JPH03128469A - Superconducting electromagnetic wave detector - Google Patents

Superconducting electromagnetic wave detector

Info

Publication number
JPH03128469A
JPH03128469A JP26662189A JP26662189A JPH03128469A JP H03128469 A JPH03128469 A JP H03128469A JP 26662189 A JP26662189 A JP 26662189A JP 26662189 A JP26662189 A JP 26662189A JP H03128469 A JPH03128469 A JP H03128469A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
superconducting
vacuum container
sensor
superconducting electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26662189A
Other languages
Japanese (ja)
Inventor
Kazuya Futaki
一也 二木
Hiroshi Suzuki
博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26662189A priority Critical patent/JPH03128469A/en
Publication of JPH03128469A publication Critical patent/JPH03128469A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain a high sensitive detection for an electromagnetic wave in super high frequency band by thermoelectrically mounting a superconducting electromagnetic wave sensor of a high temperature oxide superconductor on a refrigeration member to place it in a heat-insulated vacuum container and providing an electromagnetic wave transmitting window in the position opposed to the sensor. CONSTITUTION:A cold head 2 is arranged on a cooler 1, on which the superconducting electromagnetic wave sensor 3 is mounted, and those are incorporated with the airtight state in the vacuum container 4. An air in the container 4 is exhausted from an exhaust hole 8, and a high pressure nitrogen gas is supplied to the cooler from a gas introducing pipe 10 to cool it to the order of 80K, then this temperature is transmitted to the sensor 3 through the head 2 to make it to the superconducting state. Next, when the electromagnetic transmitting window 9 is faced to the direction that an electromagnetic wave to be detected is coming, the detection is made by the sensor 3. By this arrangement, the electromagnetic wave in super high frequency range can be detected with high sensitivity.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は近年注口を浴びている高温酸化物JR電電体体
らなる超1tt導電磁波センサを用いた電磁波検出器に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an electromagnetic wave detector using a super 1TT conductive electromagnetic wave sensor made of a high temperature oxide JR electric body, which has been attracting attention in recent years.

(ロ)従来の技術 曳(E、電磁波、特に超高周波帯域の電磁波に対する検
出器としては、GaAsなとの化合物半導体を用いたも
のが存在するが、実用化されているものとしては数十G
 )I zが限度であり、また理論的にも200〜30
0GIIz以上の周波数には対応できない。また現行の
化合物゛i導体を用いた電磁波検出器の感度は極めて低
く、大面積のパラボラアンテナを必要とする一Lに、増
幅唇が不可欠である。
(B) Conventional technology (E) There are detectors for electromagnetic waves, especially electromagnetic waves in the ultra-high frequency band, that use compound semiconductors such as GaAs, but the ones that have been put into practical use are several tens of G
) I z is the limit, and theoretically it is 200 to 30
It cannot support frequencies higher than 0GIIz. Furthermore, the sensitivity of current electromagnetic wave detectors using compound i conductors is extremely low, and an amplification lip is indispensable for 1L, which requires a large-area parabolic antenna.

このような問題点に対応するできるものとしては、超電
導素T−を用いた検出器が古くから提案されていたが、
従来のNbなどの金属系超電導素子をJIi電導状態に
維持するためには液体ヘリウムを用いる必要があり、装
;iFiが極めて大型化する一■−に、コスト面でも問
題があって、実用化の機運にはないのが実情である。
Detectors using superconducting element T- have been proposed for a long time as a solution to these problems, but
In order to maintain conventional metal-based superconducting elements such as Nb in a JIi conductive state, it is necessary to use liquid helium. The reality is that there is no momentum.

(ハ)発明が解決しようとする課題 本発明はこのような課題に鑑みて為されたものであって
、100GIIz以l−の超高周波帯域の電磁波を高感
度で検出できるtk電磁波検出器簡単な構成で11)ん
とするものである。
(c) Problems to be Solved by the Invention The present invention has been made in view of these problems, and is a simple TK electromagnetic wave detector that can detect electromagnetic waves in the ultra-high frequency band of 100 GIIz or higher with high sensitivity. The structure is 11).

