JPH03127605A - Method and device for pressure-regulating, straightening and homogenizing cyclic gas current - Google Patents

Method and device for pressure-regulating, straightening and homogenizing cyclic gas current

Info

Publication number
JPH03127605A
JPH03127605A JP1267804A JP26780489A JPH03127605A JP H03127605 A JPH03127605 A JP H03127605A JP 1267804 A JP1267804 A JP 1267804A JP 26780489 A JP26780489 A JP 26780489A JP H03127605 A JPH03127605 A JP H03127605A
Authority
JP
Japan
Prior art keywords
gas
flow rate
variable volume
container
volume container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1267804A
Other languages
Japanese (ja)
Other versions
JPH0732858B2 (en
Inventor
Shoji Urano
浦野 昌治
Hiroshi Ota
太田 啓
Chikashi Nishino
西野 近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIBU GAS KK
Mitsubishi Petrochemicals Engineering Co Ltd
Original Assignee
SEIBU GAS KK
Mitsubishi Petrochemicals Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIBU GAS KK, Mitsubishi Petrochemicals Engineering Co Ltd filed Critical SEIBU GAS KK
Priority to JP1267804A priority Critical patent/JPH0732858B2/en
Publication of JPH03127605A publication Critical patent/JPH03127605A/en
Publication of JPH0732858B2 publication Critical patent/JPH0732858B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate errors and to improve safety by equalizing the amt. of gas to be introduced into a variable-volume vessel to the amt. of gas to be discharged from the vessel and controlling the discharge flow rate with a flow controller. CONSTITUTION:A gas is intermittently and periodically introduced into the variable-volume vessel (c) (water-sealed gas holder) from a gas source (a). When the gas pressure is lower than the gas pressure in the vessel (c), a suction pump (l)is interposed between the source (a) and the vessel (c). The introduced gas is continuously delivered from the vessel(c)by a gas blower (b). When the gas is delivered from the vessel (c), the delivery is continuously controlled by the flow control valve (d) so that the variation in the volume of the vessel (c) is limited within a specified range while minimizing the fluctuations in the flow rate and pressure. Accordingly, the flow control valve (d) is fixed to a generated gas pipeline 1. The construction cost is drastically reduced in this way.

Description

【発明の詳細な説明】 (産業上の利用分野ン 本発明は間欠的かつ周期的に発生するガス、例えば圧力
スイング吸着(以下PSAという)で分離されるガスを
圧力変動、流量変動及び成分変動を微小にして連続的に
送出する方法とそのための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention is applicable to gases that are generated intermittently and periodically, such as gases separated by pressure swing adsorption (hereinafter referred to as PSA), which are separated by pressure fluctuations, flow rate fluctuations, and component fluctuations. The present invention relates to a method of making microscopic particles and continuously sending them out, and an apparatus therefor.

(従来の技術) 間欠的かつ周期的に発生するガス流、即ちサイクリック
ガス流を一定b1連続的に送出りる場合、サイクリック
ガス供給源から延びるガス供給管路にガスを一旦収容す
る容器が必要となり、例えばPSAの吸着工程によって
、姐理前ガスを吸@塔に充填した吸着剤によって選択的
に吸着した1秤またはそれ以上のガスを、脱着工程にお
いて一定mM統的に送出する場合、PSA装置とガスの
ガス送出機の間に容器が介設される。
(Prior art) When a gas flow that is generated intermittently and periodically, that is, a cyclic gas flow is continuously delivered at a constant b1, a container that temporarily stores the gas in a gas supply pipe extending from a cyclic gas supply source is used. For example, when one or more scales of gases that have been selectively adsorbed by an adsorbent packed in a sorbent column in the PSA adsorption process are systematically delivered at a constant millimeter in the desorption process. , a container is interposed between the PSA device and the gas delivery device.

ところが、PSAから発生するガス吊は、PSAの運転
条件の変更と処理前ガスの組成変動および外気温度の変
動によって変化するので、容器の出入りのガスmのバラ
ンスを調整して容器のガス保有量を所定の範囲内に収め
ることが困難であり、そのため、容器のノJス容囲を大
きくして、圧力容器の出入りのガス吊のバランスのずれ
を監視しながら、圧力容器から送出するガス位の51W
1またはPSAの製品ガスの発生量の調節を手動で行っ
ている。
However, the amount of gas generated from the PSA changes due to changes in the operating conditions of the PSA, changes in the composition of the gas before treatment, and changes in the outside temperature. It is difficult to keep the pressure within a predetermined range, so the volume of the container is enlarged and the level of gas sent out from the pressure container is adjusted while monitoring the imbalance of the gas hanging in and out of the pressure container. 51W of
1 or PSA product gas generation amount is manually adjusted.

〈発明が解決しようとする課題) 上記従来の方法及び′fIt1でtよ容器のガス導^1
を非常に大きくする必要がある。
<Problems to be Solved by the Invention> In the above conventional method and 'fIt1, the gas conduction of the container is
needs to be made very large.

即ち、容器のガス容量の挙動は、第6図に示す通りサイ
クリックガス流供給源からガスが供給される1周期にお
けるガス供給済とガス供給m間によって決まる。
That is, the behavior of the gas capacity of the container is determined by the interval between gas supply and gas supply m in one cycle in which gas is supplied from the cyclic gas flow supply source, as shown in FIG.

ここで、ガス供給m間中に供給サイクリックガスが一定
量で容器に送入される場合は、第7図に示す通りガス供
給期間とガス供給邑によって容出変動が求まる。
Here, when a constant amount of the supplied cyclic gas is fed into the container during the gas supply period m, the volume fluctuation is determined by the gas supply period and the gas supply period as shown in FIG.

ここでガス供給期間が0に近づくほど容撮変動幅が最大
となり、1周期当りのガス発生社と等しくなる。ガス供
給期間がガス供給周期と等しくなれば、ガス送入17.
tmとガス送出流紀が等しくなって容器の容量変動幅が
微小となる。
Here, as the gas supply period approaches 0, the range of fluctuation becomes maximum, and becomes equal to the gas generation rate per cycle. If the gas supply period is equal to the gas supply period, gas supply 17.
tm and gas delivery flow age become equal, and the range of capacity fluctuation of the container becomes minute.

