JPH0313122B2 - - Google Patents

Info

Publication number
JPH0313122B2
JPH0313122B2 JP13968183A JP13968183A JPH0313122B2 JP H0313122 B2 JPH0313122 B2 JP H0313122B2 JP 13968183 A JP13968183 A JP 13968183A JP 13968183 A JP13968183 A JP 13968183A JP H0313122 B2 JPH0313122 B2 JP H0313122B2
Authority
JP
Japan
Prior art keywords
fence
wind
wind speed
net
nets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13968183A
Other languages
Japanese (ja)
Other versions
JPS6031413A (en
Inventor
Yoshinobu Hoshi
Juji Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumikin Kozai Kogyo KK
Original Assignee
Sumikin Kozai Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumikin Kozai Kogyo KK filed Critical Sumikin Kozai Kogyo KK
Priority to JP13968183A priority Critical patent/JPS6031413A/en
Publication of JPS6031413A publication Critical patent/JPS6031413A/en
Publication of JPH0313122B2 publication Critical patent/JPH0313122B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F7/00Devices affording protection against snow, sand drifts, side-wind effects, snowslides, avalanches or falling rocks; Anti-dazzle arrangements ; Sight-screens for roads, e.g. to mask accident site
    • E01F7/02Snow fences or similar devices, e.g. devices affording protection against sand drifts or side-wind effects
    • E01F7/025Devices specially adapted for protecting against wind, e.g. screens, deflectors or attenuators at tunnel or lock entrances

