JPH0312169A - Artificial blood vessel - Google Patents

Artificial blood vessel

Info

Publication number
JPH0312169A
JPH0312169A JP1146604A JP14660489A JPH0312169A JP H0312169 A JPH0312169 A JP H0312169A JP 1146604 A JP1146604 A JP 1146604A JP 14660489 A JP14660489 A JP 14660489A JP H0312169 A JPH0312169 A JP H0312169A
Authority
JP
Japan
Prior art keywords
blood vessel
smooth muscle
cells
muscle cells
formic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1146604A
Other languages
Japanese (ja)
Other versions
JP2758027B2 (en
Inventor
Tatsuya Takano
達哉 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP14660489A priority Critical patent/JP2758027B2/en
Publication of JPH0312169A publication Critical patent/JPH0312169A/en
Application granted granted Critical
Publication of JP2758027B2 publication Critical patent/JP2758027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the artificial blood vessel which is used for rebuilding of the blood circulation in a small-diameter blood vessel and vein blood vessel by treating the wall of the blood vessel of a mammal with org. acid or guanidine hydrochloride, then culturing the smooth muscle cells and endothelio cells. CONSTITUTION:The blood vessel treated with the org. acid, such as formic acid, or the guanidine hydrochloride rebuilds the blood vessel wall. The smooth muscle cells and endothelio cells are cultured for this purpose. The rabbit smooth muscle cells, swine smooth muscle cells, bovine smooth muscle cells, canine smooth muscle cells, etc., are sued for the smooth muscle cells. The swine endothelio cells, canine endothelio cells, etc., are used for the endothelio cells. The culture is executed by a method of washing the blood vessel wall, which is treated with the sterilized formic acid, etc., with distilled water and physiological salt soln. and is permeated in a Dulbecco disintegration Eagle medium and is then cultured in the suspension of the swine smooth muscle cells or after the suspension (c) of the swine smooth muscle cells is injected at about 0.2ml/graft by an injection needle of 27G to the vessel wall, the cells are cultured. The concn. of the aq. formic acid to be used is 70 to 95%, more preferably 80 to 90% and the treatment time is one day to one week. The treating temp. is <=5 deg.C, more preferably <=4 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は人工血管、特に哺乳動物の血管を処理し、生体
内の血管と同様の措置と機能を持つことが期待される人
工血管を製造する方法及びそれより得られる人工血管に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to processing artificial blood vessels, particularly mammalian blood vessels, and producing artificial blood vessels that are expected to have the same measures and functions as blood vessels in living bodies. The present invention relates to a method for doing so and an artificial blood vessel obtained therefrom.

〔従来の技術〕[Conventional technology]

これまで多くの研究者によって人工血管の材質や構造、
さらには表面修飾などについて研究されており、ダクロ
ン(登録商標)やテフロン(登録商標)を素材とするも
のの研究がなされ、特に自家静脈使用不能例の小口径血
管にはエキスパンデッドポリテトラ フルオロエチレン
(EPTFE)血管が主に使用されている。最近では抗
血栓性と柔軟性をもつ新しい素材としてポリウレタンが
注目されている(松本薄志9入工臓器、 17:610
,1988、および田村康−ら、人工臓器、17:61
4,1988)。
Many researchers have researched the materials and structure of artificial blood vessels,
Furthermore, surface modification is being studied, and materials made of Dacron (registered trademark) and Teflon (registered trademark) are being studied, and expanded polytetrafluoroethylene is used especially for small-caliber blood vessels in cases where autologous veins cannot be used. (EPTFE) vessels are mainly used. Recently, polyurethane has been attracting attention as a new material with antithrombotic properties and flexibility (Matsumoto Susushi 9, Organs Organs, 17:610
, 1988, and Yasushi Tamura et al., Artificial Organs, 17:61.
4, 1988).

また既存の素材を使用したものでも良好な治療過程を得
るためにコラーゲン被膜〔スコツト(ScottS、M
、)ら、ジャーナルオブカルディオヴアスクサージェリ
ー(J、Cardiovasc、Surg、)28:4
98.1987)やアルブミン浸漬(マクグリ−(Mc
gree G、S、)らアメリカンサージョン(Ame
r、Surgeon、)53:695゜19g?)など
の工夫をした人工血管も開発されている。さらには培養
系を利用して人工血管の内皮細胞を植えつける( se
eding)ハイブリッド型人工血管の研究もヘリング
ら〔ヘリング(Herring N、)らサージエリ−
(Surg、)84:498,1987)やグラハムら
〔グラハム(Graham L、M、)ら、アーケイッ
クサージェリ−(Arch、Surg、)115:12
98,1980)によって報告されて以来多くの研究が
なされている。また本来生体内に存在しない人工物を使
用するよりも、生体由来の血管結合繊を素材として使用
したほうが良いとする考えもあり、ヒト鎖体静脈をグル
タルアルデヒドで架橋処理した代用血管もしばしば使用
されてきた〔ダルデイック(Dardic 11.)ら
、アナーレンサージェリー(Ann、Surg)183
:252゜1976、および笹嶋唯博1日外会誌、85
:65,1984)。
In addition, even if existing materials are used, collagen coatings [ScottS, M
), et al., Journal of Cardiovascular Surgery (J, Cardiovasc, Surg, ) 28:4
98.1987) and albumin soaking (McGree (McGree)
gree G, S,) et al. American Surgeon (Ame
r, Surgeon,) 53:695°19g? ) and other artificial blood vessels have also been developed. Furthermore, endothelial cells for artificial blood vessels are planted using a culture system (se
Herring et al. [Herring N. et al.
(Surg, ) 84:498, 1987) and Graham et al.
98, 1980), many studies have been conducted since then. There is also the idea that it is better to use biologically derived blood vessel-binding fibers as a material than to use artificial materials that do not originally exist in the body, and vascular substitutes made from human chain veins cross-linked with glutaraldehyde are often used. [Dardic 11. et al., Ann, Surg. 183
:252゜1976, and Yuihiro Sasashima 1-day foreign journal, 85
:65, 1984).