(ニ)課題を解決するための手段 本発明は、窒素ガスによるジュールトムソン効果を用い
た冷凍部材に高温酸化物超電導体からなる超電導電磁波
センサを熱体的に取り付け、この冷凍部材と超電導電磁
波センサとを真空容器内に収納して断熱状態に保持する
と共に、この真空容2(の上記超電導電磁波センサに対
向した箇所に電磁波透過窓を設けている。
(d) Means for Solving the Problems The present invention provides a method for thermally attaching a superconducting electromagnetic wave sensor made of a high-temperature oxide superconductor to a refrigeration member using the Joule-Thomson effect caused by nitrogen gas. is housed in a vacuum container and maintained in a heat-insulated state, and an electromagnetic wave transmitting window is provided at a portion of the vacuum volume 2 (facing the superconducting electromagnetic wave sensor).

(ホ)作用 本発明は、超高周波数帯域の電磁波を高感度で検出でき
る電磁波検出器を極めて簡便化された冷却丁段にて得る
ことができる。
(E) Function The present invention can provide an electromagnetic wave detector capable of detecting electromagnetic waves in an ultra-high frequency band with high sensitivity using a very simple cooling stage.

(へ)実施例(f) Example

Claims (5)

【特許請求の範囲】[Claims] (1)窒素ガスによるジュールトムソン効果を用いた冷
凍部材に高温酸化物超電導体からなる超電導電磁波セン
サを熱伝的に取り付け、この冷凍部材と超電導電磁波セ
ンサとを金属製真空容器内に収納して断熱状態に保持す
ると共に、この真空容器の上記超電導電磁波センサに対
向した箇所に電磁波を透過させる材料にて構成された電
磁波透過窓を設けたことを特徴とする超電導電磁波検出
器。
(1) A superconducting electromagnetic wave sensor made of a high-temperature oxide superconductor is thermally attached to a freezing member that uses the Joule-Thomson effect using nitrogen gas, and the freezing member and superconducting electromagnetic wave sensor are housed in a metal vacuum container. A superconducting electromagnetic wave detector, which is maintained in an adiabatic state and further comprising an electromagnetic wave transmitting window made of a material that transmits electromagnetic waves at a portion of the vacuum container facing the superconducting electromagnetic wave sensor.
(2)上記金属製真空容器内壁を電磁波吸収材にて被覆
してなる請求項1記載の超電導電磁波検出器。
(2) The superconducting electromagnetic wave detector according to claim 1, wherein the inner wall of the metal vacuum container is coated with an electromagnetic wave absorbing material.
(3)窒素ガスによるジュールトムソン効果を用いた冷
凍部材に高温酸化物超電導体からなる超電導電磁波セン
サを熱伝的に取り付け、この冷凍部材と超電導電磁波セ
ンサとを電磁波を透過させる材料にて構成された真空容
器内に収納して断熱状態に保持すると共に、この真空容
器の上記超電導電磁波センサに対向した箇所を除いて該
容器の壁面を電磁波を遮蔽する材料にて被い、この電磁
波遮蔽材が被覆されていない個所を電磁波透過窓とした
ことを特徴とする超電導電磁波検出器。
(3) A superconducting electromagnetic wave sensor made of a high-temperature oxide superconductor is thermally attached to a refrigeration member that uses the Joule-Thomson effect using nitrogen gas, and the refrigeration member and the superconducting electromagnetic wave sensor are made of a material that transmits electromagnetic waves. The vacuum container is housed in a vacuum container and maintained in an insulated state, and the walls of the vacuum container except for the portion facing the superconducting electromagnetic wave sensor are covered with a material that shields electromagnetic waves. A superconducting electromagnetic wave detector characterized in that the uncovered portion is used as an electromagnetic wave transmission window.
(4)上記真空容器の電磁波透過窓部分に外方に開放し
たホーンアンテナを設けると共に、その電磁波検出窓の
内側に上記超電導電磁波センサにまで達する導波路を設
けた請求項1、2、または3記載の超電導電磁波検出器
(4) Claims 1, 2, or 3, wherein an outwardly open horn antenna is provided in the electromagnetic wave transmission window portion of the vacuum container, and a waveguide that reaches the superconducting electromagnetic wave sensor is provided inside the electromagnetic wave detection window. The superconducting electromagnetic wave detector described.
(5)上記ホーンアンテナは検出しようとする電磁波の
周波数に対応した形状を有することを特徴とした請求項
4記載の超電導電磁波検出器。
(5) The superconducting electromagnetic wave detector according to claim 4, wherein the horn antenna has a shape corresponding to the frequency of the electromagnetic wave to be detected.
JP26662189A 1989-10-13 1989-10-13 Superconducting electromagnetic wave detector Pending JPH03128469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26662189A JPH03128469A (en) 1989-10-13 1989-10-13 Superconducting electromagnetic wave detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26662189A JPH03128469A (en) 1989-10-13 1989-10-13 Superconducting electromagnetic wave detector