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Fencing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この説明は、例えば火力発電所等の屋外貯炭場
における貯炭表面からの炭塵飛散防止等に使用す
る防風フエンスに係り、遮風効果のきわめて高い
フエンスに関するものである。 上記貯炭場等においては、第1図に示す如く山
形に積上げられた貯炭1の表面から強い風に巻上
げられて飛散する炭塵が、貯炭場外に降下、周辺
地域を汚染し、問題となつている。 防風フエンスは、例えばこのような問題に対処
するものとして有用である。貯炭1の風上側にフ
エンスAを設け、吹込む風を遮ぎるようにするも
のである。 ところが、防風フエンスには、次のような問題
がある。すなわち、そもそもフエンスの遮風効果
とは、理論的には第2図の模式説明図に示す如
く、フエンスAの上端によつて風の流れBに剥離
Cを発生させ、その剥離流の下方に風速0の線D
に囲まれた、いわゆる死水域(ハツチング部分)
を形成するというものである。ところが現実には
単なる衝立様のものをフエンスとして使用する
と、その死水域、とくにフエンスの近くのところ
に強い渦Eが多数発生し、理論的に云う死水域も
十分な風速低減域とはなり得ないものである。 本発明者は、この死水領域の渦を解消し、死水
領域を十分な風速低減域として確保することがで
きる防風フエンスの開発を意図し、鋭意実験、研
究を重ねた結果、次のような事実を見い出したも
のである。すなわち、先述したように、フエンス
を設置した場合にそのフエンス風下側にできる強
い渦は、フエンスそのものをネツト状にすること
により弱く小さくすることが可能である。つま
り、ネツトフエンスでは、フエンスを吹抜ける風
がフエンス風下側の渦に作用する結果である。と
ころがこのネツトフエンスの場合にも、フエンス
風下側の渦抑制の効果と本来の遮風効果、つまり
渦の影響を無視したときの風速低減の効果を両立
させるのは実際上不可能である。すなわち、ネツ
トフエンスの場合にはその網目の条件がフエンス
より風下側の流れに大きく影響してくる。具体的
には、フエンス面の充実率、つまり網目充実部の
フエンス見付面積に占める割合がその大きな影響
因子であり、傾向としてこの充実率が小さいと、
フエンス風下側の渦形成抑制の効果は高まるもの
の、遮風効果が乏しくなり、逆に大きな充実率で
は、遮風効果そのものはよくなるが、渦形成が強
くかつ大きくなり、結局フエンスの風下側直近の
死水領域の風速低減比が低くなる。このような関
係から、ネツトフエンスの場合でも、フエンス風
下側に十分な風速低減域を確保することは困難な
ものである。 しかるに、このネツトフエンスにおいて、その
ネツトを、いわゆる2重張り構造にし、この2重
張りのネツトを、第3図に示す如く両ネツト2,
2′間で互いの網目が縦、横両方向に関し千鳥状
となるように配置してやれば、すぐれた遮風効果
と死水領域の渦抑制の効果を同時に確保すること
が可能となる。すなわち、この2重張りネツトフ
エンスにおいては、フエンス面の見かけの充実
率、つまりフエンス見付面積と両ネツト2,2′
の網目充実部の投影面積の比がフエンス風下側の
流れを左右する最も重要な因子となり、この見か
けの充実率と遮風効果、渦抑制効果との関係は傾
向的には先に述べた1枚張りのネツトフエンスの
ときと類似する。すなわち、小さな充実率では遮
風効果が劣り、これが大きくなると、フエンスの
風下側直近の整流効果が下がつてくる。しかしな
がら、2重張りの場合には、1枚張りとは異な
り、遮風効果を高く維持しながらすぐれた整流効
果を確保する、つまり遮風、整流の両効果を高次
元でバランスさせ得る見かけ充実率の領域が存在
する。これは、2重張りではフエンス通過時風は
ネツトを2回くぐり抜けることになるが、その際
ネツトは、いわゆる整流格子として機能し、同時
に大きな乱れをもつた渦を小さく分解するという
2重の効果を発揮することになるためと考えられ
る。このようなことから、2重張りネツトフエン
スの場合には、フエンス風下側に広くしかも十分
な風速低減比をもつ風速低減を確保することが可
能となるものである。 すなわち本発明は、上記に基くものであつて、
同じく網目形状をもつ互いに平行配置の2枚の衝
立ネツト2,2′を備え、該両ネツトは互いの網
目が縦、横両方向に千鳥状となるように位置し、
その両ネツトからなるフエンス体の遮風面の見か
けの充実率が50〜80%であり、かつ両ネツトの離
間距離Lが2mm以上でかつ網目開口部の横方向長
lの5倍以内の範囲にあることを特徴とする防風
フエンスを要旨とする。 本発明において、2重張りネツトの互いの網目
の位置関係を、第3図に示した如く縦、横両方向
に関し千鳥状をなす関係としたのは、2重張りネ
ツトを整流格子として十分に機能させ、フエンス
の風下側直近の渦の効果的な解消を可能にするた
めである。 次に、この2重張りネツトからなるフエンス体
のフエンス面の見かけの充実率を、50〜80%に限
定したのは、後記する風洞実験結果による同一寸
法のフエンス単体と、これを二重張りした場合の
風速分布、乱れ強さ分布(第6図、第7図、特に
イ,ハ参照)の数値による変化を基礎に推測決定
したもので、これが50%未満では遮風効果の点で
不十分となり、フエンス風下側の風速低減比が不
足する結果となり、また逆に80%をこえる大きな
充実率ではフエンスの風下側直近の整流が十分に
達せられず、この点で問題となる。なお、この見
かけの充実率はとくに、55〜65%程度とするのが
効果上好ましい。 更に、第3図ロ(縦断側面図)に示す2重張り
ネツトの相互離間距離Lを、2mm以上でかつ網目
開口部の横方向長さl(同図イ参照)の5倍以内
としたのは、風洞実験結果による2枚張りとした
場合の相互離間距離、見掛充実率変化に基く乱れ
強さ分布等を参酌考慮して決定したもので、L<
2mmでは機能的にみて1枚張りネツトと殆ど変り
なく2重張りにした本来の意味がなくなり、また
L>5lになると、相互の干渉効果がなくなるから
である。 本発明の2重張りネツトフエンスのネツトとし
ては、上記見かけの充実率で50〜80%を確保でき
さえすれば、網目の形状、大きさ等の種類を問わ
ず何れでも使用できるものである。要するに、何
れのネツトを使用しても、フエンスとして見かけ
の充実率50〜80%を確保してやりさえすれば、つ
ねに同様の効果が期待できるのである。前記第3
図に示したネツト2,2′は、1枚板にスリツト
を入れ拡開してつくつた、いわゆるエキスパンド
メタル型のものであり、金属ネツトとしてはこの
エキスパンドメタル型が最も一般的なものであ
る。 本発明フエンスは具体的には、例えば第4図に
示す如くに構成される。すなわち、同図におい
て、フエンス体Aは、上記のようなネツトを使用
したパネル構成体3の多数を、フエンス設置場所
に所定間隔で立設した支柱4の間に上下、左右に
連続するようにして取付けて構成されている。上
記パネル構成体3とは、例えば第5図(イは正面
図、ロは側面図)に示す如く、上下一対の溝形鋼
からなる間隔保持材5,5の両側に矩形状のネツ
ト2,2′を張りこれをその縁部に沿つて配した
押え部分6,7で固定してパネル状としたもので
ある。 次に、本発明フエンスの有効性確認のために行
つた実験について説明する。 エツフエル型吹出式境界層風洞を用い、下記の
3つのネツトフエンスの模型を使用して風洞実験
を行つた。 <フエンス模型>
This description relates to a windbreak fence used to prevent the scattering of coal dust from the surface of coal storage in an outdoor coal storage area such as a thermal power plant, and relates to a fence that has an extremely high wind-blocking effect. In the above-mentioned coal storage yards, etc., as shown in Figure 1, coal dust is blown up and scattered by strong winds from the surface of the coal storage 1 piled up in a mountain shape, and falls outside the storage area, contaminating the surrounding area and becoming a problem. There is. Windbreak fences, for example, are useful in addressing such problems. A fence A is provided on the windward side of the coal storage 1 to block the blowing wind. However, windbreak fences have the following problems. In other words, in theory, the wind-shielding effect of a fence is that, as shown in the schematic explanatory diagram in Fig. 2, separation C is generated in the wind flow B by the upper end of the fence A, and the flow below the separation flow is Line D of wind speed 0