又天然血管に類似した血管壁モデルの作成は、ジョーン
ズ(Jones)が1979年、ラット平滑筋細胞をデ
イシュ上で培養し細胞外基質を十分産生させた後、ウシ
内皮細胞を平滑筋細胞層の上に植付け(seeding
) L一種の血管壁モデルを作成し、培養下における血
管壁の再構築(remodeling)の可能性を示し
た〔ジョーンズ(Jones P、A、):プロシージ
ングスオブザナショナルアカデミーオブサイエンス(P
roc、Natl、Acad、Sci、) 、76:1
882゜1979)。ワインベルブ(すeinberg
)らはコラーゲンゲルを利用して血管モデルを作成した
〔ワインベルブ(We1nberg+C,B、) lサ
イエンス(Science) : 231:397,1
986)が、強度や弾性の面から代用血管への応用は難
しい。
Furthermore, in 1979, Jones cultivated rat smooth muscle cells on a dish to produce sufficient extracellular matrix, and then cultured bovine endothelial cells in the smooth muscle cell layer. planting on top
) created a type of vascular wall model and demonstrated the possibility of remodeling the vascular wall in culture [Jones P, A.: Proceedings of the National Academy of Sciences (P.
roc, Natl, Acad, Sci,), 76:1
882°1979). Wineberg
) created a blood vessel model using collagen gel [Weinberg + C, B, Science: 231:397, 1]
986), but it is difficult to apply it to a blood vessel substitute due to its strength and elasticity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記のとおり、高血栓性に優れ、適度な弾性を持ち、か
つ細胞親和性の良い人工血管を開発するために、人工血
管の材質や構造、表面修飾の検討。
As mentioned above, in order to develop artificial blood vessels with excellent thrombogenicity, moderate elasticity, and good affinity for cells, we investigated the material, structure, and surface modification of artificial blood vessels.

さらに培養系を利用したハイブリット型人工血管など、
多くの研究が行われている。しかし、自家静脈以上のも
のはまだ開発されていない。また、生体材料をグルタル
アルデヒドやポリエポキシ化合物などで架橋処理した血
管には生きた血管壁細胞は存在せず、また細胞親和性も
必ずしも良好とはいえない。
In addition, hybrid artificial blood vessels using culture systems, etc.
A lot of research is being done. However, nothing beyond autologous veins has yet been developed. In addition, living blood vessel wall cells are not present in blood vessels made of biomaterials cross-linked with glutaraldehyde, polyepoxy compounds, etc., and cell affinity is not necessarily good.

又、天然血管に類似した血管壁モデルの作成についても
、これまで試験管内(in vitro)で完全な形で
血管壁モデルを作成した例はない。
Furthermore, regarding the creation of a blood vessel wall model similar to a natural blood vessel, there has been no example of creating a complete blood vessel wall model in vitro.

したがって、小口径血管や静脈系血管に対する血行再建
術に用いられる十分満足できる人工血管の開発が望まれ
るところである。
Therefore, it is desired to develop a fully satisfactory artificial blood vessel for use in revascularization of small-caliber blood vessels and venous blood vessels.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、血管結合繊と血管壁細胞が存在する天然血
管とほぼ同等の構造と機能を持った代用血管が最も理想
的な人工血管であるという考えから、培養系を用いた新
しい生体代用血管の作成を目指し、その基礎として天然
血管とほぼ同等の構造をもつ血管壁モデルを試験管内(
in vitro)で作成することを試みた結果、哺乳
動物の血管の血管壁を特定の溶液で処理し、ついで特定
の細胞で培養することにより天然血管に近い血管壁を有
するものが作られることを見出し1本発明に到達したも
のである。
The present inventors believe that the most ideal artificial blood vessel is a substitute blood vessel that has a structure and function almost equivalent to that of a natural blood vessel, in which blood vessel connecting fibers and blood vessel wall cells exist, so we developed a new biological substitute using a culture system. Aiming to create a blood vessel, we created a blood vessel wall model with a structure roughly equivalent to that of a natural blood vessel in vitro (
As a result of an attempt to create a blood vessel in vitro, it was discovered that by treating the walls of mammalian blood vessels with a specific solution and then culturing them with specific cells, vessels with walls similar to those of natural blood vessels could be created. Heading 1 This invention has been achieved.

即ち、本発明は、哺乳動物の血管の血管壁をギ酸処理後
、平滑筋細胞と内皮細胞を培養して、該血管壁を再構築
することを特徴とする人工血管の裏通方法及び上記の方
法により作られた人工血管に関する。
That is, the present invention provides a method for lining an artificial blood vessel, which comprises treating the wall of a mammalian blood vessel with formic acid, and then culturing smooth muscle cells and endothelial cells to reconstruct the blood vessel wall, and the method described above. This invention relates to an artificial blood vessel made by the method.

哺乳動物の血管としてはブタ、犬、牛、ウサギ等をはじ
めとする哺乳動物の大動脈を用いることができる。
As the mammalian blood vessel, the aorta of mammals including pigs, dogs, cows, rabbits, etc. can be used.

人工血管において、天然血管とほぼ同等の構造と機能を
持った生体代用血管が最も理想的であると考えられ、コ
ラーゲンとエラスチンを基本骨格とし平滑筋細胞や内皮
細胞を有し、かつ、将来的には自己血管そのものに変化
しうる代用血管であることが必要であり、そして、適度
な弾性と強度を得るにはエラスチンの弾性板構造が必要
と考えられる。この血管壁の基本骨格となる細胞各期質
(extracellular matrix)を人工
的に作成することは容易ではなく、天然血管を利用する
のが簡便であり、そのためには異種血管の抗原性を除去
しかつ細胞親和性のある基質(matrix)とするよ
うな処理方法が必要となる。そこで異種血管の細胞成分
はもちろん、エラスチンとコラーゲン以外の蛋白や糖を
できるだけ除去できる処理方法を検討した結果、ギ酸水
溶液での処理が適当であった。
In terms of artificial blood vessels, biological blood vessel substitutes that have almost the same structure and function as natural blood vessels are considered to be the most ideal, and have a basic skeleton of collagen and elastin and smooth muscle cells and endothelial cells. Therefore, it is necessary to use a substitute blood vessel that can transform into the autologous blood vessel itself, and an elastic plate structure of elastin is considered to be necessary to obtain appropriate elasticity and strength. It is not easy to artificially create the extracellular matrix that forms the basic skeleton of the blood vessel wall, and it is convenient to use natural blood vessels, which requires removing the antigenicity of the foreign blood vessels. In addition, a treatment method is required that produces a matrix that has cell affinity. Therefore, we investigated a treatment method that would remove as much of the cellular components of the foreign blood vessels as possible, as well as proteins and sugars other than elastin and collagen, and as a result, treatment with a formic acid aqueous solution was found to be appropriate.