容器のガス容ffiは、上記の容量変動と、ガス送入量
とガス送出量のバランス調節のガス温の誤差をgIi!
t、て設訂されている。容器の容量が小さいはどl!設
ココスト有利であるが、従来は、ガス送入量とガス送出
b1のバランス調節を人間の感に依っており、誤差が大
きくなり、従って安全率が大きくなり、容器のガス容か
を大きく吐ざるをえなかった。そのため容器設置のため
に多額の建設コストを必要とするばかりでなく広大な設
置スペースをも必要とした。
The gas capacity ffi of the container is calculated by gIi!, which accounts for the above-mentioned capacity fluctuation and the gas temperature error caused by adjusting the balance between the gas inlet amount and the gas outlet amount.
t, has been revised. The capacity of the container is small! Although this is advantageous in terms of installation costs, conventional methods have relied on human intuition to adjust the balance between the amount of gas fed and the gas delivered b1, resulting in large errors and a large safety factor. I had no choice. Therefore, not only a large amount of construction cost was required to install the container, but also a vast installation space was required.

また従来は容器の出入りのガスバランスのw1節に非常
に多くの手間と労力を要していた。
Furthermore, in the past, a great deal of time and effort was required for the W1 section of the gas balance between entering and exiting the container.

本発明は、従来技術が有する上記問題点に鑑みてなされ
たもので、その目的とする処はサイクリックガス流を一
定但連続的に送出するに際し、ナイフリックガス流供給
源からのガス供給管路に介設する容器を出来るだけ小さ
くすると共に送出ガスの整圧、!l’を流、均質を同時
に自動的に行うことができる方法と、装置を提供するこ
とにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to connect a gas supply pipe from a knife rick gas flow supply source to a gas supply pipe when a cyclic gas flow is constantly and continuously delivered. Make the container interposed in the path as small as possible and regulate the pressure of the delivered gas! The object of the present invention is to provide a method and an apparatus that can automatically perform flow and homogenization of l' at the same time.

(課題を解決するための手段〉 上記目的を達成するために本発明方法では、ガス供給源
から間欠的かつ周期的に供給されるサイクリックガス流
を均質化装置を備えた容積可変式容器に送入し、そのガ
スを均質な連続ガス流に変換して上記均質化装置を備え
た容積可変式容器から送出すると共に、上記均質化装置
を備えた容積可変式gPJ器の容積からガス保有mを読
み取り、該ガス保有量とサイクリックガス流供給周明の
経過時間から均質化装置を備えた容積可変式容器へのガ
ス送入開始時点及び送入終了時点における均質化装置を
備えた容積可変式容器のガス保有量を求める手順と、均
質化装置を備えた容積可変式容器からのガス送出流出を
読み取って該容器へのガス送入期間に該容器から送出さ
れたガス幻を積輝する手順と、均質化装置を備えた容積
可変式容器へのガス送入周期、容積可変式容器の定めら
れた最低若しくはROガス量、及び上記手順で求めた均
質化装dを備えた容積可変式容器へのガス送入期間に該
均質化装置を備えた容積可変式容器から送出されたガス
量からガス送出流量を演算する手順により上記均質化装
置を備えたeta可変式容器からのガス送出流出を設定
し、流ffllllD手段により均質化装置を倫えた容
積可変式容器からのガス送出流量を上記ガス送出流組設
定値に一致させるようニ自vJIIIIallスル。
(Means for Solving the Problems) In order to achieve the above object, the method of the present invention supplies a cyclic gas flow intermittently and periodically supplied from a gas supply source to a variable volume container equipped with a homogenizer. converting the gas into a homogeneous continuous gas stream and discharging it from a variable volume vessel equipped with the homogenizer, and extracting gas holding m from the volume of the variable volume gPJ vessel equipped with the homogenizer. is read, and from the amount of gas held and the elapsed time of the cyclic gas flow supply period, the variable volume container equipped with a homogenizing device at the start and end of gas supply to the variable volume container equipped with a homogenizing device. A procedure for determining the amount of gas held in a container, and a procedure for reading the gas delivery outflow from a variable volume container equipped with a homogenizer and accumulating the gas delivered from the container during the period of gas delivery to the container. and the gas supply cycle to the variable volume container equipped with a homogenizer, the determined minimum or RO gas amount of the variable volume container, and the variable volume container equipped with the homogenizer d determined in the above procedure. Set the gas delivery outflow from the eta variable container equipped with the homogenizing device by the procedure of calculating the gas delivery flow rate from the gas amount delivered from the variable volume container equipped with the homogenizing device during the gas feeding period. Then, the gas delivery flow rate from the variable volume container equipped with the homogenizer is made to match the set value of the gas delivery flow set by the flow fflllD means.

そして、サイクリックガス流がサイクル運転される複数
のガス供給源から供給される場合には、ガス供給源別に
aSSされたガス送出流量とガス供給源の数により求め
られる移動平均値を容積可変式容器からのガス送出流量
の設定値とすることによって供給源別の供給ガスn(が
変動するのを容積可変式容器で吸収する。
When the cyclic gas flow is supplied from a plurality of gas supply sources operated in cycles, the moving average value obtained from the gas delivery flow rate and the number of gas supply sources that are aSS for each gas supply source is calculated using a volume variable method. By setting the gas delivery flow rate from the container to a set value, the variable volume container absorbs fluctuations in the supply gas n( for each supply source).

また上記方法を実施するための装置は、サイクリックガ
ス流供給源からのガス供給管路の途中に介設される容積
可変式容器と、上記容積可変式容器より′4jIt流の
ガス供給管路に設けられサイクリックガス流供給源から
間欠的かつ周期的に上記容器に送入されるガスを連続ン
て送出するガス送出機と、上記容器可変式容器に装備さ
れて該容器内に送入されたガスの成分を均質化する均質
化v4置と、上記容積可変式容器より後流側においてガ
ス供給管路に設けられた流星調節弁と、上記容積可変式
容器に設けられ該容器のガス保有量を読み取って電気信
号に変換するガス保有ffi読み取り手段と、サイクリ
ックガス流の供給周期開始からの該両用経過時間を読み
取る経過時間読み取り手段と、上記容積可変式容器より
後流においてガス供給管路に設けられ該管路を流れるガ
スのliliEm@読み取って電気信号に変換するガス
流Ji読み取り手段と、上記ガス流gkFiAみ取り手
段が読み取ったガス流出を積算するW!4算手段と、上
記各読み取り手段が読み取るデータと容積可変式容器の
定められた最低又はJi′Rガスmとサイクリックガス
流の設定された供給期間及び供給周期と該周期の経過時
間に基づいて11ス送出設定流ら1を演(1する設定流
量演算手段と、上記設定流は演算手段で演算されIこ設
定5!閤値とガス流駄読み取り手段で読み取られた尖流
清を比較し、両者が一致するように流ffl調節弁のパ
ルプ開度を!mlする流量調節器と、を具備する。
Further, the apparatus for carrying out the above method includes a variable volume container interposed in the middle of a gas supply line from a cyclic gas flow supply source, and a gas supply line for a '4jIt flow from the variable volume container. a gas delivery device that is installed in the cyclic gas flow supply source and continuously sends out the gas that is intermittently and periodically into the container; a homogenizer v4 for homogenizing the components of the gas, a meteor control valve provided in the gas supply pipe on the downstream side of the variable volume container, and a meteor control valve provided in the variable volume container to homogenize the gas in the container. a gas holding ffi reading means for reading the amount held and converting it into an electrical signal; an elapsed time reading means for reading the elapsed time for both use from the start of the supply cycle of the cyclic gas flow; and gas supply downstream from the variable volume container. A gas flow Ji reading means provided in the pipe line reads the liliEm@ of the gas flowing through the pipe line and converts it into an electric signal, and W! integrates the gas flow read by the gas flow gkFiA sampling means. Based on the data read by the calculation means and each reading means, the specified minimum or Ji'R gas m of the variable volume container, the set supply period and supply period of the cyclic gas flow, and the elapsed time of the period. 11. Calculate the setting flow rate 1 from the 11th output setting flow (1). The set flow rate is calculated by the calculation means and the value is compared with the peak flow rate read by the gas flow rate reading means. and a flow rate regulator that adjusts the pulp opening degree of the flow ffl control valve by !ml so that both of them match.