The so-called dead area (hatched area) surrounded by
The idea is to form a However, in reality, if a simple screen-like fence is used as a fence, many strong eddies E will occur in the dead area, especially near the fence, and the theoretical dead area may not be a sufficient wind speed reduction area. It's something that doesn't exist. The inventor of the present invention intended to develop a windbreak fence that can eliminate the vortices in the dead water area and secure the dead water area as a sufficient wind speed reduction area, and as a result of extensive experiments and research, the following facts were discovered. This is what we discovered. That is, as mentioned above, when a fence is installed, the strong vortices that form on the leeward side of the fence can be made weaker and smaller by making the fence itself into a net shape. In other words, in a net fence, this is the result of the wind blowing through the fence acting on the vortex on the leeward side of the fence. However, even in the case of this net fence, it is practically impossible to achieve both the effect of suppressing vortices on the leeward side of the fence and the original wind shielding effect, that is, the effect of reducing wind speed when the influence of vortices is ignored. In other words, in the case of a net fence, the conditions of its mesh greatly affect the flow on the leeward side of the fence. Specifically, the fullness rate of the fence surface, that is, the ratio of the mesh-filled part to the fence area is a major influencing factor, and if this fullness rate tends to be small,
Although the effect of suppressing vortex formation on the leeward side of the fence increases, the wind shielding effect becomes poor, and conversely, at a large filling ratio, the wind shielding effect itself improves, but the vortex formation becomes stronger and larger, and eventually The wind speed reduction ratio in the dead water area becomes lower. Because of this relationship, even in the case of a net fence, it is difficult to secure a sufficient wind speed reduction area on the leeward side of the fence. However, in this net fence, the net has a so-called double-layered structure, and this double-layered net is connected to both nets 2 and 2 as shown in FIG.
By arranging the meshes between 2' in a staggered manner in both the vertical and horizontal directions, it is possible to simultaneously ensure an excellent wind-shielding effect and an effect of suppressing vortices in the dead water region. In other words, in this double-layered net fence, the apparent fullness rate of the fence surface, that is, the discovered area of the fence and both nets 2, 2'
The ratio of the projected area of the full mesh part is the most important factor that influences the flow on the leeward side of the fence, and the relationship between this apparent fullness ratio and the wind shielding effect and vortex suppressing effect tends to be as described in 1 above. It is similar to the case of a single-walled netfence. In other words, if the filling ratio is small, the wind blocking effect will be poor, and if it becomes large, the rectifying effect on the leeward side of the fence will be reduced. However, in the case of double-walled panels, unlike single-walled panels, it is possible to maintain a high wind-shielding effect while ensuring an excellent rectifying effect. There is a range of rates. This is because when the wind passes through a double fence, it passes through the net twice, but at that time, the net functions as a rectifying grid, and at the same time has the dual effect of breaking down large turbulent vortices into smaller ones. This is thought to be due to the fact that the For this reason, in the case of a double-walled net fence, it is possible to ensure a wide wind speed reduction on the leeward side of the fence and a sufficient wind speed reduction ratio. That is, the present invention is based on the above, and