用いられるギ酸水溶液の濃度は70〜95%好ましくは
80〜90%であり、処理時間は1日〜1週間である。
The concentration of the aqueous formic acid solution used is 70-95%, preferably 80-90%, and the treatment time is 1 day to 1 week.

また処理温度は5℃凧下、好ましくは4℃以下が適当で
ある。ギ酸はある条件下では血管のエラスチン以外の成
分を大部分除去し。
The treatment temperature is suitably below 5°C, preferably below 4°C. Under certain conditions, formic acid can remove most of the components other than elastin in blood vessels.

弾性板の基本構造をほぼ原形のまま残すことが知られて
いるがエイ、エム、エイ アルカイーブパソロジー(A
、M、A、Arch Path、65:519,195
8)、本発明者は5℃以下で処理すれば機械的強度が維
持できる程度にコラーゲンが残ることを見出した。
It is known that the basic structure of the elastic plate is left almost in its original form, but
, M.A., Arch Path, 65:519,195
8), the present inventors have found that collagen remains to an extent that mechanical strength can be maintained if treated at 5° C. or lower.

その他溶液での処理:例えば蒸留水は浸透圧により細胞
を膨潤させ水溶性の糖や蛋白を除去できると考えられた
が、結合繊の密な血管壁深部までは作用させるのはむず
かしい。トライトン(Triton)X 100 (ロ
ームアンドパートナ社)は非イオン性の表面活性剤であ
り生体膜を可溶化するため細胞除去には適していると考
えられたがこの方法でも不十分であった。また塩酸グア
ニジンは血管壁のコラーゲンやエラスチンを分画するの
にしばしば使われており、ギ酸等の有機酸と同様に用い
ることができる。ギ酸等の有機酸や塩酸グアニジン処理
により強度が若干は減弱するがこれは血管壁細胞による
結合繊が再合成によって強化されるので不都合ではない
。ギ酸等の有機酸や塩酸グアニジン処理した血管はつい
で血管壁の再構築を行う。そのため平滑筋細胞と内皮細
胞を培養する。
Treatment with other solutions: For example, distilled water was thought to be able to swell cells and remove water-soluble sugars and proteins due to osmotic pressure, but it is difficult to apply this to the deep parts of blood vessel walls where connective fibers are dense. Triton X 100 (Rohm & Partner) is a nonionic surfactant that solubilizes biological membranes and was thought to be suitable for cell removal, but even this method was insufficient. Furthermore, guanidine hydrochloride is often used to fractionate collagen and elastin in blood vessel walls, and can be used in the same way as organic acids such as formic acid. Although the strength is slightly weakened by treatment with an organic acid such as formic acid or guanidine hydrochloride, this is not a disadvantage because the connecting fibers formed by blood vessel wall cells are strengthened by resynthesis. Blood vessels treated with organic acids such as formic acid or guanidine hydrochloride are then subjected to vessel wall reconstruction. Therefore, smooth muscle cells and endothelial cells are cultured.

平滑筋細胞はウサギ平滑筋細胞、ブタ平滑筋細胞、牛平
滑筋細胞、大平滑筋細胞等が用いられる。
As the smooth muscle cells, rabbit smooth muscle cells, pig smooth muscle cells, bovine smooth muscle cells, large smooth muscle cells, etc. are used.

又内皮細胞はブタ内皮細胞、大内皮細胞等が用いられる
Further, as the endothelial cells, porcine endothelial cells, large endothelial cells, etc. are used.

培養方法としては、滅菌したギ酸等の処理血管壁を蒸留
水および生理食塩水で水洗浄し、ダルベツコ改変イーグ
ル培地(DMEM)(細胞接着因子として利用されるフ
ィブロネクチン等1004g/ml含有)に浸透した後
、(1)ブタ平滑筋細胞浮遊液(約I X I O”c
ells/耐)中で培養するか、又は(2)ブタ平滑筋
細胞浮遊液(約I X 10’−Gcells/ml)
を27Gの注射針で約0.2ml/graft注入した
後、培養する。培養時間は1週間以上好ましくは1ケ月
以上である。
As for the culture method, the sterilized blood vessel wall treated with formic acid, etc. was washed with distilled water and physiological saline, and then infiltrated into Dulbecco's modified Eagle's medium (DMEM) (containing 1004 g/ml of fibronectin, etc., which is used as a cell adhesion factor). After that, (1) porcine smooth muscle cell suspension (approximately I
(2) porcine smooth muscle cell suspension (approximately I x 10'-Gcells/ml);
After injecting approximately 0.2 ml/graft with a 27G injection needle, the cells are cultured. The culture time is one week or more, preferably one month or more.

又、ウサギ平滑筋細胞等についても上記ブタ平滑筋細胞
と同様の方法で培養する。
Rabbit smooth muscle cells and the like are also cultured in the same manner as the pig smooth muscle cells.

血管壁の再構築には平滑筋細胞の培養に加えてさらに内
皮細胞が培養される。この内皮細胞の培養は平滑筋細胞
培養、或いは同注入培養後の血管壁を0.5mg/ml
フィブロネクチン(fibronectin)/DME
M等の細胞接着物質に浸漬(室温〜37℃、1〜数日)
後、及ブタ内皮細胞浮遊液(約lX10’cells/
ml)と共に培養する。
In addition to smooth muscle cell culture, endothelial cells are cultured to reconstruct the blood vessel wall. This endothelial cell culture is carried out by smooth muscle cell culture, or by 0.5 mg/ml of the blood vessel wall after the same injection culture.
Fibronectin/DME
Immersion in cell adhesion substances such as M (room temperature to 37°C, 1 to several days)
After that, add pig endothelial cell suspension (approximately 1 x 10' cells/
ml).