そして、容積可変式容器として有水式ガスホルダーを用
い、均質化手段はサイクリックガス流供給源にガス供給
管路を介して連絡して容積可変式容器内に起立するガス
入管の先端に設けられたガス拡散リングからなり、該ガ
ス拡散リング(よ〕Iス導入管に連通して上記容器と、
同心状に形成されその上面には内外両周縁に沿って均等
に配置せしめた多数のガス放出孔を有する構造となす。
A water-filled gas holder is used as the variable volume container, and the homogenizing means is installed at the tip of the gas inlet pipe that connects to the cyclic gas flow supply source via the gas supply pipe and stands up inside the variable volume container. a gas diffusion ring connected to the container, the gas diffusion ring being in communication with the gas inlet pipe;
It has a structure in which it is formed concentrically and has a large number of gas discharge holes arranged evenly along both the inner and outer circumferential edges on its upper surface.

(作用) 以上のように構成されたサイクリックガス流の整圧、整
流、均質を同時に行う方法にあっては、容積可変式容器
のガス容量を1周1の当りのガス送人聞以下にできる。
(Function) In the method of simultaneously regulating the pressure, rectifying, and homogenizing the cyclic gas flow configured as described above, the gas capacity of the variable volume container is kept below the volume of the gas sender per revolution. can.

また、この方法を実施する前記構成の装置にあっては、
ガスが間欠的に供給される周期時間帯において、容積可
変式容器へ入るガス指と該容器から送出するガス關を同
量とし、かつ上記容器から出るガスiixが一定とする
ことができる送出流量が演算され、実際の送出流量が上
記演算値と一致するように流丘1調節弁により自動的に
調節される。
Furthermore, in the apparatus having the above configuration for carrying out this method,
A delivery flow rate that can make the amount of gas entering the variable volume container and the amount of gas sent out from the variable volume container the same and the amount of gas iix coming out of the container constant during a periodic period in which gas is intermittently supplied. is calculated, and the flow hill 1 control valve automatically adjusts the actual delivery flow rate to match the calculated value.

そして、同時に容積可変式容器に装備した均質化手段に
にり送出ガスの成分が均質化される。
At the same time, the components of the delivered gas are homogenized by a homogenizing means installed in the variable volume container.

(実施例〉 以下、本発明の実施例を図に基づいて説明する。(Example> Hereinafter, embodiments of the present invention will be described based on the drawings.

この実施例において、間欠的かつ周期的にガスを供給す
るサイクリックガス流供給1(a)はPSAにおUる脱
着工程を行う吸着塔であり、サイクリックガスはPSA
で分離されるガスである。
In this example, the cyclic gas stream supply 1(a), which is fed intermittently and periodically, is an adsorption column that performs the desorption step on the PSA, and the cyclic gas is
It is a gas that is separated by

図から明らかなように、サイクリックガス流供給1(a
)からはガスを供給するためのガス供給管路く1)が延
びており、該ガス供給管路(1)にはコンプレッ皆ナー
等のガス送出11fi (b)が設けられると共にこの
ガス送出1(b)とサイクリックガス流供給m(a)の
間に容8i可変式容器(C)が介設される。
As is clear from the figure, cyclic gas flow supply 1 (a
) extends from the gas supply pipe (1) for supplying gas, and the gas supply pipe (1) is provided with a gas delivery 11fi (b) such as a compressor. A variable capacity 8i container (C) is interposed between (b) and the cyclic gas flow supply m(a).

従って、ガス供給源(a)から供給ガスが間欠的かつ周
期的に容積可変式容器(C)に送入される。このとき、
ガス供給源(a)から供給されるガスの圧力が容積可変
式容器(C)のガスの圧力より低いときにはガス供給1
t(a)と容積可変式容器(C)との間にガス吸引ポン
プ(J)を介設する。
Therefore, supply gas is intermittently and periodically fed into the variable volume container (C) from the gas supply source (a). At this time,
Gas supply 1 when the pressure of the gas supplied from the gas supply source (a) is lower than the pressure of the gas in the variable volume container (C).
A gas suction pump (J) is interposed between t(a) and the variable volume container (C).

一方、容積可変式容器(C)に間欠的かつ周期的に送入
されたガスは、該容器(C)からガス送出機(b)によ
り連続的に送出される。
On the other hand, the gas that is intermittently and periodically supplied to the variable volume container (C) is continuously delivered from the container (C) by the gas delivery device (b).

上記容積可変式容器(C)はこの実/I!例の場合有水
式ガスホルダーで、水槽(5)にガス槽(6〉を内嵌し
てあり、ガス容積によってガス槽(6)が上下する有水
式ガスホルダーとして従来周知の構造、形態を有するも
のであるが、特にガスの均質化手段(k)を装備してい
る。
The variable volume container (C) above is Konomi/I! In the case of the example, it is a water-type gas holder, and the gas tank (6) is fitted inside the water tank (5), and the gas tank (6) moves up and down depending on the gas volume. but in particular is equipped with gas homogenization means (k).