Publications (1)

Publication Number Publication Date
JPH03128469A true JPH03128469A (en) 1991-05-31

Family

ID=17433360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26662189A Pending JPH03128469A (en) 1989-10-13 1989-10-13 Superconducting electromagnetic wave detector

Country Status (1)

Country Link
JP (1) JPH03128469A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451970A (en) * 1992-05-28 1995-09-19 Cole; Carroll R. Radar antenna unit having a plurality of heat dissipating fins forming on the exterior of a cone shaped chamber
US5606328A (en) * 1995-12-26 1997-02-25 Hughes Electronics RF isolation inspection tool
JP2013247571A (en) * 2012-05-28 2013-12-09 Toshiba Corp Reception antenna device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451970A (en) * 1992-05-28 1995-09-19 Cole; Carroll R. Radar antenna unit having a plurality of heat dissipating fins forming on the exterior of a cone shaped chamber
US5606328A (en) * 1995-12-26 1997-02-25 Hughes Electronics RF isolation inspection tool
JP2013247571A (en) * 2012-05-28 2013-12-09 Toshiba Corp Reception antenna device

Similar Documents

Publication Publication Date Title
JPH04230880A (en) High-frequency receiving winding device of nuclear magnetic resonance spectrometer
US5506200A (en) Compact superconducting magnetometer having no vacuum insulation
US5552608A (en) Closed cycle gas cryogenically cooled radiation detector
US6122919A (en) Sensor/cooling system with cold finger having recessed end
Masi et al. A long duration cryostat suitable for balloon borne photometry
JP2001174085A (en) Electronic equipment
JPH03128469A (en) Superconducting electromagnetic wave detector
US3836779A (en) Cooling apparatus for infrared detectors
EP0253883B1 (en) Cryogenically cooled radiation detection apparatus
US2973434A (en) Infrared detecting cell and a mounting therefor
US3902143A (en) Refrigerated coaxial coupling
JP3577498B2 (en) Pulse tube refrigerator and magnetically shielded refrigeration system
EP0126909A2 (en) Cryopump with rapid cooldown and increased pressure stability
EP0585001A2 (en) X-ray spectrometry detector
Klundt et al. Use of a pulse tube refrigerator for cooling a HTS-antenna for magnetic resonance imaging
CN218848318U (en) W-band power-resistant low-temperature receiving front-end device
Fujimoto et al. Cooling of SQUIDs using a Gifford-McMahon cryocooler containing magnetic regenerative material to measure biomagnetism
SU917638A1 (en) Cryostate for superconductor resonators
Goto et al. Dilution refrigerator for measurement of the acoustic de Haas-van Alphen effect
JP2000241516A (en) Superconducting magnetism measuring apparatus
Barron et al. Performance of a 4 Kelvin pulse-tube cooled cryostat with dc SQUID amplifiers for bolometric detector testing
JPH04204280A (en) Weak magnetic field measurement device
JP3608296B2 (en) Low temperature device
JPH05223868A (en) Superconductive electromagnetic wave sensing device
JPH02302680A (en) Gradiometer cooling apparatus