以上のようにして、哺乳動物のギ酸処理血管を用いて試
験管内で血管壁の再構築を行なった。平滑筋細胞との培
養は天然血管のような弾性板間に多数の細胞が散在性に
存在する状態を作成するためのものであり、又内皮細胞
との培養は内膜再構築である。平滑筋細胞が壁外から自
然に壁内深層に侵入するまでには長期間(4週間以上)
を要する。
As described above, the vascular wall was reconstructed in vitro using a mammalian blood vessel treated with formic acid. Culturing with smooth muscle cells is to create a state in which a large number of cells are scattered between elastic lamina, like a natural blood vessel, and culturing with endothelial cells is for intimal reconstruction. It takes a long time (more than 4 weeks) for smooth muscle cells to naturally invade the deep intramural layer from outside the wall.
It takes.

〔作用〕[Effect]

哺乳動物の血管を有機酸や塩酸グアニジンで処理し、平
滑筋細胞及及び内皮細胞を培養することにより、血管結
合織と血管壁細胞を有した天然血管に近い血管壁モデル
が試験管内で作成できることが示された。この手法によ
り天然血管とほぼ同様の構造と機能をもった生体代用血
管の作成が可能となる。すなわち異種血管や死体血管を
処理した後、患者自身の血管の一部から培養増殖させた
血管壁細胞で血管壁を再構築させることにより抗血栓性
と弾性をもった生体代用血管となり、移植後は自己の細
胞によって分解吸収と再合成がなされ、最終的には自己
血管そのものに変化する可能性のある血管が期待できる
ものである。
By treating mammalian blood vessels with organic acids or guanidine hydrochloride and culturing smooth muscle cells and endothelial cells, it is possible to create a vascular wall model similar to natural blood vessels with vascular connective tissue and vascular wall cells in vitro. It has been shown. This method makes it possible to create biological blood vessel substitutes that have almost the same structure and function as natural blood vessels. In other words, after treating a foreign blood vessel or a cadaver blood vessel, the blood vessel wall is reconstructed using blood vessel wall cells cultured and grown from a portion of the patient's own blood vessel, resulting in a living body substitute blood vessel with antithrombotic properties and elasticity, which can be used after transplantation. are decomposed, absorbed, and resynthesized by one's own cells, and we can expect blood vessels that can eventually transform into autologous blood vessels themselves.

〔実施例〕〔Example〕

以下に実施例を記載して本発明を更に説明するが、本発
明はこれらの実施例に限定されるものではない。
The present invention will be further explained with reference to examples below, but the present invention is not limited to these examples.

用いた材料及び各種の測定は以下のとおりであった・ 1、血管壁細胞(内皮細胞及び平滑筋細胞)の採取およ
び培養方法 ブタ胸部大動脈の内膜から擦過法で内皮細胞を採取しl
O%牛脂児血清を含むダルベツコ改変イーグル培地(D
MEM)で継代培養した。平滑筋細胞は中膜からエクス
プラント(6xplant)法で分離培養した。またウ
サギ平滑筋細胞も同様に胸部大動脈より採取培養した。
The materials used and various measurements were as follows: 1. Method for collecting and culturing vascular wall cells (endothelial cells and smooth muscle cells) Endothelial cells were collected from the intima of the porcine thoracic aorta by a scraping method.
Dulbecco's modified Eagle's medium (D
MEM). Smooth muscle cells were isolated and cultured from the media using the explant (6xplant) method. Rabbit smooth muscle cells were also collected and cultured from the thoracic aorta.

実験にはそれぞれ2%4継代の細胞を使用した。2% cells of 4 passages were used in each experiment.

2、各種処理血管壁の断裂強度試験法 約6m幅の各種各種処理血管壁に5−0針付きナイロン
糸を通し一方向に加重し断裂時の加重量を測定した。
2. Test method for tearing strength of various treated blood vessel walls A nylon thread with a 5-0 needle was passed through the walls of various treated blood vessels with a width of about 6 m, and a load was applied in one direction to measure the amount of load at the time of tearing.

3、処理血管壁の蛋白分画定量法 各処理血管の処理前後の乾燥重量を測定するとともにギ
酸処理群および塩酸グアニジン処理群については総蛋白
量、コラーゲン量およびエラスチン量を簡易的に定量し
た。
3. Quantification of protein fraction in treated blood vessel walls The dry weight of each treated blood vessel before and after treatment was measured, and for the formic acid treatment group and the guanidine hydrochloride treatment group, the total protein content, collagen content, and elastin content were simply quantified.

(1)コラーゲン定量 第4表に示す方法で分画した水溶性分画とオートクレイ
プ(120℃、12時間、2回)可溶性分画中のヒドロ
キシプロリンをウエスナー(Woessner)法(l
1oessner 、 J 、 F 、 Jrら、アー
キテクチュアノくイオケミカルズアンドバイオフイジカ
ルズ(Arch。
(1) Quantification of collagen Hydroxyproline in the water-soluble fraction fractionated by the method shown in Table 4 and autoclaved (120°C, 12 hours, 2 times) was determined by the Woessner method (Woessner method).
Arch.

Biochem、Biophys、)、93:440,
1961)にて測定しコラーゲン量に換算(ヒドロキシ
プロリン量X 10)した。
Biochem, Biophys, ), 93:440,
(1961) and converted into collagen amount (hydroxyproline amount x 10).

(2)エラスチン定量 第4表に示す不溶性分画をエラスチン量とした。(2) Elastin quantification The insoluble fraction shown in Table 4 was taken as the amount of elastin.

(3)総蛋白量の定量 第4表に示す水溶性分画とオートクレイプ可溶性分画中
からロウリ−(loigry)法で測定した蛋白量と上
記測定エラスチン量との和を総蛋白量とした。
(3) Quantification of total protein amount The total protein amount was defined as the sum of the protein amount measured by the Loigry method from the water-soluble fractions and autoclave soluble fractions shown in Table 4 and the elastin amount measured above. .

