に設けられた圧力
計からチャンバ内圧をモニタし、一定圧を保つように赤
外線加熱装置の赤外線光量を制御ずろ制御機構を設けて
構成してし良い。
Further, as described in claim 3, the burner for producing the quartz glass base material includes the chamber and the pipe line inserted into the chamber being formed of quartz glass, and the heating device being an infrared ray llll5Ijll device, and The infrared heating device may be configured to include a shift control mechanism that monitors the chamber internal pressure from a pressure gauge provided in the carrier gas supply pipe and controls the amount of infrared light of the infrared heating device to maintain a constant pressure. .

以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明に係わる石英ガラス製造用バ−ナの一
例を説明するための図であって、この図中符号lは石英
ガラス製造用バーナ(以下、バーナという)である。
FIG. 1 is a diagram for explaining an example of a burner for producing quartz glass according to the present invention, and reference numeral 1 in this figure indicates a burner for producing quartz glass (hereinafter referred to as burner).

このバーナlは、AlC1zあるいはAll3r*なと
の難気化性化音物2を収容するチャンバ3と、6つの管
路・18〜4fのうち中心+1<の管路4aをチャンバ
3内に連通さ仕、他の管路4b〜、1「を難気化性化音
物2以外のガラス原#1ガスと、酸素ガス水素ガスなと
の燃焼用ガスの(11,給路5b〜5rに接続させたl
et管6と、チャンバ3内にA「ガス(ギヤリアガス)
を供給するキャリアガス管路7と、チャンバ3を加熱す
る加熱装置8とを備えて構成されている。
This burner 1 communicates with a chamber 3 that accommodates a difficult-to-vaporize carboxylic substance 2 such as AlC1z or All3r*, and a pipe 4a at the center +1< among six pipes 18 to 4f. In addition, the other pipes 4b to 1" are connected to the supply lines 5b to 5r for glass raw #1 gas other than the difficult-to-gasify compound 2, and combustion gas such as oxygen gas or hydrogen gas. I
ET pipe 6 and A gas (gear gas) in the chamber 3.
The chamber 3 is configured to include a carrier gas conduit 7 for supplying the gas, and a heating device 8 for heating the chamber 3.

上記難気化性化音物2としては、上述したようにアルミ
ニウムのハロゲン化物であるA Ic +3(融点19
0℃、昇華点180°C)あるいはAlBr、(融点9
75℃、沸点255℃)が用いられる。これらの化合物
ともに気化したガスは200°C近い高温であるために
、これらを多重管6の出口から離れた地点から供給する
には、途中の配管を200℃以」−に保−)ことが必要
となり、技術的な困・誰が11(う。そこでこの例によ
るバーナlにおいては、多重管6の出口近傍に上記チャ
ンバ3を設けることにより、多重管6の出口近傍で難気
化性化音物2を気化さ仕て多重管6の管路4a内に送る
ことによって装置の簡略化が11えろことになる。
As mentioned above, the difficult-to-vaporize chemical compound 2 is aluminum halide A Ic +3 (melting point 19
0℃, sublimation point 180℃) or AlBr, (melting point 9
75°C, boiling point 255°C). The gases that have vaporized both of these compounds are at a high temperature of nearly 200°C, so in order to supply them from a point away from the outlet of the multiple pipe 6, it is necessary to keep the intermediate piping at a temperature of 200°C or higher. Therefore, in the burner 1 according to this example, by providing the above chamber 3 near the outlet of the multiple tube 6, difficult-to-vaporize chemical compounds are removed near the outlet of the multiple tube 6. By vaporizing 2 and sending it into the conduit 4a of the multi-tube 6, the apparatus can be simplified by 11 times.

多重管6の6管路4a〜4「内に供給されるガスの種類
は、第2図に示すように、中心部の第1の管路4aにA
IChあるいはA11lr3、その外側の第2の管路4
1)に[IB+’:+、その外側の第3の管路4cにS
 iC14,その外側の第4の管路4 dにlit、そ
の外側の第5の管路4eにA「、その外側の第6の管路
4rに0.かそれぞれ供給されろようになっている。
As shown in FIG.
ICh or A11lr3, second conduit 4 outside it
1) to [IB+':+, and S to the third conduit 4c outside thereof.
iC14, lit to the fourth conduit 4d on the outside, A' to the fifth conduit 4e on the outside, and 0 to the sixth conduit 4r on the outside. .