Two screen nets 2, 2' having the same mesh shape and arranged parallel to each other are provided, and the two nets are positioned so that each other's meshes are staggered in both the vertical and horizontal directions,
The apparent fullness rate of the wind shielding surface of the fence body consisting of both nets is 50 to 80%, and the distance L between both nets is 2 mm or more and within 5 times the lateral length l of the mesh opening. The gist is a windbreak fence that is characterized by the following. In the present invention, the positional relationship of the meshes of the double-strapped nets is staggered in both the vertical and horizontal directions as shown in FIG. 3, so that the double-strapped nets can function sufficiently as a rectifying grid. This is to enable effective elimination of the vortices immediately on the leeward side of the fence. Next, the apparent fullness rate of the fence surface of the fence body made of this double-strapped net was limited to 50 to 80%, based on the results of wind tunnel experiments described later. This is estimated based on numerical changes in the wind speed distribution and turbulence strength distribution (see Figures 6 and 7, especially A and C) when the wind speed is lower than 50%. If it becomes sufficient, the wind speed reduction ratio on the leeward side of the fence will be insufficient, and conversely, if the filling ratio is too large, exceeding 80%, the flow rectification immediately on the leeward side of the fence will not be sufficiently achieved, which poses a problem. Note that this apparent enrichment rate is particularly preferably about 55 to 65% in terms of effectiveness. Furthermore, the mutual separation distance L of the double-strung net shown in Figure 3 B (vertical side view) is set to be 2 mm or more and within 5 times the lateral length L of the mesh opening (see Figure 3 A). was determined by taking into consideration the mutual separation distance in the case of two sheets and the turbulence strength distribution based on the change in apparent filling rate based on the results of wind tunnel experiments, and L<
This is because 2 mm is functionally almost the same as a single-layer net, and the original meaning of double-layer netting is lost, and when L>5l, there is no mutual interference effect. As the net of the double-walled net fence of the present invention, any net can be used regardless of the shape, size, etc. of the mesh, as long as the above-mentioned apparent filling rate can be secured from 50 to 80%. In short, no matter which net you use, you can always expect the same effect as long as you maintain an apparent fulfillment rate of 50 to 80% as a fence. Said third
The nets 2 and 2' shown in the figure are of the so-called expanded metal type, which are made by making a slit in a single plate and expanding it, and this expanded metal type is the most common type of metal net. . Specifically, the fence of the present invention is constructed as shown in FIG. 4, for example. That is, in the figure, the fence body A has a large number of panel structures 3 using the above-mentioned nets arranged vertically and horizontally between pillars 4 erected at predetermined intervals at the fence installation location. It is installed and configured. The panel structure 3 is, for example, as shown in FIG. 5 (A is a front view, B is a side view), a rectangular net 2, 2' is stretched and fixed with presser parts 6 and 7 arranged along the edges to form a panel shape. Next, an experiment conducted to confirm the effectiveness of the fence of the present invention will be explained. Wind tunnel experiments were conducted using an Effel-type blowout boundary layer wind tunnel and the following three NetFence models. <Fence model>