(1)血管壁の基本骨格となる外細胞基質(6xtra
celLular matrix)を作成するため、異
種血管の抗原性を除去し、且つ細胞親和性のある基質と
するために、ブタ大動脈の外膜を除去し約6X8nn大
の短冊状に分割した後、■蒸留水浸漬(4℃、72時間
)、■グルタルアルデヒド処理(1%、20℃、48時
間)、■ポリエポキシ化合物(DenacolEX 8
10.ナガセ化成)処理(5%、20℃、48時間)、
■ポリエチレングリコールアルキルフェニルエーテル(
Triton X 100、ロームアンドハース社製)
処理(1%、4℃、72時間)、■塩酸グアニジン処理
(5M、4℃、72時間)、■ギ酸処理(88%、4℃
、72時間)の6種の処理群に分けた。
(1) Extracellular matrix (6xtra
In order to remove the antigenicity of foreign blood vessels and to create a matrix with cell affinity, the adventitia of the porcine aorta was removed and divided into strips of approximately 6 x 8 nn in size, followed by distillation. Water immersion (4℃, 72 hours), ■ Glutaraldehyde treatment (1%, 20℃, 48 hours), ■ Polyepoxy compound (DenacolEX 8
10. Nagase Kasei) treatment (5%, 20°C, 48 hours),
■Polyethylene glycol alkyl phenyl ether (
Triton X 100, manufactured by Rohm and Haas)
Treatment (1%, 4°C, 72 hours), ■ Guanidine hydrochloride treatment (5M, 4°C, 72 hours), ■ Formic acid treatment (88%, 4°C)
, 72 hours).

各処理後、蒸留水で十分洗浄してから70%エタノール
に浸漬保存した。
After each treatment, the specimens were thoroughly washed with distilled water and then stored immersed in 70% ethanol.

(2)次いで、各種エタノール浸漬血管壁を蒸留水およ
び生理食塩水で十分洗浄し100μg / m 1フイ
ブロネクチン(fibronectin)含有DMEM
に浸漬(37℃、24時間)後、ウサギ平滑筋細胞浮遊
液(約5 X 10’cells/m 1 )中で培養
した。さらに前記ウサギ平滑筋細胞と同様の方法で、各
種処理血管壁とブタ内皮細胞浮遊液(約4 X 10’
calls/m1)を培養した。
(2) Next, the various ethanol-immersed blood vessel walls were thoroughly washed with distilled water and physiological saline, and then treated with DMEM containing 100 μg/m 1 fibronectin.
(37° C., 24 hours), and then cultured in a rabbit smooth muscle cell suspension (approximately 5×10′ cells/m 1 ). Furthermore, various treated blood vessel walls and pig endothelial cell suspensions (approximately 4 x 10'
calls/ml) were cultured.

前記処理をしたブタ大動扉壁に上記の方法でウサギ平滑
筋細胞を培養させたものの培養2日後の走査電顕的観察
では第1図および第1表に示すように、グルタルアルデ
ヒド処理群で細胞接着が不良であったが、他群では良好
であり一週間後にはほぼ良好になった。
Rabbit smooth muscle cells were cultured on the treated pig aorta wall using the above method, and scanning electron microscopic observation after 2 days of culture revealed that the glutaraldehyde treated group Although cell adhesion was poor, it was good in other groups and became almost good after one week.

第1図は各種処理血管へのウサギ平滑筋細胞培養2日後
の走査電顕像(X 400)であり、A蒸留水処理二表
面は平滑筋細胞でほぼ完全に覆われている。B glu
taraldehyde処理:平滑筋細胞の接着はわず
かである。 CDenacol処理:平滑筋細胞が多数
接着している。D ギ酸処理:表面は平滑筋細胞で完全
に覆われている、ことを示すものである。
Figure 1 is a scanning electron microscope image (X400) after 2 days of culture of rabbit smooth muscle cells on various treated blood vessels, and the two surfaces treated with A-distilled water are almost completely covered with smooth muscle cells. B glue
taraldehyde treatment: slight adhesion of smooth muscle cells. CDenacol treatment: Many smooth muscle cells adhere. D. Formic acid treatment: indicates that the surface is completely covered with smooth muscle cells.

さらに、培養2週間後の先頭的観察ではグルタルアルデ
ヒド処理群を除いて1〜2層の平滑筋細胞層が形成され
ていたが、壁内深層への細胞侵入はほとんど認めなかっ
た(第3図)。培養4週間後のギ酸処理血管壁の先頭的
観察では壁内深層への平滑筋細胞の侵入を認めた。しか
し他群ではほとんど見られなかった。また、ギ酸処理群
の血管壁内には元の細胞成分は完全に消失した。しかし
、他の処理群では多少の細胞成分の残存を認め、特に蒸
留水処理群では多数残存していた(第2図)。
Furthermore, initial observation after 2 weeks of culture revealed that one to two layers of smooth muscle cells had been formed, except in the glutaraldehyde-treated group, but almost no cell invasion into the deep intramural layer was observed (Figure 3). ). Initial observation of the formic acid-treated blood vessel wall after 4 weeks of culture revealed that smooth muscle cells had invaded the deep intramural layer. However, it was rarely seen in other groups. In addition, the original cellular components within the blood vessel walls of the formic acid-treated group completely disappeared. However, in the other treatment groups, some cell components remained, especially in the distilled water treatment group, in large numbers (Figure 2).

第2図は各種処理血管へのウサギ平滑筋細胞培養2週間
後の電顕像(X 400)であり、A蒸留水処理、B 
glutaraldehyde処理、 CDenaco
l処理、D ギ酸処理したものである(glutara
ldehyde処理血管を除いて1〜2暦の平滑筋細胞
層を認める)。
Figure 2 shows electron microscopic images (X 400) after 2 weeks of culture of rabbit smooth muscle cells in various treated blood vessels, A: distilled water treatment, B:
glutaraldehyde treatment, CDenaco
D treated with formic acid (glutara
One to two layers of smooth muscle cells are observed except in ldehyde-treated vessels).

以上の結果から、血管壁の細胞成分を完全に除去しかつ
細胞の接着および壁内侵入に適した処理方法としてはギ
酸で処理するのが最も良い方法であることがわかる。
From the above results, it can be seen that treatment with formic acid is the best treatment method that completely removes the cellular components of the blood vessel wall and is suitable for cell adhesion and intrawall invasion.