上記加熱装置8としては、火炎もしくは電気ヒータを用
いたチャンバ3の直接加熱装置の使用が考えられる、し
かし直接加熱では、5?’1%点付近での精密な熱…制
御を行うことが難しく、急激に背嚢、沸騰が生しる可能
性があり、難気化性化音物2のガスの定量供給用として
は不向きである。、さらに直接加熱では、被加熱物から
の熱的影響を受けやすく、安定性に欠ける。これらのこ
とから加熱装置8としては、赤外線加熱装置が好適に用
いられろ。
As the heating device 8, it is possible to use a direct heating device for the chamber 3 using a flame or an electric heater. 'Precise heat near the 1% point...It is difficult to control, and there is a possibility of sudden boiling, making it unsuitable for quantitatively supplying gas of difficult-to-vaporize gas. . Furthermore, direct heating is susceptible to thermal effects from the heated object and lacks stability. For these reasons, an infrared heating device is preferably used as the heating device 8.

このバーナ1を用いてA lyo、z−B tO3−9
10を系ガラス母材を作製するには、まず、チャンバ3
内に難気化性化合物2を入れ、次いで加熱装置8により
難気化性化音物2を加熱し、気化(界乍)を開始させる
。次いでチャンバ3内に、キャリアガス管路7を通して
Arガス(キャリアガス)を一定の流増で供給し、多重
管6の第1の管路4aL:Jlt気化性化合物2のガス
を送り込むととらに、多重管6の管路4b〜4rに、B
Brl、5iCla、[1、、A「およびO2のガスを
それぞれ供給4”ろ。
Using this burner 1, A lyo, z-B tO3-9
In order to produce the glass base material 10, first, the chamber 3
The difficult-to-vaporize compound 2 is put into the container, and then the hard-to-vaporize compound 2 is heated by the heating device 8 to start vaporization. Next, Ar gas (carrier gas) is supplied into the chamber 3 through the carrier gas pipe 7 at a constant flow rate, and the gas of the Jlt vaporizable compound 2 is sent to the first pipe 4aL of the multiple pipe 6. , B to the pipes 4b to 4r of the multiple pipe 6
Brl, 5iCla, [1, A" and O2 gases were supplied to each of the 4" filters.

次いで多重管6の出口から噴出したガスを燃焼させ、酸
水素火炎9を生じさけ、酸水素火炎9内に送り込まれた
AlCl3により次式(1)で示される反応が生じ、 2AIc 134−3Hto→A l!0 、+−6H
CI・・ ・(1)S iC1,、+31’3 r+に
おけろ次の式(II)、(III)の反応S 1C1−
+ 21−1 、o →S io !+ 411 CI
−−(II )2B +3 +3−f 311 、O→
Bto 3+ 6H13r(Ill )ととら(こB 
t O3、A l t Ozドープされjこプfラス微
事☆。
Next, the gas ejected from the outlet of the multi-tube 6 is combusted to generate an oxyhydrogen flame 9, and the AlCl3 fed into the oxyhydrogen flame 9 causes a reaction represented by the following formula (1), 2AIc 134-3Hto→ Al! 0, +-6H
CI... ・(1) S iC1,, +31'3 r+ Reaction of the following formulas (II) and (III) S 1C1-
+ 21-1, o → S io! +411 CI
--(II)2B +3 +3-f 311, O→
Bto 3+ 6H13r (Ill) and Tora (Ko B
t O3, Al t Oz doped and j-op f plus trivial☆.

子lOが形成される。A child IO is formed.

二のガラス微粒r−10は、酸水素火炎9 fi傍に配
置された出発III4の表面に付着、堆積され、多孔質
母材+1となる。この多孔質母材11は、図中矢印Sて
示すように回転させ、かつガラス微粒子lOの堆積状況
に応じて[;方に向けて徐々に弓き上げられる。
The second glass fine particles r-10 are attached and deposited on the surface of the starting material III4 placed near the oxyhydrogen flame 9fi, forming a porous base material +1. This porous base material 11 is rotated as shown by the arrow S in the figure, and is gradually arched in the direction [; depending on the deposition state of the glass fine particles 1O.

これら谷操作により、Δl’zo 3−11103−3
10 ?系ガラス母材が作製されろ。得られたガラスI
F) +4は多孔質状であるため、これを焼結炉内で加
熱し透明化して透明ガラス1′、上(才とする。
By these valley operations, Δl'zo 3-11103-3
10? A glass base material of this type is prepared. Obtained glass I
F) Since glass +4 is porous, it is heated in a sintering furnace to make it transparent to form transparent glass 1'.