即ち第3図、第4図に示づように容積可変式容器(以下
有水式ガスホルダー(C)と云い換えて説明する)上流
側のガス供給管路(1〉に連続して水JfI(5)中心
部に起立するガス入管(2)の上端に、該ガス入管(2
)に連通しかつ水li!!(6)と同芯状となるように
ガス拡散リング(3)を設け、その上面部には内外両周
縁に沿って多数のガス放出孔(4)を均等に、かつ所要
の放出角度をもって開穿すると共に有水式ガスボルダ−
(C)下流の発生ガス管路(1)に連絡するガス出管(
7)の入口を上記ガス拡散リング(3)の中心部近傍に
開口せしめる。
That is, as shown in FIGS. 3 and 4, a variable volume container (hereinafter referred to as a water-containing gas holder (C)) is connected to the gas supply pipe (1) on the upstream side. (5) At the upper end of the gas inlet pipe (2) standing up in the center, attach the gas inlet pipe (2
) and water li! ! A gas diffusion ring (3) is provided so as to be concentric with the gas diffusion ring (6), and a large number of gas release holes (4) are opened evenly and at a required release angle on the upper surface of the ring (3) along both the inner and outer peripheries. Water type gas boulder with drilling
(C) Gas outlet pipe (
7) is opened near the center of the gas diffusion ring (3).

上記ガス放出孔(4)は、イ1水式ガスホルダー(C)
の形状、大きさ、及びガス拡散リング(3)の径に応じ
て、圧力損失が許容される範囲でかつそれぞれのガス流
出母が均一するためガス拡散リング(3)へのガス流入
部からの距離が遠くなる程その径を大きくするように最
適の径及び数が決定される。このガス放出孔(4)の径
は全ての)jス放出孔(4)について各孔毎に順次大き
さを変えるようにしても良いし、複数の孔を1つの単位
とするグループに分け、グループ単位で孔径を変えるよ
うにしても良い。
The above gas release hole (4) is connected to the A1 water type gas holder (C).
Depending on the shape and size of the gas diffusion ring (3), and the diameter of the gas diffusion ring (3), the gas flow from the gas inflow part to the gas diffusion ring (3) is determined within an allowable pressure loss range and in order to make each gas outflow uniform. The optimal diameter and number are determined so that the diameter increases as the distance increases. The diameter of the gas release holes (4) may be changed sequentially for each gas release hole (4), or may be divided into groups each having a plurality of holes as one unit. The pore diameter may be changed for each group.

これにより、有水式ガスホルダー(C)内に送入される
発生ガスは、ガス流速によってノJス梢(6)内に均等
に拡散し混合し合い均質化して有水式ガスホルダー(C
)から送出される。
As a result, the generated gas fed into the water-type gas holder (C) is uniformly diffused and mixed into the nozzle tree (6) depending on the gas flow rate, and becomes homogenized.
).

そして、この右水式ガスホルダー(C)からのガス送出
に際し、その送出量を連続的に流量と圧力の変動を微少
にして、なおかつ有水式ガスホルダー(C)の容量変動
が所定の範囲内に留まるように流量調節弁(d)で調節
する。
When sending gas from this right water type gas holder (C), the amount of gas sent out is continuously controlled to minimize fluctuations in flow rate and pressure, and the capacity fluctuations of the water type gas holder (C) are kept within a predetermined range. Use the flow control valve (d) to adjust the flow rate so that it remains within the range.

そのために本発明においては右水式ガスホルダー(C)
に送入されるガス量と有水式ガスホルダー(C)から送
出するガス量が、ガスが間欠的に発生する周期時間帯に
おいて、同量であり、かつ右水式ガスホルダー(C)か
ら送出するガス流量が一定となる流量設定値を演算によ
り求め、有水式ガスホルダー(C)から実際に送出する
ガス流量が上記設定値と一致するように流1w4節弁(
d)の開度を1.II IIIする。流離調節弁(d)
は有水式ガスホルダー(C)下流の発生ガス管路(1)
に設けられている。
Therefore, in the present invention, the right water type gas holder (C)
The amount of gas sent to the right water type gas holder (C) and the amount of gas sent from the water type gas holder (C) are the same amount during the period when gas is intermittently generated, and the amount of gas sent from the right water type gas holder (C) is Calculate the flow rate setting value at which the gas flow rate to be sent out is constant, and set the flow 1w 4-node valve (
d) opening degree to 1. II III. Separation control valve (d)
is the generated gas pipe (1) downstream of the water-filled gas holder (C)
It is set in.

上記流量調節弁(d)の開度を調節して発生ガス送出釦
0り御する制御手段はコンピュータで構成する。
The control means for controlling the generated gas delivery button by adjusting the opening degree of the flow rate regulating valve (d) is constituted by a computer.

即ち、コンピュータは、CPUと、70グラムが格納さ
れたメモリーと、1IIIIIIl用データが格納され
たメモリーとを備え、側御用入力信号として右水式ガス
ホルダー(C)のガス保有耐、有水式ガスホルダー(C
)から送出されるガス流量がA/Dコンバータを介して
入力され、かつυ制御出力信号がD/Aコンバータを介
して流量調節器(j)に出力されるようになっている。
That is, the computer is equipped with a CPU, a memory that stores 70 grams, and a memory that stores data for Gas holder (C
) is inputted via the A/D converter, and the υ control output signal is outputted to the flow rate regulator (j) via the D/A converter.

上記有水式ガスホルダー(C)のガス保イi色は有水式
ガスホルダー(C)のガス槽(6)のレベルを知ること
で求めることができる。そのため有水式ガスホルダー(
6)にはガス槽(6)のレベルを読み取って電気信号に
変換する超音波レベル計(e)を設置し、レベルの変化
を常時計測する。
The gas retention color of the water type gas holder (C) can be determined by knowing the level of the gas tank (6) of the water type gas holder (C). Therefore, the water type gas holder (
6) is equipped with an ultrasonic level meter (e) that reads the level of the gas tank (6) and converts it into an electrical signal, and constantly measures changes in the level.

また有水式ガスホルダー(C)から送出されるガス流量
を読み取るためにはガス送出機(b)と11KI!節弁
(d)との間においてガス供給管路(1)に流量計(h
)を接続する。
In addition, in order to read the gas flow rate sent out from the water type gas holder (C), use the gas delivery device (b) and the 11KI! A flow meter (h) is connected to the gas supply pipe (1) between the control valve (d)
) to connect.

*偽計(h)はガス送出機(b)により送出されてガス
供給管路(1)を流れるガスの1tffiを常時計測し
て電気信号に変換する。
*The false meter (h) constantly measures 1tffi of the gas sent out by the gas delivery device (b) and flowing through the gas supply pipe (1) and converts it into an electrical signal.