木SEM 5CORE :走査電顕観察視野中の細胞占
有面積割合 0:細胞(−)1:O〜102:10〜403:40〜
60 4:60〜905:90〜100%**R3MC
:ウサギ平滑筋細胞 *零*PピC:ブタ内皮細胞 又、ブタ内皮細胞培養2日後の走査電顕的vA察では、
ウサギ平滑筋細胞とほぼ同様にグルタルアルデヒド処理
群でほとんど内皮細胞の接着を見なかった。しかし他群
では比較的良く接着増殖しており(第1表)、培養1週
間目にはほぼ良好であった(第3図、第4図)。
Tree SEM 5CORE: Cell occupation area ratio in scanning electron microscope observation field 0: Cell (-) 1: O ~ 102:10 ~ 403:40 ~
60 4:60~905:90~100%**R3MC
:Rabbit smooth muscle cells*0*PC:Pig endothelial cells Also, in scanning electron microscopy vA observation after 2 days of culture of pig endothelial cells,
Similar to rabbit smooth muscle cells, almost no adhesion of endothelial cells was observed in the glutaraldehyde-treated group. However, in other groups, the cells adhered and proliferated relatively well (Table 1), and the growth was almost good after the first week of culture (Figs. 3 and 4).

第3図はギ酸処理血管へのブタの平滑筋細胞および内皮
細胞培養の走査電顕像であり、A ギ酸処理血管内膜面
:細胞成分は全く存在せず内弾性板が露出している( 
x 400)、B平滑筋細胞培養2週間後:完全な平滑
筋細胞層で覆われている(xloo)、 C内皮細胞培
養1週間後:完全な内皮細胞層が形成されている( x
 400)、ことを示すものである。
Figure 3 is a scanning electron microscopy image of porcine smooth muscle cells and endothelial cell culture in a formic acid-treated blood vessel.
x 400), B after 2 weeks of smooth muscle cell culture: covered with a complete smooth muscle cell layer (xloo), C after 1 week of endothelial cell culture: a complete endothelial cell layer has been formed (x
400), which indicates that.

又、第4図は各種電顕像であり、A未処理血管:内膜側
は一層の内皮細胞で覆われ、・壁面には平滑筋細胞が多
数存在している(X400)、B ギ酸処理血管:細胞
成分は完全に消失しているが、弾性板構造は温存されて
いる(X400)、C平滑筋細胞seeding 4週
間後:平滑筋細胞が壁内深層まで侵入している(X40
0)、D内皮細胞seeding1週間後ニー層の内皮
細胞が形成されている(X400)、E平滑筋細胞注入
培養2週間後:弾性板間に平滑筋細胞が散在している(
X400)、F平滑筋細胞注入1週間+内皮細胞see
ding 3日後:内膜は完全な一層にはなっていない
が内皮細胞が接着しており、壁内には少数であるが平滑
筋細胞が散在している( x 200)、ことを示すも
のである。
In addition, Figure 4 shows various electron microscopic images, A: untreated blood vessel: the intimal side is covered with a single layer of endothelial cells, and the wall surface has many smooth muscle cells (X400), B: formic acid treatment Blood vessel: Cell components have completely disappeared, but the elastic lamina structure is preserved (X400), C smooth muscle cell seeding 4 weeks later: Smooth muscle cells have invaded deep into the wall (X40)
0), D Endothelial cells in the knee layer are formed after 1 week of endothelial cell seeding (X400), E Smooth muscle cells are injected and cultured for 2 weeks: Smooth muscle cells are scattered between the elastic lamina (
X400), F smooth muscle cell injection 1 week + endothelial cells see
3 days after ding: Although the intima is not completely in one layer, endothelial cells are attached, and there are a small number of smooth muscle cells scattered within the wall (x 200). be.

又、断裂強度はギ酸処理群と塩酸グアニジン処理群では
滅弱しており、デカノールやグルタルアルデヒドの架橋
処理群では未処理群よりも強かった(第2表)。
Furthermore, the tear strength was weak in the formic acid treated group and the guanidine hydrochloride treated group, and was stronger in the decanol or glutaraldehyde crosslinking treated group than the untreated group (Table 2).

第2表 各種処理血管壁の断裂強度 木SEN 5CORE(平均±SD、n=5)そして、
各処理後の乾燥重量測定結果から、各処理による血管壁
成分の損失量がわかり、ギ酸処理群および塩酸グアニジ
ン処理群の蛋白分画をみると、コラーゲン量はわずかに
減少しているが、エラスチン分画は処理前後でほとんど
変化せず、その他の蛋白成分の損失が大きいことがわか
った(第3表)。このことから、ギ酸処理または塩酸グ
アニジン処理によりエラスチンとコラーゲンを主成分と
する血管壁構築を残すことができることがわかる。
Table 2: Rupture strength tree of various treated blood vessel walls SEN 5CORE (mean ± SD, n = 5) and
The dry weight measurement results after each treatment revealed the amount of loss of blood vessel wall components due to each treatment, and looking at the protein fractions of the formic acid treatment group and the guanidine hydrochloride treatment group, the amount of collagen decreased slightly, but the amount of elastin It was found that there was almost no change in the fraction before and after the treatment, and there was a large loss of other protein components (Table 3). This shows that the formic acid treatment or the guanidine hydrochloride treatment can leave the vascular wall structure mainly composed of elastin and collagen.

第3表 各種処理血管壁の乾燥重量および蛋白分画残存
割合韓厨賄膣ユ回■ネ、W、=100.平均±SD、 
n=3)大fl側 血管壁(乾燥重量) ↓ 細切後、蒸留水を加え均質化させる ↓ 遠心分離→上清・・・水溶性分画 ↓ 残渣 ↓ 蒸留水を加えオートクレイプ120℃、12時間×2↓ 遠心分離→上清・・・熱可溶性分画 ↓ 残渣 ・・・不溶性分画 (エラスチン分画) (1)ブタ大動脈壁のギ酸処理 冷凍保存(−80℃)ブタ大動脈の外膜を除去した後約
6X8m+a大に細切し、88%ギ酸に浸漬(4℃、7
2時間)した後、蒸留水およびリン酸緩衝液(pH8,
0)で十分洗浄中和した。さらに滅菌のため70エタノ
ールに24時間以上浸漬保存した。
Table 3 Dry weight and remaining percentage of protein fraction of various treated blood vessel walls. Mean ± SD,
n=3) Large fl side blood vessel wall (dry weight) ↓ After cutting, add distilled water and homogenize ↓ Centrifugation → Supernatant...Water-soluble fraction ↓ Residue ↓ Add distilled water and autoclave at 120℃. 12 hours x 2 ↓ Centrifugation → Supernatant... Heat soluble fraction ↓ Residue... Insoluble fraction (elastin fraction) (1) Formic acid treatment of porcine aortic wall frozen preservation (-80℃) Outside of porcine aorta After removing the membrane, cut into pieces approximately 6 x 8 m+a in size and immerse in 88% formic acid (4°C, 7°C).
After 2 hours), distilled water and phosphate buffer (pH 8,
0) was sufficiently washed and neutralized. Furthermore, for sterilization, it was immersed and stored in 70% ethanol for 24 hours or more.