【表】 No.3は本発明に基く2重張りネツトフエンス
で、ネツトの相互離間距離Lは2mm、ネツト単体
の充実率は36%である。 実験は、下記の要領で行つた。 模型フエンスを前記風洞内に該風洞内の主風
向と垂直に設置し、送風を行う。風洞内の気流
は、乱流格子によつて乱れ成分を与えた一様乱
流であり、風速は風洞床面(フエンス設置床
面)からの高さが500mm(境界層の高さ)の位
置で10m/secである。 送風継続中において、風洞中心線(フエンス
中央線)を通り主風向に平行な鉛直平面上に設
定した多数の測定点の各々の位置で、定温度型
熱線風速計を用いて風速測定を行う。 測定点の各々毎に、上記定温度型熱線風速計
の出力をリニアライザで直線化したあと、サン
プリング間隔0.01秒で継続時間10秒間のデイジ
タル量に変換し、その平均値(平均風速)と
標準偏差(風速変動の標準偏差√ 2)を求
め、平均風速はその測定点と同じ高さにおけ
る接近流の平均風速rで無欠元化して風速比
U/rの形にて、また風速変動の標準偏差√
2の方は高さ500mm(境界層の高さ)におけ
る接近流の平均風速r500で無次元化して√
U2/r500の、いわゆる乱れ強さの形でそれぞ
れ表わす。 実験の結果は、第6図、第7図に示した。第6
図は風速比/rの鉛直分布、第7図は乱れの
強さの鉛直分布、をそれぞれ表わし、両図につい
てイ〜ハは、供試したフエンス模型が、イ……No.
1、ロ……No.2、ハ……No.3、である。両図と
も、縦軸は高さ位置、横軸は主風向方向の位置を
示し、縦軸は風洞床面からの高さZをフエンスの
高さH(=200mm)で無欠元化したZ/Nを、また
横軸はフエンス位置を基準にそこからとつた距離
X(主風向方向を正、その逆方向を負とする)を
同じくフエンスの高さHで無次元化したX/H
を、それぞれとつたものである。第6図の風速比
分布はある高さの風速が接近流の風速の何倍にな
くかを示し、第7図の乱れ強さの分布はフエンス
上端からの流れの剥離の強さを知ることができる
ものである。なお、理解を容易にするため、第6
図では十分な風速低減域として風速比0.6以下の
領域に、また第7図では剥離の強さの指標として
乱れ強さ0.1以上の部分に、それぞれハツチング
を施して示した。 両図の結果から、次のようなことが云える。ま
ず1枚張りについては、フエンス模型No.1のよう
に充実率の小さいものでは、フエンス上端からの
流れの剥離が弱くなり、フエンス風下側の風速の
低減が十分に得られない。また同じくNo.2の如く
充実率を大きくとつた場合は、フエンス風下側の
風速低減比は全体として高くなるが、フエンスの
風下側直近の乱れ強さも大きくなり、この区域で
は十分な風速低減が望めない。ここに乱れ強さが
大きいということは、云う迄もなく風速変動が大
きいことであり、最大瞬間風速が大きくなる恐れ
があることを意味している。 これらに対し、No.3のように本発明に基く2重
張りのフエンスでは、フエンスの風下側直近の乱
れが効果的に解消され、しかもフエンス風下側の
風速低減を十分なものとなる。 因みに、実験において風洞内の気流は、先述の
とおり乱流格子によつて乱れ成分を与えた一様乱
流としたが、実際には鉛直方向の風速分布に僅か
ながら境界層の形成が認められ、そのべき指数は
α≒1/10.3であつた。多くの実測結果によると、
海岸、その他開けた場所における大気境界層は、
べき指数1/10≦α≦1/7程度の値をとり、したが
つて実験に使用した風洞気流は開けた場所におけ
る現実の大気境界層を概ね再現したものとみるこ
とができ、このことから上記の実験結果は実際の
状況に準ずるものと認めることができる。 以上の説明から明らかなように本発明の防風フ
エンスは、フエンス風下側に広くしかも十分な風
速低減比をもつた風速低減域を確保することがで
きるものであり、したがつてとくに屋外貯炭場に
おける貯炭の飛散防止、更には農作物の保護用等
としてすぐれた効果を発揮し得るものである。
[Table] No. 3 is a double-walled net fence based on the present invention, in which the distance L between the nets is 2 mm, and the filling rate of the net alone is 36%. The experiment was conducted as follows. A model fence is installed in the wind tunnel perpendicular to the main wind direction in the wind tunnel, and air is blown. The airflow in the wind tunnel is a uniform turbulent flow with a turbulence component given by a turbulence grid, and the wind speed is measured at a position at a height of 500 mm (boundary layer height) from the wind tunnel floor (fence installation floor). It is 10m/sec. While the air is being blown, the wind speed is measured using a constant temperature hot wire anemometer at each of a number of measurement points set on a vertical plane passing through the wind tunnel center line (Fuens center line) and parallel to the main wind direction. For each measurement point, the output of the constant temperature hot wire anemometer is linearized using a linearizer, and then converted to a digital quantity with a sampling interval of 0.01 seconds and a duration of 10 seconds, and its average value (average wind speed) and standard deviation are calculated. (Standard deviation of wind speed fluctuation √ 2 ) is determined, and the average wind speed is converted into a complete element by the average wind speed r of the approaching flow at the same height as the measurement point, and is expressed in the form of wind speed ratio U/r, and the standard deviation of wind speed fluctuation is √
2 is made dimensionless by the average wind speed of the approaching flow r 500 at a height of 500 mm (height of the boundary layer) and becomes √
Each is expressed in the form of the so-called turbulence intensity of U 2 /r 500 . The results of the experiment are shown in FIGS. 6 and 7. 6th
The figure shows the vertical distribution of the wind speed ratio/r, and Figure 7 shows the vertical distribution of the turbulence strength. In both figures, I to C indicate that the Fuens model used is I...No.
1. B... No. 2, C... No. 3. In both figures, the vertical axis shows the height position, the horizontal axis shows the position in the main wind direction, and the vertical axis shows the height Z from the wind tunnel floor surface Z/ N, and the horizontal axis is X/H, which is the distance X taken from the fence position as a reference (the main wind direction is positive and the opposite direction is negative), which is also made dimensionless by the height H of the fence.