以下、流ff1t、If御を行うための計測及び***
並びに11111の方法について詳細に説明する。
Below, the measurement and *** for controlling the flow ff1t and If
The methods of 11111 and 11111 will be explained in detail.

第4図はガス発生器から間欠的かつ周期的に有水式ガス
ホルダーに送入され、このガスを連続的かつ一定H2t
で送出したときの運転チャートである。
Figure 4 shows that the gas is intermittently and periodically supplied from the gas generator to the water-filled gas holder, and the gas is continuously and constant H2t.
This is an operation chart when sent out.

ここで ■I :ガス供給源がガスの供給を開始したときの有水
式ガスホルダーのガス量〔哲) ■2:ガス供給源がガスの供給を終了したときの有水式
ガスホルダーのガスB>(v)Td:ガス供給源の定め
られたガス供給期間(Sac  ) TC:ガス供給源の定められたガス供給周期(Sac 
 )        (サイクル)Qi :ガス供給の
周期内において有水式ガスホルダーに送入されるガス[
1(Tr?)QO:ガス供給の周期内において有水式ガ
スホルダーから送出されるガス量(品) qp:有水式ガスホルダーから送出されるガス流量埴 
 (M?/sec  ) qS:有水式ガスホルダーから送出するガス数位の演算
設定値  (−rf/ sec  )t:経過時間  
 (sec  ) Vsp:ガス供給源がガスの供給を開始したときの有水
式ガスボルダ−の容fD、設定値〔留〕 とすると ガス量変動幅はQiが周mごとに変動しない限りにおい
て一定となる。
Here ■I: Gas amount of the water-type gas holder when the gas supply source starts supplying gas [Philosophy] ■2: Gas amount of the water-type gas holder when the gas supply source finishes supplying gas B>(v) Td: Specified gas supply period (Sac) of the gas supply source TC: Specified gas supply period (Sac) of the gas supply source
) (Cycle) Qi: Gas supplied to the water-type gas holder within the gas supply cycle [
1 (Tr?) QO: Gas amount (item) sent out from the water-filled gas holder within the gas supply cycle qp: Gas flow rate sent out from the water-filled gas holder
(M?/sec) qS: Calculation setting value for the number of gases to be sent from the water type gas holder (-rf/sec) t: Elapsed time
(sec) Vsp: Volume fD of the water-filled gas boulder when the gas supply source starts supplying gas, set value [retention] Then, the range of gas amount fluctuation is constant as long as Qi does not fluctuate every circumference m. Become.

し力し、PSAにおいては実際は処理前ガスの温度や大
気温度等の変化に伴ないガス発生量が変勤し、Qiが周
期ごとに変動している。行水式ガスホルダーの容量は定
められた下限値と上限値があり、その範囲を外ると、有
水式ガスホルダーを損傷して運転の継続が不可能となる
。そこで、運転中における右水式ガスホルダーの容晴可
肋範囲を所定の範囲内に治めるため、 vSpを与えておき、qsを求める。
However, in the PSA, the amount of gas generated actually changes with changes in the temperature of the pre-processing gas, the atmospheric temperature, etc., and Qi fluctuates from cycle to cycle. There are predetermined lower and upper limits for the capacity of the water-flow type gas holder, and if it falls outside of these limits, the water-flow type gas holder will be damaged and cannot continue operating. Therefore, in order to control the clearing range of the right water type gas holder during operation within a predetermined range, vSp is given and qs is calculated.

v2は、有水式ノJスホルダーに設置したレベル計の8
1測値と予め組み込んだ右水式ガスホルダーのガス岱と
有水式ガスホルダーのレベルの相関式と、ガス供給源か
らガス供給の終了を知らせる信た送出ガス流量計の計測
値を一周期におけるガス供給源からガス供給の開始から
終了まで流膜積算した値である。
v2 is the level meter installed in the water type J-sholder.
1 measurement value, the correlation equation between the gas level of the right water type gas holder and the level of the water type gas holder that was installed in advance, and the measurement value of the sending gas flow meter that signals the end of gas supply from the gas supply source in one cycle. This is the value obtained by integrating the flow film from the start to the end of gas supply from the gas supply source at .

TCは、PSAの運転を操縦しているPSA工程切門シ
ーケンスプログラムに組み込まれている定められたガス
供給周期であり、この時間設定値を読み込んで求めるこ
とがでさる。
TC is a prescribed gas supply period built into the PSA process cut-off sequence program that controls the operation of the PSA, and can be determined by reading this time setting value.

以上の演客1狛及び読み取り(+(Iと、0式の計算手
順を組み込んだ演算手段によって、流量設定値を演拝し
、流量計(h)から読み取った送出ガス流量計と上記流
量設定値を流量調節器(j)に入力して、流山調節弁(
d)のパルプ開度を設定し、流層の1IIIltIlを
行って、送出ガスを連続的に整流及び整圧する。
Using the above performer 1 and reading (+(I) and calculation means incorporating the calculation procedure of formula 0, the flow rate setting value is performed, and the delivery gas flow meter read from the flow meter (h) and the above flow rate setting Input the value into the flow rate regulator (j) and turn the flow rate control valve (
Set the pulp opening degree of d), perform 1IIIltIl of the flow bed, and continuously rectify and pressure the delivered gas.

次に、第5図に示すフO−ヂャートに従ってコンピュー
タによる制御の手順を説明する。
Next, the procedure of computer control will be explained according to the diagram shown in FIG.

なお、第5図に示すフローヂャートの説明中(D、■・
・・は処理手順(ステップ)の番号を示す。
In addition, during the explanation of the flowchart shown in Fig. 5 (D,
... indicates the number of the processing procedure (step).

先ず、ステップOでメモリーに格納されたυ制御データ
から有水式ガスホルダー(C)のガス槽の工程切替シー
ケンスプログラムから運転中か停止中かのフラグを読み
取り、停止中のときにはそガス供給期間であるか否かの
フラグを、夫々上記工程切替シーケンスブOグラムから
読み取り、更にOで有水式ガスホルダー(C)の容量設
定値vSpをメモリーに格納された数値から読み取る。
First, from the υ control data stored in the memory in step O, the flag indicating whether it is running or stopped is read from the process switching sequence program of the gas tank of the water type gas holder (C), and if it is stopped, the gas supply period is The flag indicating whether or not it is is read from the process switching sequence block Ogram, and furthermore, at O, the capacity set value vSp of the aqueous gas holder (C) is read from the numerical value stored in the memory.

そして、ガス供給期間でないときにはOに戻り、ガス供
給期間であるときにはG)で有水式ガスホルダーから送
出されるガス流量の積算値Q1を読み取る。このノ1ス
流量1fi粋値Q+は劃01(h)で読み取られるガス
流星をlI!111器で積算して求める。
Then, when it is not the gas supply period, the process returns to O, and when it is the gas supply period, the integrated value Q1 of the gas flow rate sent out from the water type gas holder is read at G). This No. 1st flow rate 1fi value Q+ is the gas meteor read at 01(h). Calculate by integrating with 111 device.

続いてG)で再び工程切替シーケンスプログラムよりガ
ス供給期間であるか否かのフラグを見、量の積算を継続
し、ガス供給期間が終了したときには()で有水式ガス
ホルダー(C)のレベル計(e〉から打水式ガスホルダ
ー(C)のレベルLSを読み取り、(F3)でガス供給
終了時の有水式ガスホルダー(C)のガス容量 V z
を演Oする(V2−12 XS)。
Then, in G), check the flag again from the process switching sequence program to see if it is the gas supply period, continue to integrate the amount, and when the gas supply period ends, check the water-type gas holder (C) in (). Read the level LS of the water-type gas holder (C) from the level meter (e), and use (F3) to determine the gas capacity of the water-type gas holder (C) at the end of gas supply V z
Perform O (V2-12 XS).

出されるガス流星のgI算値Q2を読み取り、(EJi
)で有水式ガスボルダ−(C)から送出するガス流量の
設定値qsを演粋する(qS = (MV2−vsp)
+(Q2−Q+ ) ) /Tc >。
Read the gI calculation value Q2 of the gas meteor that is emitted, and (EJi
) to derive the set value qs of the gas flow rate sent from the water-filled gas boulder (C) (qS = (MV2-vsp)
+(Q2-Q+))/Tc>.

に伝送すると共に6)に戻り、(iE)以下を繰り返す
At the same time, return to step 6) and repeat (iE) and the following steps.

一方、流ff1fl!J節器(j>は伝送される流か設
定値と流量計(h)が検出する送出ガスの実流量を常時
比較しており、両者の差に応じてバルブ開度信局を流量
調節弁(d)に出力する。
On the other hand, Flowff1fl! The J node (j>) constantly compares the transmitted flow set value and the actual flow rate of the delivered gas detected by the flow meter (h), and changes the valve opening signal to the flow control valve according to the difference between the two. Output to (d).

そして、i吊調節弁(d)は上記流出調節器(j)のバ
ルブ開度信局を受けてバルブ171度を変更し、ガス送
出流量を調節する。
The i suspension control valve (d) changes the valve 171 degrees in response to the valve opening signal from the outflow control device (j), and adjusts the gas delivery flow rate.

尚、間欠的にガスを供給りるガス供給源(a)が2つ以
上あり、それぞれの供給ガスが交互に有水式ガスホルダ
ーに送入される場合においては、それぞれのガス供給m
が異なると、ガス送出流量はそのつど変化してしまう。
In addition, if there are two or more gas supply sources (a) that supply gas intermittently, and each supply gas is alternately sent to the water-filled gas holder, each gas supply m
If the values are different, the gas delivery flow rate will change each time.

そこで、それぞれの周期で演緯したガス送出流組設定値
をガス発生器の個数による移動平均を求めて流量設定値
の均一化を行う。
Therefore, the moving average of the gas delivery flow group setting values calculated in each cycle is calculated based on the number of gas generators to equalize the flow rate setting values.

おいてのそれぞれの流星設定IqS + * qS 2
・・・qsnとガス供給#A(a)の数に基づいて流量
設定値の移動平均値(qS = (qS + +(Is
 2・・・+qSn)/n)を求める()を挿入する。
Each meteor setting IqS + * qS 2
... Based on the number of qsn and gas supply #A (a), the moving average value of the flow rate setting value (qS = (qS + + (Is
Insert () to calculate 2...+qSn)/n).

これにより、ガス発生器が2つ以上あり、それぞれの発
生ガスが交互に右水式ガスホルダーに送入される場合で
あっても連続定流量、定圧でガスを送出することができ
る。
As a result, even if there are two or more gas generators and the generated gas from each gas generator is alternately fed into the right water type gas holder, the gas can be continuously delivered at a constant flow rate and constant pressure.

(効果) 本発明は以上のように構成し、ガス送出瓜を周期ごとに
送入♀とIRI aになるように演算III IIIす
るため、容積可変式容器のガス保有聞を少なくとも1周
191当りのガス発生6!以下にできる。
(Effects) The present invention is configured as described above, and in order to perform calculations so that the gas delivery ♀ and IRI a are obtained every cycle, the gas holding period of the variable volume container is controlled at least once per revolution. Gas generation 6! You can do the following.

即ち容積可変式容器は非常に小さくなり、設置のための
建設コストを大幅に低減することができ、設置スペース
も小さくなる。
In other words, the variable volume container becomes very small, the construction cost for installation can be significantly reduced, and the installation space is also reduced.

また、全て自動的に制御されるため人間の操作を介在さ
せる必要が全くなく、運転管理に要する手間や労力が大
幅に軽減する。
In addition, since everything is controlled automatically, there is no need for any human intervention, which greatly reduces the time and effort required for operation management.

更に、送入されるガスを均質化手段により拡散させ均質
化するので、圧力容器のガス保有11を小さくしても発
生ガス中の成分がガス発生II間中に変化がある場合で
も常に均質のガスを送出することができる。
Furthermore, since the incoming gas is diffused and homogenized by the homogenizing means, even if the gas retention 11 of the pressure vessel is made small, even if the components in the generated gas change during Gas Generation II, the gas will always remain homogeneous. Gas can be delivered.

而して、間歇的ガス流を整流、整圧、均質を同時に、か
つ連続的に行うて送出することができる。
Thus, the intermittent gas flow can be rectified, pressure-regulated, and homogenized simultaneously and continuously before being sent out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を説I]lIするフロー図、第2
図は容積可変式容器の横断面図、第3図は同縦断面図、
第4図はガス発生器から圧力容器に間欠的かつ周期的に
送入される発生ガスを連続的かつ一定!ffiで送出し
たときの運転チャート、第5図(a)(b)は制御手順
を示す70−チ1シート、第6図、第7図は容積可変式
容器のガス量の挙動を示す説明図ぐあり、第す図番よノ
fス11!の′挙動をガスの発生する1周期におけるガ
ス発生量とガス発? 生I]間の国保において示し、第會図は発生ガスが一定
量で容積可変式容器に送入される場合をガス発生期間と
ガス発生量によって示している。 図中 ガス供給源 ガス送出機 容積可変式容器(有水式ガスホルダー)流量&1lfl
弁 ガス保有量読み取り手段(超音波レベル計)積算手段 経過時間読み取り手段 ガス保有量読み取り手段(流砧計〉 演算手段 流ff111節器 均質化手段 ガス供給管路 ガス入管 ガス拡散リング ガス放出孔 許 出 願 人 西部瓦斯株式会社 許 出 願 人 三菱油化エンジニア リング株式会社 (a) 第5図 (b) w−る領6に妊全0−ベロαb田口□区曵刺事〈恒6に
貯壷\−陣瓢招試閾
Figure 1 is a flow diagram explaining the configuration of the present invention;
The figure is a cross-sectional view of a variable volume container, and Figure 3 is a longitudinal cross-sectional view of the same.
Figure 4 shows the generated gas that is intermittently and periodically fed from the gas generator to the pressure vessel continuously and constantly! Operation chart when sending out with ffi, Figures 5 (a) and (b) are 70-chi 1 sheet showing the control procedure, Figures 6 and 7 are explanatory diagrams showing the behavior of the gas amount of the variable volume container. Hello, picture number 11! What is the behavior of the amount of gas generated in one cycle of gas generation and the amount of gas generated? Figure 1 shows the case where a constant amount of generated gas is fed into a variable volume container using the gas generation period and the amount of gas generated. In the figure, gas supply source gas delivery machine variable volume container (water type gas holder) flow rate & 1lfl
Valve gas retention amount reading means (ultrasonic level meter) integrating means elapsed time reading means gas retention amount reading means (flow meter) calculation means flow ff111 moderator homogenization means gas supply pipe gas inlet pipe gas diffusion ring gas discharge hole permit Applicant: Seibu Gas Co., Ltd. Applicant: Mitsubishi Yuka Engineering Co., Ltd. (a) Figure 5 (b) W-ru region 6 has a total of 0-velo αb Taguchi Jinhyo Invitation Test Threshold

Claims (1)

【特許請求の範囲】 (1)サイクリックガス流を均質化装置を備えた容積可
変式容器に送入し、そのガスを均質な連続ガス流に変換
して上記均質化装置を備えた容積可変式容器から送出す
ると共に、上記均質化装置を備えた容積可変式容器の容
積からガス保有量を読み取り、該ガス保有量とサイクリ
ックガス流供給周期の経過時間から均質化装置を備えた
容積可変式容器へのガス送入開始時点及び送入終了時点
における均質化装置を備えた容積可変式容器のガス保有
量を求める手順と、均質化装置を備えた容積可変式容器
からのガス送出流量を読み取って該容器へのガス送入期
間に該容器から送出されたガス量を積算する手順と、均
質化装置を備えた容積可変式容器へのガス送入周期、均
質化装置を備えた容積可変式容器の定められた最低若し
くは最高ガス容量、及び上記手順で求めた均質化装置を
備えた容積可変式容器へのガス送入期間に該均質化装置
を備えた容積可変式容器から送出されたガス量からガス
送出流量を演算する手順により上記均質化装置を備えた
容積可変式容器からのガス送出流量を設定し、流量調節
手段により均質化装置を備えた容積可変式容器からのガ
ス送出流量を上記ガス送出流量設定値に一致させるよう
に自動制御することを特徴とするサイクリックガス流の
整圧、整流、均質を同時に行う方法。 (2)サイクリックガス流がサイクル運転される複数の
ガス供給源から供給される場合は、ガス供給源別に演算
されたガス送出流量とガス供給源の数により求められる
移動平均値を容積可変式容器からのガス送出流量の設定
値にすることを特徴とする請求項1記載のサイクリック
ガス流の整圧、整流、均質を同時に行う方法。 (3)サイクリックガス流供給源からのガス供給管路の
途中に介設される容積可変式容器と、上記容積可変式容
器より後流のガス供給管路に設けられサイクリックガス
流供給源から間欠的かつ周期的に上記容器に送入される
ガスを連続して送出するガス送出機と、 上記容積可変式容器に装備されて該容器内に送入された
ガスの成分を均質化する均質化装置と、上記容積可変式
容器より後流側においてガス供給管路に設けられた流量
調節弁と、上記容積可変式容器に設けられ該容器のガス
保有量を読み取って電気信号に変換するガス保有量読み
取り手段と、 サイクリックガス流の供給周期開始からの該周期経過時
間を読み取る経過時間読み取り手段と、上記容積可変式
容器より後流においてガス供給管路に設けられ該管路を
流れるガスの流量を読み取って電気信号に変換するガス
流量読み取り手段と、 上記ガス流量読み取り手段が読み取ったガス流量を積算
する積算手段と、 上記各読み取り手段が読み取るデータと容積可変式容器
の定められた最低又は最高ガス容量とサイクリックガス
流の設定された供給期間及び供給周期と該周期の経過時
間に基づいてガス送出設定流量を演算する設定流量演算
手段と、 上記設定流量演算手段で演算された設定流量値とガス流
量読み取り手段で読み取られた実流量を比較し、両者が
一致するように流量調節弁のバルブ開度を調節する流量
調節器と、を具備することを特徴とするサイクリックガ
ス流の整圧、整流、均質を同時に行う装置。(4)容積
可変式容器が有水式ガスホルダーであることを特徴とす
る請求項(3)記載のサイクリックガス流の整圧、整流
、均質を同時に行う装置。 (5)均質化手段が、サイクリックガス流供給装置に連
絡して容積可変式容器内に起立するガス入管の先端に設
けられたガス拡散リングからなり、該ガス拡散リングは
ガス導入管に連通して上記容器と、同芯状に形成されそ
の上面には内外両周縁に沿って均等に配置せしめた多数
のガス放出孔を有することを特徴とする請求項(3)又
は(4)記載のサイクリックガス流の整圧、整流、均質
を同時に行う装置。
[Scope of Claims] (1) A cyclic gas flow is fed into a variable volume container equipped with a homogenizing device, and the gas is converted into a homogeneous continuous gas stream to provide a variable volume container equipped with the homogenizing device. At the same time, the amount of gas held is read from the volume of the variable volume container equipped with the homogenizing device, and the amount of gas held is read from the volume of the variable volume container equipped with the homogenizing device. The procedure for determining the amount of gas held in a variable volume container equipped with a homogenizer at the start and end of gas supply to the container, and the gas flow rate from the variable volume container equipped with a homogenizer. A procedure for reading and integrating the amount of gas delivered from the container during the gas delivery period to the container, a gas delivery period to a variable volume container equipped with a homogenizer, and a variable volume container equipped with a homogenizer. The gas discharged from the variable volume container equipped with a homogenizer during the gas supply period to the variable volume container equipped with a homogenizer determined by the above procedure and the specified minimum or maximum gas capacity of the container The gas delivery flow rate from the variable volume container equipped with the homogenizing device is set by the procedure of calculating the gas delivery flow rate from the gas amount, and the gas delivery flow rate from the variable volume container equipped with the homogenizing device is set by the flow rate adjustment means. A method for simultaneously regulating the pressure, rectifying, and homogenizing a cyclic gas flow, characterized by automatically controlling the flow rate so as to match the set value of the gas delivery flow rate. (2) When the cyclic gas flow is supplied from multiple gas supply sources operated in cycles, the moving average value calculated from the gas delivery flow rate calculated for each gas supply source and the number of gas supply sources is calculated using a volumetric variable method. 2. A method for simultaneously regulating the pressure, rectifying, and homogenizing a cyclic gas flow according to claim 1, characterized in that the flow rate of gas delivered from the container is set to a set value. (3) A variable volume container interposed in the middle of a gas supply pipeline from a cyclic gas flow supply source, and a cyclic gas flow supply source provided in a gas supply pipeline downstream from the variable volume container. a gas sending device that continuously sends out the gas that is intermittently and periodically fed into the container from the container; a homogenizer, a flow rate control valve provided in the gas supply line on the downstream side of the variable volume container, and a flow control valve provided in the variable volume container to read the amount of gas held in the container and convert it into an electrical signal. a gas holding amount reading means; an elapsed time reading means for reading the cycle elapsed time from the start of the supply cycle of the cyclic gas flow; a gas flow rate reading means for reading the gas flow rate and converting it into an electrical signal; an integrating means for integrating the gas flow rate read by the gas flow rate reading means; a set flow rate calculation means for calculating a set gas delivery flow rate based on the minimum or maximum gas capacity, the set supply period and supply cycle of the cyclic gas flow, and the elapsed time of the cycle; A cyclic gas comprising: a flow rate regulator that compares a set flow rate value with an actual flow rate read by a gas flow rate reading means and adjusts the valve opening of a flow rate control valve so that the two match. A device that simultaneously regulates, rectifies, and homogenizes the flow. (4) The apparatus for simultaneously regulating the pressure, rectifying, and homogenizing a cyclic gas flow according to claim (3), wherein the variable volume container is a water-containing gas holder. (5) The homogenizing means consists of a gas diffusion ring provided at the tip of a gas inlet tube that stands in the variable volume container and communicates with the cyclic gas flow supply device, and the gas diffusion ring communicates with the gas introduction tube. Claim 3 or 4, characterized in that the container is formed concentrically with the container and has a large number of gas discharge holes arranged evenly along both the inner and outer peripheral edges on the upper surface thereof. A device that simultaneously regulates, rectifies, and homogenizes cyclic gas flow.
JP1267804A 1989-10-13 1989-10-13 Method for simultaneously regulating, rectifying and homogenizing cyclic gas flow and apparatus therefor Expired - Lifetime JPH0732858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1267804A JPH0732858B2 (en) 1989-10-13 1989-10-13 Method for simultaneously regulating, rectifying and homogenizing cyclic gas flow and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1267804A JPH0732858B2 (en) 1989-10-13 1989-10-13 Method for simultaneously regulating, rectifying and homogenizing cyclic gas flow and apparatus therefor

Publications (2)

Publication Number Publication Date
JPH03127605A true JPH03127605A (en) 1991-05-30
JPH0732858B2 JPH0732858B2 (en) 1995-04-12

Family

ID=17449830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1267804A Expired - Lifetime JPH0732858B2 (en) 1989-10-13 1989-10-13 Method for simultaneously regulating, rectifying and homogenizing cyclic gas flow and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH0732858B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1089019C (en) * 1999-06-05 2002-08-14 湖北宜化集团有限责任公司 Method for stabilizing outlet pressure of pressure changing adsorption vacuum pump by using air cabinet
JP2008536988A (en) * 2005-04-22 2008-09-11 エフォニック ストックハウゼン ゲーエムベーハー Water-absorbing polymer structure surface-treated with polycation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1089019C (en) * 1999-06-05 2002-08-14 湖北宜化集团有限责任公司 Method for stabilizing outlet pressure of pressure changing adsorption vacuum pump by using air cabinet
JP2008536988A (en) * 2005-04-22 2008-09-11 エフォニック ストックハウゼン ゲーエムベーハー Water-absorbing polymer structure surface-treated with polycation

Also Published As

Publication number Publication date
JPH0732858B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
US7622037B2 (en) Ozonated water flow and concentration control apparatus and method
CN107572482A (en) A kind of self elevation adaption oxygen generation system and method for producing oxygen through
CN107697991A (en) A kind of accurate dosing system of running water chlorine residue and its control method with closed-loop control
CN111578255A (en) Automatic control system for steam thermal energy field
JPH06154655A (en) Method of adjusting flotation device with first and second stages
CN111412132A (en) Control method of water feed pump system and water feed pump system
CN114062219B (en) Breathable film performance test integrated device and operation method thereof
JPH03127605A (en) Method and device for pressure-regulating, straightening and homogenizing cyclic gas current
JPH07306192A (en) Liquid chromatography for dispensation
CN110087761A (en) Resistivity value adjuster and resistivity value method of adjustment
CN111644019A (en) Production method of nitrogen oxide gas full-automatic pressure absorption process
US6372096B1 (en) Pressure regulation process for ozone generating cell
CN106198845A (en) Ion chromatogram eluate and automatically configure device and method of automatic configuration continuously
CN212777285U (en) Automatic control system for steam thermal energy field
CN104776724B (en) A kind of waste heat recovery economizer equipment and using method thereof
JPH0859207A (en) Device for forming ozone water
CN111707049B (en) Refrigerant mass flow control system and method for pump barrel liquid supply refrigeration system
JP2003236353A (en) Apparatus for producing ozonized water
CN215275195U (en) Self-adjusting oxygenerator
CN216808402U (en) Direct drinking water system with multistage water quality monitoring and purification functions
CN114306996B (en) Compressed air foam generating device and using method thereof
CN208554002U (en) A kind of chemical chemicals dosing plant for power plant
CN207871923U (en) A kind of gas mixer
US20210268161A1 (en) Method for Stabilizing Dialysate Consumption Flow, Corresponding Apparatus and Central Dialysate Preparation and Distribution System
JPH03131399A (en) Process for concentrating sludge at low flow rate