(2)ブタ平滑筋細胞の単純培養 滅菌したギ酸処理血管壁を蒸留水および原理食塩水で十
分洗浄し、DMEM (フィブロネクチン100μg/
ml含有)に浸漬(37℃、24時間)した後、ブタ平
滑筋細胞浮遊液(約I X 10”cells/m l
 )中で培養した。
(2) Simple culture of porcine smooth muscle cells The sterilized formic acid-treated vascular wall was thoroughly washed with distilled water and saline,
After soaking (37°C, 24 hours) in porcine smooth muscle cell suspension (approximately I x 10" cells/ml)
) was cultured in

(3)ブタ平滑筋細胞の注入培養 上記と同様に処理した血管壁内にブタ平滑筋細胞浮遊液
(約I X 105″−Gcells/m l )を2
7Gの注射針で約0.2m l /グラフト注入した後
、培養を継続した。
(3) Injection culture of porcine smooth muscle cells 2 injections of porcine smooth muscle cell suspension (approximately 1×105″-Gcells/ml) into the blood vessel wall treated in the same manner as above.
After injecting approximately 0.2 ml/graft with a 7G needle, culture was continued.

(4)平滑筋細胞と内皮細胞の共存培養ブタ平滑筋細胞
注入培養1〜2週間後の血管壁を0.5■、/+1フィ
ブロネクチン/DMEMに浸漬(37℃、10分)した
後、ブタ内皮細胞浮遊液(約I X 105cells
/m l )と共に培養した。
(4) Co-culture of smooth muscle cells and endothelial cells Pig smooth muscle cell injection After 1 to 2 weeks of culture, the blood vessel wall was immersed in 0.5■,/+1 fibronectin/DMEM (37°C, 10 minutes), then pig Endothelial cell suspension (approx. I x 105 cells)
/ml).

得られた結果は以下のとおりである。The results obtained are as follows.

(1)動脈壁をギ酸処理することによって、エラスチン
とコラーゲンを主成分とした結合組織片を作成すること
ができ、先頭および走査電顕的amでは細胞成分は全く
見られず、はぼ原形に近い弾性板構造と膠原繊維および
弾性線維網が観察された(第3図C9第4図D)。
(1) By treating the arterial wall with formic acid, it is possible to create a piece of connective tissue mainly composed of elastin and collagen, and no cellular components are seen at the beginning or by scanning electron microscopy, and the artery remains in its original shape. A close elastic lamina structure, collagen fibers, and elastic fiber network were observed (Fig. 3C, Fig. 4D).

(2)ギ酸処理血管壁への平滑筋細胞培養1〜2週間後
にはffl織片表片表面ぼ完全に平滑筋細胞層で覆われ
、弾性板内への細胞侵入はわずかであったが、4週間以
上では壁内深層への細胞侵入が得られた(第4図C)。
(2) Smooth muscle cell culture on the formic acid-treated blood vessel wall After 1 to 2 weeks, the surface of the ffl tissue was completely covered with a smooth muscle cell layer, and there was only a small amount of cell invasion into the elastic lamina; After 4 weeks or more, cell invasion into the deep intramural layer was observed (Fig. 4C).

(3)ギ酸処理血管壁の平滑筋細胞注入培養1〜2週間
後の光顕像では、弾性板間に均等ではないが、平滑筋細
胞が散在性に見られた(第4図E)。
(3) Smooth muscle cells were injected into the formic acid-treated blood vessel wall. Light microscopic images after 1 to 2 weeks of culture showed that smooth muscle cells were scattered, but not evenly, between the elastic plates (Fig. 4E).

(4)平滑筋細胞注入血管壁と内皮細胞の共存培養では
、数日間で内膜面はほぼ完全に内皮m胞層で覆われた(
第3図C2第4図F)。これは平滑筋細胞を含むエラス
チン弾性板構造をもち、表面ば内皮細胞で覆われており
、天然血管に近い血管壁モデルといえるものであった。
(4) In co-culture of smooth muscle cell-injected vascular walls and endothelial cells, the intimal surface was almost completely covered with an endothelial cell layer within several days (
Figure 3C2 Figure 4F). This had an elastin elastic plate structure containing smooth muscle cells, and the surface was covered with endothelial cells, and could be said to be a vascular wall model similar to natural blood vessels.