, respectively. The wind speed ratio distribution in Figure 6 shows how many times the wind speed at a certain height is compared to the wind speed of the approaching flow, and the turbulence strength distribution in Figure 7 shows the strength of flow separation from the top of the fence. It is something that can be done. In addition, for ease of understanding, the sixth
In the figure, the area where the wind speed ratio is 0.6 or less is shown as a sufficient wind speed reduction area, and in Figure 7, the area where the turbulence strength is 0.1 or more is hatched as an indicator of the strength of separation. From the results in both figures, the following can be said. First, with regard to single-layered fences, in the case of fence model No. 1 with a small filling ratio, the separation of the flow from the upper end of the fence becomes weak, and the wind speed on the leeward side of the fence cannot be sufficiently reduced. Similarly, when the enrichment ratio is set high as in No. 2, the wind speed reduction ratio on the leeward side of the fence increases overall, but the turbulence strength immediately on the leeward side of the fence also increases, and sufficient wind speed reduction is not achieved in this area. I can't hope. It goes without saying that the large turbulence strength means that the wind speed fluctuations are large, which means that the maximum instantaneous wind speed may become large. On the other hand, with a double-walled fence based on the present invention like No. 3, the turbulence immediately on the leeward side of the fence can be effectively eliminated, and the wind speed on the leeward side of the fence can be sufficiently reduced. Incidentally, in the experiment, the airflow in the wind tunnel was a uniform turbulent flow with a turbulence component given by the turbulence grid as described above, but in reality, a slight boundary layer was observed to form in the vertical wind speed distribution. , its power index was α≒1/10.3. According to many actual measurement results,
The atmospheric boundary layer on the coast and other open areas is
The power index has a value of approximately 1/10≦α≦1/7, and therefore the wind tunnel airflow used in the experiment can be considered to roughly reproduce the actual atmospheric boundary layer in an open area. The above experimental results can be recognized as being in accordance with the actual situation. As is clear from the above description, the windbreak fence of the present invention can secure a wide wind speed reduction area with a sufficient wind speed reduction ratio on the leeward side of the fence, and is therefore particularly useful in outdoor coal storage fields. It can exhibit excellent effects in preventing stored coal from scattering and also in protecting agricultural crops.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は屋外貯炭場におけるフエンスの使用例
を示す説明図、第2図はフエンスの遮風効果を説
明する図、第3図は本発明フエンスの2重張りネ
ツトの一例を示し、イは正面図、ロは縦断側面
図、である。第4図は本発明フエンスの全体構成
についてその具体例を示し、イは正面図、ロは縦
断側面図、である。第5図は同上本発明フエンス
に使用したパネル構成体を示し、イは正面図、ロ
は側面図、である。第6図、第7図は各種フエン
スに関する風洞実験の結果であり、第6図は風速
比鉛直分布図、第7図は乱れ強さ鉛直分布図、で
ある。 図中、1:貯炭、2,2′:ネツト、3:パネ
ル構成体、4:支柱、5::間隔保持材、6,
7:押え部材。
Fig. 1 is an explanatory diagram showing an example of the use of a fence in an outdoor coal storage yard, Fig. 2 is a diagram illustrating the wind-shielding effect of the fence, and Fig. 3 is an example of a double-lined net of the fence of the present invention. A front view, and (b) a vertical side view. FIG. 4 shows a specific example of the overall structure of the fence of the present invention, in which A is a front view and B is a longitudinal side view. FIG. 5 shows a panel structure used in the fence according to the present invention, in which A is a front view and B is a side view. Figures 6 and 7 show the results of wind tunnel experiments regarding various types of fences, with Figure 6 being a vertical distribution diagram of wind speed ratio, and Figure 7 being a vertical distribution diagram of turbulence strength. In the figure, 1: Coal storage, 2, 2': Net, 3: Panel structure, 4: Strut, 5: Spacing material, 6,
7: Pressing member.

Claims (1)

【特許請求の範囲】[Claims] 1 同じ網目形状をもつ互いに平行配置の2枚の
衝立ネツト2,2′を備え、該両ネツトは互いの
網目が縦、横両方向に千鳥状となるように位置し
その両ネツトで形成されたフエンス体の遮風面側
の見かけの充実率が50〜80%でありかつ両ネツト
の間隔Lが2mm以上でかつ網目開口部の横方向長
さlの5倍以内になつていることを特徴とする防
風フエンス。
1. Two screen nets 2, 2' having the same mesh shape and arranged in parallel to each other are provided, and the two nets are positioned so that each other's meshes are staggered in both the vertical and horizontal directions. The apparent fullness rate on the wind-shielding side of the fence body is 50 to 80%, and the spacing L between both nets is 2 mm or more and is within 5 times the lateral length l of the mesh opening. Windproof fence.
JP13968183A 1983-07-29 1983-07-29 Windbreak fence Granted JPS6031413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13968183A JPS6031413A (en) 1983-07-29 1983-07-29 Windbreak fence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13968183A JPS6031413A (en) 1983-07-29 1983-07-29 Windbreak fence

Publications (2)

Publication Number Publication Date
JPS6031413A JPS6031413A (en) 1985-02-18
JPH0313122B2 true JPH0313122B2 (en) 1991-02-21

Family

ID=15250945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13968183A Granted JPS6031413A (en) 1983-07-29 1983-07-29 Windbreak fence

Country Status (1)

Country Link
JP (1) JPS6031413A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2639974B1 (en) * 1988-12-02 1991-07-05 Oceamer DEVICE FORMING ANTI-TURBULENCE AND WIND PROTECTION SCREEN
CN102084072B (en) * 2008-07-04 2013-05-22 日铁住金建材株式会社 Fence
CN103148891B (en) * 2013-02-01 2015-02-11 山东科技大学 Method for monitoring windproof effect of windproof net in coal field area
JP2015004247A (en) * 2013-06-21 2015-01-08 日本ソリッド株式会社 Method for preventing production of blown sand (soil) from surface soil and outflow of surface soil during rainfall time

Also Published As

Publication number Publication date
JPS6031413A (en) 1985-02-18

Similar Documents

Publication Publication Date Title
US3782050A (en) Louver assembly having improved weatherproofing and air flow characteristics
US2503136A (en) Ventilated metal awning
US20050081904A1 (en) Field tent against crosswind
CN112030788A (en) Wind-proof sand-blocking device for wind-sand area and wind-sand protection system for roadbed of wind-sand area
JPH0313122B2 (en)
Akubue Effects of street geometry on airflow regimes for natural ventilation in three different street configurations in Enugu City
US3280524A (en) Wind breaker to prevent roof damage
CN206807969U (en) A kind of tuyere structure and the box inverter with the tuyere structure
CN106013227A (en) Culvert structure, wind sand protection device and roadbed system
JPS59118905A (en) Shield apparatus for reducing wind velocity
JP2011236724A (en) Dustproof net and dustproof fence using the same
CN108049319A (en) Suitable for the road dust storm countermeasure system and its construction method of rolling topography
CN209025064U (en) One kind is checked winds and fixed drifting sand planting carpet
Dalgliesh et al. Wind pressures on buildings
CN206034412U (en) U type windbreak and sand fixation net
JPH0649766Y2 (en) Dust-proof enclosure of open-field coal storage yard
CN108179846A (en) The slim lighting and ventilation device of truss-like
CN209722778U (en) A kind of net piece of windproof net
JP2007120091A (en) Snow fence
JPH01250507A (en) Dust-proof, sand-proof, and snow-proof device at storing place of coal or the like
US3616615A (en) Colloidal droplet collector
CN207004171U (en) A kind of construction site dust cover net
CN110158493A (en) The Combined anti-wind canopy of the heavens and method
US3618276A (en) Balloon-launching structure
JPS6123127B2 (en)