第3図は、本発明に係わるバーナの池の例を71々オ図
である。
FIG. 3 is a diagram showing an example of a burner pond according to the present invention.

このバーナ12は、チャンバ3および=R1,ツバ内の
f1管路を石英ガラスで形成4−るとと6に、加熱装置
8に赤外線加熱装置F? l 3を用い、二の赤;−C
線加熱装置13に、キャリアガス管路7に設けろれた圧
力計14からチャンバ内圧をモニタし、定圧を保つよう
に赤外線加熱装置13の赤外線光量を制御する制御装置
15を設けて構成されている。
This burner 12 includes a chamber 3 and =R1, a pipe line f1 in the brim made of quartz glass, and a heating device 8 and an infrared heating device F? Using l 3, red of 2;-C
The wire heating device 13 is provided with a control device 15 that monitors the chamber internal pressure from a pressure gauge 14 provided in the carrier gas pipe line 7 and controls the amount of infrared light of the infrared heating device 13 so as to maintain a constant pressure. .

この赤外線加熱装置13は、赤外線ランプ16とこの背
面に設けられた反射鏡17とを0;hえて構成されてい
る。この反射鏡17は、赤外線反射率の良いA uを薫
育した凹曲面状の反射面を備え、反射鏡I7のイ1(点
部に配置IvLされた赤外線ランプ16から出q、tさ
れる赤外光を反th・tさ什てチャンバ3に集光・う−
ろようになっている。チャンバ3およびその内部に挿入
された管路は、赤外吸収率の低い石英ガラスで作られて
いるので、照射された赤外線はlit :I<をうける
ことなくチャンバ3内の難気化性化合物2に達し、難気
化性化合物2に分子振動を与えS?inに相当ケる熱(
nを1111える。 上記制御装置15は、キャリアガ
ス管路7に取り付けられた圧力計1・1からチャンバ内
圧をモニタし、この内圧か−・定となるように赤外線加
熱装置13の通電を制御してチャンバ3に照射される赤
外線光量を制御するようになっている。
This infrared heating device 13 includes an infrared lamp 16 and a reflecting mirror 17 provided on the back thereof. This reflecting mirror 17 is equipped with a concave curved reflecting surface in which A u having a good infrared reflectivity has been cultivated, and the infrared lamps 16 emitted from the infrared lamps 16 arranged at the point IvL of the reflecting mirror I7 are Infrared light is focused in chamber 3 through anti-th and t-
It's getting dark. Since the chamber 3 and the pipe line inserted therein are made of quartz glass with a low infrared absorption rate, the irradiated infrared rays are absorbed into the difficult-to-vaporize compound 2 in the chamber 3 without being affected by lit:I<. reaches S? Heat equivalent to in (
Increase n by 1111. The control device 15 monitors the chamber internal pressure from the pressure gauges 1. The amount of infrared light emitted is controlled.

このバーナ12ては、赤外線ランプ16からの赤外光を
受けてチャンバ3内の難気化性化合物2が気化°4゛る
と、チャンバ3内圧が高まり、この内圧の上界がキャリ
アガス管路7の圧力計14に検知されて制御装置15に
伝えられ、チャンバ内圧が一定となるように赤外線ラン
プ16の赤外線光!1が制御される。赤外線による難気
化性化合物2の加熱は、ヒータによる直接加熱方式に比
べ、原料界lIし正確に制御することができる(すなわ
ち、赤外線の照射を開始すれば直しに原料を気化さUる
ことかでき、照射を中止すれば直ちに気化を停止させる
こともできる。)ので、難気化性化合物2の気化ガスの
供給mを一定に保つことが容易にでき、均一な組成のA
ltOz−Byo、3−5io。
In this burner 12, when the difficult-to-vaporize compound 2 in the chamber 3 is vaporized by receiving infrared light from the infrared lamp 16, the internal pressure of the chamber 3 increases, and the upper limit of this internal pressure is the carrier gas pipe. The infrared light from the infrared lamp 16 is detected by the pressure gauge 14 of 7 and transmitted to the control device 15 so that the chamber internal pressure is constant! 1 is controlled. Heating of the difficult-to-vaporize compound 2 using infrared rays can be controlled more accurately than the direct heating method using a heater. (The vaporization can be stopped immediately by stopping the irradiation.) Therefore, it is possible to easily keep the supply m of the vaporization gas of the difficult-to-vaporize compound 2 constant, and the vaporization can be stopped immediately by stopping the irradiation.
ltOz-Byo, 3-5io.

系ガラスを作製することができる。system glass can be produced.

「実施例」 第1図ないし第3図に示すバーナとほぼ同様のバーナを
用いてA l t 03  B t O3S i Oを
系石英ガラス母材を作製した。
"Example" A quartz glass base material based on Al t 03 B t O3S i O was prepared using a burner substantially similar to the burner shown in FIGS. 1 to 3.

多重管(6重管)は外径が22mmφ、チャンバは外径
40mmφ、高さ1501の円筒状であり、このチャン
バ内にノ\IC1,を約2/3の高さまで入れた。チャ
ンバおよび多!■管や管路は石英ガラス製とした。
The multi-tube (six-fold tube) had an outer diameter of 22 mmφ, and the chamber had a cylindrical shape with an outer diameter of 40 mmφ and a height of 1501 mm, and the IC1 was placed in this chamber to about 2/3 of its height. Chamber and many! ■The pipes and conduits are made of quartz glass.

このチャンバ内にはA「ガスを0.112/min供給
し、多・R管の中心部の管路からチャンバ内で気化した
AlCl、ガスを供給できるようにした。また多jfC
77の他の管路には、Ii [3r:+(0,16Q/
 lll1n、)、S i C14(0,412/ m
in、)、 It t(8,(H1/ sin、)、 
A「(1,5Q/ min )、0 +(+2.OQ/
 min、)をそれぞれ供給した3゜ 上1ニチャノパの加熱装置次としては第3図に示゛4゛
らのと同+′p +rq戎の赤外線加熱装置を用いた。
A gas was supplied into this chamber at a rate of 0.112/min, and AlCl and gas vaporized in the chamber could be supplied from the central pipe of the multi-R tube.
77 other pipes have Ii [3r:+(0,16Q/
), S i C14 (0,412/m
in, ), It t(8, (H1/ sin,),
A "(1,5Q/min), 0 + (+2.OQ/
In addition, an infrared heating device of +'p +rq, the same as that shown in FIG. 3, was used.

赤外R11!I *へ装置によりチャンバ内の加熱を行
いA Ic Itノ> ’<1.化ガスを多重管、)中
心部の7ff路に入れるとと6に、(也の1京料ガスを
それぞれ多重管の各管路内に(J−給して占、火し、多
・R百出[1に酸水素火炎を形成しf為そして火炎加水
分解もしくは熱酸化反り乙に1り得られるガラス微粒子
を出発11財にtith’iさUろ気Fil袖付は法に
よって外径701φのAltoi−ntcz−SiOt
系ガラメガラス母材質母材)を作製した。
Infrared R11! The device heats the inside of the chamber to A Ic Itノ>'<1. When the chemical gas is put into the 7ff line in the center of the multi-tube, the In order to form an oxy-hydrogen flame, flame hydrolysis or thermal oxidation warp, the obtained glass fine particles were made into 11 pieces, and the filter sleeves were made with an outer diameter of 701φ by the method. -ntcz-SiOt
A glass-based glass base material (base material) was prepared.

次いで得られた多孔質母材を焼結炉に入れ、透明化を行
って透明ガラス母材を作製した。
Next, the obtained porous base material was placed in a sintering furnace and made transparent to produce a transparent glass base material.

このようにして作製された透明ガラス母材の用折率はA
1トープ攪に応じて1.4512〜1.4592で」1
−1整可能であった。またこの母材の屈折率分布は、径
方向および長さ方向とも差かなく均一であった。
The refractive index of the transparent glass base material produced in this way is A
1.1.4512 to 1.4592 depending on the tope stirring”1
-1 was possible. Further, the refractive index distribution of this base material was uniform with no difference in both the radial direction and the length direction.

またこの母材を切断して複数箇所の熱膨張率を測定した
結果、この母材の熱膨張率は従来のB、03S IOを
系の応力母材とほぼ同様の値を示し、かつ径方向および
長さ方向で均一の値を示した。
In addition, as a result of cutting this base material and measuring the coefficient of thermal expansion at multiple locations, the coefficient of thermal expansion of this base material was found to be approximately the same value as the stress base material of the conventional B, 03S IO system, and in the radial direction. and showed uniform values in the length direction.

1発明の効果」 以」−説明したように、本発明によれば、気(11輔付
11法により、L3.Ol、!:lXl、0.をコドー
プし、’a−tl折率を調整しに応力付与母にの生産性
の高効率化を図ること1)・できる。
1. Effects of the Invention As explained above, according to the present invention, L3.Ol,!:lXl,0. 1) It is possible to improve the productivity of stress-applying matrices.

また、r・n管の出口と傍にA101.などの短気化l
T1化合物を気化さ仕て多重管内にυ(給するためのチ
ャンバを設け7・ニバーナを用い、稚気化性化合物をチ
ャンバ内で気化さ仕て直ちに多重管を通して放出させろ
ように構成したので、難気化性化合物ガスの供給系を簡
略化できろ。
Also, A101. short-tempered l
A chamber for vaporizing the T1 compound and supplying υ(υ) into the multiple tubes was provided, and a 7-nivarna was used. The supply system for volatile compound gas can be simplified.

さらに、赤外線加熱装置を設けて難気化性化合物を赤外
線+111熱して気化させろとともに、チャンバ内圧を
モニタし、内圧が一定となるように赤外線光量を制御す
る制御装置を設けたので、難気化性化合物ガスの供給屯
を一定に保つことが容易にでき、均一な組成の石英ガラ
スITN4を作製4−ろことかできろ。
Furthermore, an infrared heating device was installed to heat the difficult-to-vaporize compound by +111 infrared rays to vaporize it, and a control device was installed to monitor the chamber internal pressure and control the amount of infrared light so that the internal pressure remained constant. It is possible to easily maintain a constant gas supply volume and to fabricate quartz glass ITN4 with a uniform composition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係わる石英ガラス母材製造用バーナ
の一例を示す概略構成図、第2図は第1図の■−n線断
面図、第3図は本発明に係わる石英ガラス母材製造用バ
ーナの池の例を示す概略構成図である。 6・・・・多IR′i″?、  7・ ・キャリアガス
Tτ路、8 ・加熱装置、    9  ・酸水素火炎
、10・・ ガラス微$Q−f”−1ll  ・多孔質
母+4.13 ・赤外線加熱装置、  l =1   
圧力計15・・・制り11装置。
FIG. 1 is a schematic configuration diagram showing an example of a burner for producing a quartz glass base material according to the present invention, FIG. 2 is a sectional view taken along the line ■-n in FIG. 1, and FIG. FIG. 2 is a schematic configuration diagram showing an example of a pond for a burner for producing wood. 6...Multi-IR'i"?, 7. Carrier gas Tτ path, 8. Heating device, 9. Oxyhydrogen flame, 10. Glass fine $Q-f"-1ll. Porous matrix +4.13・Infrared heating device, l = 1
Pressure gauge 15...Restriction 11 device.

Claims (3)

【特許請求の範囲】[Claims] (1)多重管バーナにガラス原料を供給し、加水分解も
しくは熱酸化反応させることにより生成されたガラス微
粒子を堆積させて多孔質母材を作製する石英ガラス母材
の製造方法において、 上記多重管バーナの出口近傍に設けられ、該多重管バー
ナの少なくとも1つの管路に連通したチンバ内に、上記
ガラス原料のうちの難気化性化合物を収容し、かつ該チ
ャンバを加熱しつつキャリアガスを供給して該難気化性
化合物を気化せしめて多重管バーナの管路に送るととも
に、該多重管バーナの他の管路に、難気化性化合物以外
のガラス原料ガスと、酸素ガス、水素ガスなどの燃焼用
ガスをそれぞれ供給し、該多重管バーナで火炎を形成し
、該火炎中でガラス原料を反応させることにより生成さ
れたガラス微粒子を堆積させて多孔質母材を作製するこ
とを特徴とする石英ガラス母材の製造方法。
(1) A method for manufacturing a silica glass base material in which a porous base material is produced by supplying a glass raw material to a multi-tube burner and depositing glass fine particles generated by hydrolysis or thermal oxidation reaction, comprising: A difficult-to-vaporize compound of the glass raw materials is contained in a chamber provided near the outlet of the burner and communicated with at least one pipe of the multi-tube burner, and a carrier gas is supplied while heating the chamber. At the same time, the difficult-to-vaporize compound is vaporized and sent to the pipe line of the multi-tube burner, and glass raw material gas other than the difficult-to-vaporize compound, oxygen gas, hydrogen gas, etc. A porous base material is produced by supplying combustion gases, forming a flame in the multi-tube burner, and depositing glass fine particles generated by reacting glass raw materials in the flame. Method for manufacturing quartz glass base material.
(2)難気化性化合物を収容するチャンバと、複数の管
路のうち少なくとも1つの管路をチャンバ内に連通させ
、他の管路を難気化性化合物以外のガラス原料ガスと、
酸素ガス、水素ガスなどの燃焼用ガスの供給路に接続さ
せた多重管と、該チャンバ内にキャリアガスを供給する
キャリアガス管路と、該チャンバを加熱する加熱装置と
を備えた石英ガラス母材製造用バーナ。
(2) A chamber containing a difficult-to-vaporizable compound and at least one of the plurality of pipes are communicated with the chamber, and the other pipe is connected to a frit gas other than the difficult-to-vaporize compound;
A quartz glass base comprising multiple pipes connected to a supply line for combustion gas such as oxygen gas and hydrogen gas, a carrier gas pipe line for supplying carrier gas into the chamber, and a heating device for heating the chamber. Burner for wood production.
(3)上記チャンバおよびチャンバ内に挿通された管路
を石英ガラスで形成するとともに、上記加熱装置を赤外
線加熱装置とし、かつ該赤外線加熱装置に、上記キャリ
アガス供給管路に設けられた圧力計からチャンバ内圧を
モニタし、一定圧を保つように赤外線加熱装置の赤外線
光量を制御する制御機構を設けたことを特徴とする請求
項2記載の石英ガラス母材製造用バーナ。
(3) The chamber and the pipe line inserted into the chamber are formed of quartz glass, the heating device is an infrared heating device, and the infrared heating device is provided with a pressure gauge provided in the carrier gas supply pipe line. 3. The burner for producing a quartz glass base material according to claim 2, further comprising a control mechanism for monitoring the chamber internal pressure and controlling the amount of infrared light from the infrared heating device so as to maintain a constant pressure.
JP27689589A 1989-10-24 1989-10-24 Production of quartz glass preform and burner for producing quartz glass preform Pending JPH03141124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27689589A JPH03141124A (en) 1989-10-24 1989-10-24 Production of quartz glass preform and burner for producing quartz glass preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27689589A JPH03141124A (en) 1989-10-24 1989-10-24 Production of quartz glass preform and burner for producing quartz glass preform

Publications (1)

Publication Number Publication Date
JPH03141124A true JPH03141124A (en) 1991-06-17

Family

ID=17575892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27689589A Pending JPH03141124A (en) 1989-10-24 1989-10-24 Production of quartz glass preform and burner for producing quartz glass preform

Country Status (1)

Country Link
JP (1) JPH03141124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153564A (en) * 2011-01-26 2012-08-16 Shin-Etsu Chemical Co Ltd Glassworking lathe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153564A (en) * 2011-01-26 2012-08-16 Shin-Etsu Chemical Co Ltd Glassworking lathe
US8813523B2 (en) 2011-01-26 2014-08-26 Shin-Etsu Chemical Co., Ltd. Glass lathe

Similar Documents

Publication Publication Date Title
US4414012A (en) Fabrication methods of doped silica glass and optical fiber preform by using the doped silica glass
FI82031C (en) BRAENNARE FOER TILLVERKNING AV OPTISKT FIBERBASMATERIAL.
JPS6038345B2 (en) Manufacturing method of glass material for optical transmission
CN105492399A (en) A process for fabrication of ytterbium doped optical fiber
JPH03141124A (en) Production of quartz glass preform and burner for producing quartz glass preform
JP3137517B2 (en) Method for producing synthetic quartz glass member and burner for producing synthetic quartz glass
JP2003252635A (en) Method and apparatus for manufacturing porous base material
JPS6135139B2 (en)
JPS63134531A (en) Device for synthesizing glass fine particle
US6378337B1 (en) Method for producing bulk fused silica
JPS593942B2 (en) Manufacturing method of glass fiber base material
JPS63222034A (en) Burner for forming fine particle soot
JPS6090836A (en) Manufacture of synthetic quartz
WO2001092172A1 (en) Method of making a titania-doped fused silica preform
JP3078590B2 (en) Manufacturing method of synthetic quartz glass
JPH0480860B2 (en)
JPH01126236A (en) Production of optical fiber preform
JPS6126504B2 (en)
JPH0559052B2 (en)
JPH0328134A (en) Burner for glass production
CN1951849B (en) Apparatus for fabricating soot preform
JP3417962B2 (en) Manufacturing method of synthetic quartz glass member
JPS62162637A (en) Production of optical fiber preform
KR100209362B1 (en) Method and apparatus for making optical fiber
JPS59184735A (en) Transparent vitrification of optical porous glass