〔発明の効果〕〔Effect of the invention〕

本発明により、血管結合織と血管壁細胞が存在する天然
血管とほぼ同等の構造と機能を持ち、これまでの人工血
管に比して小口径血管や静脈血管に対する血行再建術に
使用できる人工血管の作成が期待できる。
According to the present invention, an artificial blood vessel has a structure and function almost equivalent to a natural blood vessel containing vascular connective tissue and vascular wall cells, and can be used for revascularization of small-caliber blood vessels and venous blood vessels compared to conventional artificial blood vessels. can be expected to be created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種処理血管へのウサギ平滑筋細胞培養2日後
の走査電顕像(X 400)であって生物の形態を示す
写真であり、第1図Aは蒸留水処理、第1図Bはグルタ
ルアルデヒド処理、第1図Cはデカノール処理、第1図
りはギ酸処理のものである。 第2図は各種処理血管へのウサギ平滑筋細胞培養2週間
後の光顕像(x400)であって生物の形態を示す写真
であり、第2図Aは蒸留水処理、第2図Bはグルタルア
ルデヒド処理、第2図Cはデカノール処理、第2図りは
ギ酸処理のものである。 第3図はギ酸処理血管へのブタの平滑筋細胞および内皮
細胞培養の走査電顕像であって生物の形態を示す写真で
あり、第3図Aはギ酸処理血管内膜面、第3図Bは平滑
筋細胞培養2週間後、第3図Cは内皮細胞培養1週間後
のものである。 第4図は各種電顕像図であって生物の形態を示す写真で
あり、第4図Aは未処理血管、第4図Bはギ酸処理血管
、第4図Cは平滑筋細胞シーディング(seeding
) 4週後、第4図りは内皮細胞シーディング(see
ding) 1週後、第4図Eは平滑筋細胞注入培養2
週後、第4図Fは平滑筋細胞注入1週間+内皮細胞シー
ディング3日後のものである。
Figure 1 is a scanning electron microscope image (X400) after 2 days of culture of rabbit smooth muscle cells in various treated blood vessels, and is a photograph showing the morphology of the organisms. Figure 1A is treated with distilled water, Figure 1B is Figure 1C is the one treated with glutaraldehyde, Figure 1 C is the one treated with decanol, and the first figure is treated with formic acid. Figure 2 is a light microscope image (x400) after 2 weeks of culture of rabbit smooth muscle cells in various treated blood vessels, showing the morphology of the organisms; Figure 2A is treated with distilled water, Figure 2B is treated with glutarium. The aldehyde treatment, Figure 2C is the decanol treatment, and the second figure is the formic acid treatment. Figure 3 is a scanning electron microscope image of porcine smooth muscle cells and endothelial cell culture in a blood vessel treated with formic acid, and is a photograph showing the morphology of the organisms; Figure 3A is the intimal surface of a blood vessel treated with formic acid; B shows the result after 2 weeks of smooth muscle cell culture, and FIG. 3C shows the result after 1 week of endothelial cell culture. Figure 4 shows various electron micrographs showing the morphology of living organisms. Figure 4A is an untreated blood vessel, Figure 4B is a formic acid treated blood vessel, and Figure 4C is a smooth muscle cell seeding ( seeding
) After 4 weeks, the fourth plot is endothelial cell seeding (see
ding) One week later, Figure 4E shows smooth muscle cell injection culture 2.
After a week, Figure 4F is 1 week after smooth muscle cell injection + 3 days after endothelial cell seeding.

Claims (3)

【特許請求の範囲】[Claims] (1)哺乳動物の血管の血管壁を有機酸或いは塩酸グア
ニジン処理後、平滑筋細胞と内皮細胞を培養して、該血
管壁を再構築することを特徴とする人工血管の製造方法
(1) A method for producing an artificial blood vessel, which comprises treating the vascular wall of a mammalian blood vessel with an organic acid or guanidine hydrochloride, and then culturing smooth muscle cells and endothelial cells to reconstruct the vascular wall.
(2)哺乳動物の血管がブタ、犬、牛、又はウサギの大
動脈血管である請求項1記載の人工血管の製造方法。
(2) The method for producing an artificial blood vessel according to claim 1, wherein the mammalian blood vessel is an aortic blood vessel of a pig, dog, cow, or rabbit.
(3)請求項1記載の方法により作られた人工血管。(3) An artificial blood vessel produced by the method according to claim 1.
JP14660489A 1989-06-12 1989-06-12 Artificial blood vessel Expired - Fee Related JP2758027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14660489A JP2758027B2 (en) 1989-06-12 1989-06-12 Artificial blood vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14660489A JP2758027B2 (en) 1989-06-12 1989-06-12 Artificial blood vessel

Publications (2)

Publication Number Publication Date
JPH0312169A true JPH0312169A (en) 1991-01-21
JP2758027B2 JP2758027B2 (en) 1998-05-25

Family

ID=15411487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14660489A Expired - Fee Related JP2758027B2 (en) 1989-06-12 1989-06-12 Artificial blood vessel

Country Status (1)

Country Link
JP (1) JP2758027B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104095692A (en) * 2013-04-08 2014-10-15 天津市塑料研究所有限公司 Method for manufacturing bovine jugular vein valved conduit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104095692A (en) * 2013-04-08 2014-10-15 天津市塑料研究所有限公司 Method for manufacturing bovine jugular vein valved conduit

Also Published As

Publication number Publication date
JP2758027B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
KR100365573B1 (en) Transplantation tissue and its manufacturing method
US5879383A (en) Blood contact surfaces using endothelium on a subendothelial matrix
US5908449A (en) Blood contact surfaces using extracellular matrix synthesized in vitro
US6153292A (en) Biopolymer foams for use in tissue repair and reconstruction
JP2022107023A (en) Decellularization and recellularization of organs and tissues
AU2020203189A1 (en) Method for enzymatic treatment of tissue products
US6962814B2 (en) Decellularized tissue engineered constructs and tissues
US4553974A (en) Treatment of collagenous tissue with glutaraldehyde and aminodiphosphonate calcification inhibitor
US7776596B2 (en) Vascularization enhanced graft constructs
US9636435B2 (en) Method for shaping tissue matrices
JP2686930B2 (en) Artificial implant
CN100349620C (en) Method of creating biological and biosynthetic material for implantation
JPH09512463A (en) Improved blood contact surface utilizing natural subendothelial matrix and method of making and using same
CN1149497A (en) Raw material film material for medical material and its producing method
AU2001284968A1 (en) Decellularized tissue engineered constructs and tissues
JP2005533535A (en) Graft composition with enhanced angiogenesis
JP2005524699A (en) Graft composition with enhanced angiogenesis
CN101773687B (en) Preparation method of composite soft-tissue patch
Ge et al. Decellularized extracellular matrices for tissue engineering and regeneration
CN111518744A (en) Liver acellular scaffold construction method based on irreversible electroporation technology
JPH0312169A (en) Artificial blood vessel
Freytes et al. Biomaterial scaffolds for cardiac regeneration and repair derived from native heart matrix
WO1997046266A1 (en) Improved blood contact surfaces using extracellular matrix synthesized in vitro having bioactive species immobilized thereto
Macagonova et al. The effectiveness of the tissue engineering in the obtaining of the biological materials from the extracellular matrix
JPH01170466A (en) Intracorporeal implant material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees