JPH03119691A - Thin-film electroluminescence element - Google Patents

Thin-film electroluminescence element

Info

Publication number
JPH03119691A
JPH03119691A JP1256869A JP25686989A JPH03119691A JP H03119691 A JPH03119691 A JP H03119691A JP 1256869 A JP1256869 A JP 1256869A JP 25686989 A JP25686989 A JP 25686989A JP H03119691 A JPH03119691 A JP H03119691A
Authority
JP
Japan
Prior art keywords
emitting layer
light
layer
light emitting
reflective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1256869A
Other languages
Japanese (ja)
Inventor
Kenzo Takemura
賢三 竹村
Takeshi Yoshida
健 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1256869A priority Critical patent/JPH03119691A/en
Publication of JPH03119691A publication Critical patent/JPH03119691A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To improve luminous intensity and illumination outside extracting efficiency by arranging a light reflecting layer adjacent to the end face of a stripe-shaped light emitting layer. CONSTITUTION:A transparent electrode 2, a lower insulating layer 3, a light emitting layer 4, a reflecting layer 10, an upper insulating layer 5, and a back electrode 6 are formed in sequence on a transparent substrate 1. A ZnS film added with a small quantity of Mn is formed at the luminous center on the light emitting layer 4, and only picture element portions are pattern-formed in an island shape or in a stripe shape to include picture elements. The unnecessary portion of the light emitting layer 4 is etched, and the reflecting layer 10 is arranged adjacent to the end section of the light emitting layer 4. The luminescence in the film extension direction can be extracted as display, and intensity is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発光輝度及び発光外部取り出し効率が向上し
た薄膜エレクトロルミネッセンス(以下ELという)素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin-film electroluminescent (hereinafter referred to as EL) element with improved luminance and external extraction efficiency.

〔従来の技術〕[Conventional technology]

¥1lllEL素子は、発光中心を少量添加したZnS
、SrS、CaS等の蛍光体薄膜に電界を印加すること
によりEL現象によって発光を得る発光素子である。
¥1llllEL element is made of ZnS with a small amount of luminescent center added.
, SrS, CaS, etc. is a light emitting element that obtains light emission by an EL phenomenon by applying an electric field to a thin film of phosphor such as SrS or CaS.

第10図は薄膜EL素子の一般的な構造を示すもので、
ガラス基板等の透明絶縁基板1上にITO(インジウム
・ナイン・オキサイド)等の透明電極2、下部絶縁層と
してSi、Na、S iox 、Ta* Os等の絶縁
物、発光中心を少量添加したZnS、SrS%CaS等
の発光層4、上部絶縁層5としてSi、N、、SiO,
、Ta1Os等の絶縁物を藤着又はスパッタリング等に
より順次形成し、最後にA1等の背面電極6を形成する
Figure 10 shows the general structure of a thin film EL element.
On a transparent insulating substrate 1 such as a glass substrate, a transparent electrode 2 such as ITO (indium nine oxide), an insulating material such as Si, Na, Siox, Ta*Os, etc. as a lower insulating layer, and ZnS doped with a small amount of luminescent center. , SrS%CaS, etc., and the upper insulating layer 5 is made of Si, N, , SiO,
, Ta1Os, or the like are sequentially formed by laminating or sputtering, and finally, a back electrode 6 such as A1 is formed.

これらの薄膜EL素子において、蛍光体の母体材料、発
光中心の材料及び添加量、成膜方法、素子構成等により
発光輝度及び発光外部取り出し効率の向上が計られてい
る。
In these thin-film EL devices, improvements in luminance and emission efficiency are attempted by changing the host material of the phosphor, the material for the luminescence center, the amount added, the film formation method, the device configuration, and the like.

C発明が解決しようとする諜朋〕 しかし、IIIEL素子をデイスプレィパネルとして使
用する場合、現在量も高い輝度を示すMnを少量添加し
たZnS発光層を用いた二重絶縁構造ELパネルにおい
ても、フレーム周波数60Hz程度の線順次走査による
発光表示時その輝度は20〜30フートランバードであ
り、CRT(カソード・レイ・チューブ)等と比べると
実用的なデイスプレィパネルとしては輝度が低い。
C] However, when the IIIEL element is used as a display panel, even in a double insulation structure EL panel using a ZnS light-emitting layer doped with a small amount of Mn, which shows high brightness even at present, When displaying light by line sequential scanning with a frame frequency of about 60 Hz, the luminance is 20 to 30 foot lumbards, which is lower than a CRT (cathode ray tube) or the like for a practical display panel.

本発明は、発光輝度及び発光外部取り出し効率を向上さ
せた薄膜EL素子を提供するものである。
The present invention provides a thin film EL element with improved luminance and efficiency of emitting light to the outside.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、透明絶縁基板上に、透明電極と背面電極で挟
んだ発光層を形成した薄膜エレクトロルミネッセンス素
子に於いて、発光層が画素部分のみの島状又は画素を含
む様にストライプ状に形成した発光層であり、発光層の
端面に隣接して光を一部又は全部反射する反射層を配置
したことを特徴とするものである。
The present invention relates to a thin film electroluminescent device in which a light emitting layer is sandwiched between a transparent electrode and a back electrode on a transparent insulating substrate. The light-emitting layer is characterized in that a reflective layer that reflects part or all of the light is disposed adjacent to the end face of the light-emitting layer.

第9図に示す樺に発光層4からの発光はx、y、z軸の
成分をもっている0通常、薄膜EL素子を表示素子とし
て用いる場合、発光はガラス基板1側又は背面電極6側
から取り出され、それを表示に用いている。これは、膜
に垂直な成分つまりy軸方向の光を取り出しているのに
すぎず、展延面方向の成分つまりX軸方向の光、y軸方
向の光はほとんど表示には寄与していない。そのため表
示に使用されている光は、発光層4での発光の一部でし
かなく、この展延面方向の光を表示として効果的に取り
出すことができれば、発光輝度及び発光外部取り出し効
率の向上を計り、また展延面方向の光によるハレーショ
ンを防ぎ、コントラストの向上も計ることができる。
The light emitted from the light emitting layer 4 in the birch shown in FIG. and is used for display. This only extracts the light component perpendicular to the film, that is, the light in the y-axis direction, and the components in the direction of the spreading surface, that is, the light in the X-axis direction and the light in the y-axis direction, hardly contribute to the display. . Therefore, the light used for display is only a part of the light emitted from the light-emitting layer 4, and if this light in the direction of the spread surface can be effectively extracted as a display, the luminance of the light and the efficiency of extracting the light to the outside can be improved. It also prevents halation caused by light in the direction of the spread surface and improves contrast.

本発明は、この展延面方向の光を反射し表示に利用する
ようにするため、薄膜EL素子の発光層を第6図(a)
(b)(c)に示す様に画素部分のみ島状に形成するか
又は第7図(a)(b)(c)に示す様に画素を含む様
にストライプ状に形成し、その発光層の端部に隣接して
光を一部又は全部反射する反射層を配置するようにした
ものである。
In the present invention, in order to reflect the light in the direction of the spread surface and use it for display, the light emitting layer of the thin film EL element is shown in FIG. 6(a).
(b) As shown in (c), only the pixel portion is formed in an island shape, or as shown in FIG. A reflective layer that reflects some or all of the light is disposed adjacent to the end of the light.

反射層として、発光層材料より屈折率の低い物質が使用
できる。屈折率nlの第1媒質から屈折率n、の第2媒
質に入射角θ、で入射した場合、第2媒質での屈折角を
θ、とすると、一般にn、Sinθ、−n、5inot となる、第1媒質の屈折率n、が第2媒質の屈折率n、
より大きいとき、つまり、n、>n、のとき、 nt ” −nl ” Sin’ L <0を満たす入
射角θ、で屈折角θ8が90°以上となり入射光は全反
射し、入射光の一部を反射することになる。このように
発光層材料より屈折率の低い物質を反射層として用いる
ことができる。
As the reflective layer, a substance having a lower refractive index than the material of the emissive layer can be used. When light enters a second medium with a refractive index n from a first medium with a refractive index nl at an incident angle θ, and the refraction angle in the second medium is θ, generally n, Sin θ, -n, 5 inot. , the refractive index n of the first medium is the refractive index n of the second medium,
When the angle of incidence θ satisfies nt ” −nl ” Sin′ L < 0, the refraction angle θ8 becomes 90° or more, and the incident light is totally reflected, and one part of the incident light is This will reflect the area. In this way, a material having a lower refractive index than the material of the light emitting layer can be used as the reflective layer.

代表的な発光母材であるZnSの屈折率は2.3であり
それより屈折率の低い物質としては、Stow(屈折率
1.46) Alオ0.(屈折率1.63 ) TatOs(屈折率2.1) Y□0.(屈折率1.87 ) Si!Nn(屈折率2.2) 等がある。
The refractive index of ZnS, which is a typical light-emitting base material, is 2.3, and materials with lower refractive index include Stow (refractive index 1.46), AlO 0. (Refractive index 1.63) TatOs (Refractive index 2.1) Y□0. (Refractive index 1.87) Si! Examples include Nn (refractive index 2.2).

また金属等の光を反射する物質も使用可能である。たと
えばAI(アルミニウム)の場合、可視光を90%程度
反射し、展延面方向に対して厚さ10A程度で光を反射
する膜とすることができる。
It is also possible to use materials that reflect light, such as metals. For example, in the case of AI (aluminum), it is possible to form a film that reflects about 90% of visible light and has a thickness of about 10 A in the direction of the spread surface.

このように、金属等の光を反射する物質は、この反射層
として用いることができる。
In this way, a substance that reflects light, such as metal, can be used as this reflective layer.

第1図は本発明による薄膜EL素子の一実施例を示す断
面図で、ガラス基板等の透明基板1上に透明電極2、下
部絶縁層3、発光層4、反射層10、上部絶縁層5、背
面電極6を順次形成した交流型薄膜EL素子である。透
明電極2としてITO(インジューム・ティン・オキサ
イド)膜を蒸着又はスパッタリング法により形成し、下
部絶縁層3にはS is N4 、S iot 、Ta
tOs等の単層又は多層膜をスパッタリング法等により
形成した0発光層4には発光中心としてMnを少量添加
したZnS膜を蒸着又はスパッタリング法により形成し
、第6図に示す様に画素部分のみ島状又は第7図に示す
様に画素を含む様にストライプ状にパターン形成する。
FIG. 1 is a sectional view showing an embodiment of a thin film EL element according to the present invention, in which a transparent electrode 2, a lower insulating layer 3, a light emitting layer 4, a reflective layer 10, an upper insulating layer 5 are disposed on a transparent substrate 1 such as a glass substrate. This is an AC thin film EL device in which back electrodes 6 are sequentially formed. An ITO (indium tin oxide) film is formed as the transparent electrode 2 by vapor deposition or sputtering, and the lower insulating layer 3 is made of Sis N4, Siot, Ta.
For the light-emitting layer 4, which is a single-layer or multilayer film of tOs or the like formed by sputtering or the like, a ZnS film doped with a small amount of Mn as a light-emitting center is formed by vapor deposition or sputtering, and as shown in FIG. A pattern is formed in an island shape or in a stripe shape so as to include pixels as shown in FIG.

この発光層4のパターン形成には、発光層4成膜時にメ
タルマスクによりパターン形成する方法又はフォトリソ
グラフを用いたパターン形成する方法等がある。
Patterning of the light-emitting layer 4 includes a method of forming a pattern using a metal mask when forming the light-emitting layer 4, a method of forming a pattern using photolithography, and the like.

第2図(a)ないしくf)は発光層4のパターン形成並
びに反射層10形成について説明するものである。
FIGS. 2(a) to 2(f) illustrate pattern formation of the light emitting layer 4 and formation of the reflective layer 10.

ZnS:Mn発光層4成形後、発光層4上に第6図、第
7図の所定のパターンのレジスト11をたて(第2図(
a))硝酸等の液相又はスパッタエツチング、RIB(
リアクティブ・エツチング)等の気相によりZnS:M
n発光1i4の不要部分をエツチングする(第2図(b
))、その後反射層10を発光層4端部に隣接して配置
する。この反射層10として、ZnS:Mn発光層4よ
り屈折率の低い物質の5iOiを使用した。また光を反
射する物質としてAIを反射層10として用いた。まず
リフトオフ法を用いて反射層10を形成する場合には、
発光M4上のレジストを剥離せずそのまま反射層10材
料Stow又はAIを蒸着又はスパッタリング法により
成膜しく第2図(C))、その後レジストと共にレジス
ト上の反射層材料膜を除去して、発光層4端部に隣接し
て反射層10を第2図(f)に示す様に配置する0次に
、エツチング法により反射層IOを形成する場合は、第
2図0))からレジスト11を除去し、反射層10材料
の5iOi又はAIを蒸着又はスパッタリング法により
形成する(第2図@)、その後ZnS:Mn発光層4の
部分にレジストをたてる(第2図(e))。
After forming the ZnS:Mn light-emitting layer 4, a resist 11 with a predetermined pattern as shown in FIGS. 6 and 7 is formed on the light-emitting layer 4 (see FIG. 2).
a)) Liquid phase such as nitric acid or sputter etching, RIB (
ZnS:M by vapor phase such as reactive etching)
Etching unnecessary parts of the n-emitting device 1i4 (Fig. 2(b)
)) Then, the reflective layer 10 is placed adjacent to the end of the light emitting layer 4. As this reflective layer 10, 5iOi, which is a material having a lower refractive index than the ZnS:Mn light emitting layer 4, was used. Furthermore, AI was used as the reflective layer 10 as a material that reflects light. First, when forming the reflective layer 10 using the lift-off method,
Without peeling off the resist on the light emitting layer M4, the reflective layer 10 material Stow or AI is deposited by vapor deposition or sputtering (Fig. 2 (C)), and then the reflective layer material film on the resist is removed together with the resist, and the light emitting layer 10 is removed. The reflective layer 10 is arranged adjacent to the end of the layer 4 as shown in FIG. Then, 5iOi or AI, which is the material of the reflective layer 10, is formed by vapor deposition or sputtering (FIG. 2@), and then a resist is applied to the ZnS:Mn light emitting layer 4 (FIG. 2(e)).

反射層10が5i01の場合はスパッタエツチング等の
気相を用い、反射層10がAIの場合は、リン酸、水酸
化ナトリウム等の液相又はスパッタエツチング、RIE
等の気相を用い、発光層4上の反射層10材料膜を除去
して発光層4端部に反射層lOを第2図(f)に示す様
に配置する。このようにZnS:Mn発光層4、S i
 Ow又はAI反射層10を形成した後、上部絶縁層5
としてS is Na 、S fox 、Tax Os
等の単層又は多層膜を形成し、その上に背面電極6とし
てAI膜を蒸着又はスパッタリング法により形成し、第
1図に示す構造もつ薄膜EL素子を得る。このように、
発光層4端部に隣接して反射層10を配置することによ
り、展延面方向の発光を表示として取り出すことができ
る様になり、輝度向上を計ることができる。
When the reflective layer 10 is made of 5i01, a vapor phase such as sputter etching is used, and when the reflective layer 10 is made of AI, a liquid phase such as phosphoric acid, sodium hydroxide, etc. or sputter etching, RIE is used.
The material film of the reflective layer 10 on the light-emitting layer 4 is removed using a vapor phase such as the above, and a reflective layer 1O is placed at the end of the light-emitting layer 4 as shown in FIG. 2(f). In this way, the ZnS:Mn light emitting layer 4, Si
After forming the Ow or AI reflective layer 10, the upper insulating layer 5
As S is Na , S fox , Tax Os
A single layer or multilayer film such as the above is formed, and an AI film is formed thereon as a back electrode 6 by vapor deposition or sputtering to obtain a thin film EL element having the structure shown in FIG. in this way,
By arranging the reflective layer 10 adjacent to the end portion of the light emitting layer 4, it becomes possible to extract light emitted in the direction of the spread surface as a display, and it is possible to improve the brightness.

第3図は、本発明による薄膜EL素子の他の実施例を示
す断面図である。これは第1図の場合と同様に、ガラス
基板等の透明絶縁基板1上に透明電極2、上部絶縁層3
を順次形成し、発光層4を形成するときのその端部を断
面台形のテーバ状にして、その端部に隣接して反射層1
0を配置したものである。この発光層4のパターン形成
並びに反射層10形成について第4図(a)〜げ)に示
す。
FIG. 3 is a sectional view showing another embodiment of the thin film EL device according to the present invention. As in the case of FIG. 1, a transparent electrode 2 and an upper insulating layer 3 are placed on a transparent insulating substrate 1 such as a glass substrate.
are successively formed, and when forming the light emitting layer 4, the end thereof is made into a tapered shape with a trapezoidal cross section, and the reflective layer 1 is formed adjacent to the end.
0 is placed. The pattern formation of the light-emitting layer 4 and the formation of the reflective layer 10 are shown in FIGS.

Mnを少量添加したZnSを発光層4として蒸着又はス
パッタリング法により成膜法、発光層4上に第6図又は
第7図の所定のパターンのレジストをたてる(第4図(
a))、これを硝酸等の液相又はスパッタエツチング、
RIE等の液相にZnS:Mn発光層4の不要部分をエ
ツチングする。このとき第2図山)に示すようにZnS
:Mn発光層4端部が断面台形のテーバ状になる様にオ
ーバーエツチングする。リフトオフ法を用いて反射層1
0を形成する場合には、発光N4上のレジストを除去せ
ずそのままZnS:Mn発光層4より屈折率の低いSt
ow又は光を反射する物質のAIを蒸着又はスパッタリ
ング法により成膜する(第4図(C))、その後、レジ
ストと共にレジスト上の反射層材料膜を除去して、発光
層4端部に隣接して反射層10を第4図(f)に示す様
に配置する。このリフトオフ法を行う場合には、発光層
4端部を断面台形のテーバ状にし、レジストのひさしを
つくるようにする0次にエツチング法により反射層10
を形成する場合には、第4図(a)からレジストを除去
し反射層10材料の5iO1又はAlを蒸着又はスパッ
タリング法により形成する(第4図(d))、その後Z
nS=Mn発光層4以外の部分にレジストをたてる(第
4図(e))、反射層lOがSiOオの場合はスパッタ
エツチング等の気相を用い、反射層10がAIの場合に
はリン酸、水酸化ナトリウム等の液相又はスパッタエツ
チング、RIE等の気相を用い、発光層4上の反射層1
0材料膜を除去して発光層4端部に隣接して反射層lO
を第4図(f)の様に配置する。これらの方法でZnS
:Mn発光114、Sing又はAI反射層10を形成
した後、上部絶縁層5、背面電極6を第1図に示す場合
と同様に形成し、第3図に示す構造をもつ薄膜EL素子
を得る。このように発光層4端部に隣接して反射層10
を配置することにより、上述した第1図に示す場合と同
じく、展延面方向の光を表示として取り出すことができ
、輝度向上を計ることができる。
A light-emitting layer 4 of ZnS doped with a small amount of Mn is formed by vapor deposition or sputtering, and a resist having a predetermined pattern as shown in FIG. 6 or 7 is formed on the light-emitting layer 4 (see FIG. 4).
a)), using a liquid phase such as nitric acid or sputter etching,
Unnecessary portions of the ZnS:Mn light emitting layer 4 are etched in a liquid phase using RIE or the like. At this time, as shown in Figure 2, ZnS
: Overetching is performed so that the ends of the Mn light-emitting layer 4 have a tapered trapezoidal cross section. Reflective layer 1 using lift-off method
0, the resist on the light emitting layer 4 is not removed and the resist on the ZnS:Mn light emitting layer 4 is formed using St.
A film of AI, which is a material that reflects light or light, is formed by vapor deposition or sputtering (Fig. 4 (C)). After that, the reflective layer material film on the resist is removed together with the resist, and the film adjacent to the end of the light emitting layer 4 is removed. Then, the reflective layer 10 is arranged as shown in FIG. 4(f). When performing this lift-off method, the ends of the light-emitting layer 4 are made into a tapered shape with a trapezoidal cross section, and the reflective layer 10 is etched by a zero-order etching method that creates a resist eaves.
When forming Z, the resist is removed from FIG. 4(a) and 5iO1 or Al, which is the material of the reflective layer 10, is formed by vapor deposition or sputtering (FIG. 4(d)).
A resist is applied to the parts other than the nS=Mn light-emitting layer 4 (FIG. 4(e)). If the reflective layer 10 is made of SiO, use a gas phase such as sputter etching. If the reflective layer 10 is made of AI, use a vapor phase process. The reflective layer 1 on the light emitting layer 4 is etched using a liquid phase such as phosphoric acid or sodium hydroxide or a gas phase such as sputter etching or RIE.
0 material film is removed and a reflective layer 10 is formed adjacent to the end of the light emitting layer 4.
are arranged as shown in FIG. 4(f). With these methods, ZnS
: After forming the Mn light emitting layer 114 and the Sing or AI reflective layer 10, the upper insulating layer 5 and the back electrode 6 are formed in the same manner as shown in FIG. 1 to obtain a thin film EL element having the structure shown in FIG. . In this way, the reflective layer 10 is placed adjacent to the end of the light emitting layer 4.
By arranging this, the light in the direction of the spread surface can be extracted as a display, as in the case shown in FIG. 1 described above, and the brightness can be improved.

第5図に本発明による薄膜EL素子の更に他の一実施例
の断面図を示す、これは通常薄膜EL素子の絶縁層に用
いる材料は、発光層材料に比べて屈折率が低いことから
、上部絶縁層で反射層を兼ねる構造の薄膜EL素子であ
る。ガラス基板等の絶縁基板1上に透明電極2、下部絶
縁層3、発光層4を順次成膜後、発光層4を第6図又は
第7図のように所定のパターンにパターン形成する0発
光層4より屈折率の低い絶縁層材料例えばS’1sNa
を成膜することにより、発光層端部及び発光層4上部に
配置することができ、反射層兼用上部絶縁層20を同時
に形成できる。その上部に、背面電極6を形成して、第
5図のような構造の交流型薄膜EL素子を得る。その結
果、発光外部取り出し効率の向上により輝度向上を図る
ことができる。
FIG. 5 shows a cross-sectional view of yet another embodiment of the thin film EL device according to the present invention. This is a thin film EL element with a structure in which the upper insulating layer also serves as a reflective layer. After sequentially forming a transparent electrode 2, a lower insulating layer 3, and a light emitting layer 4 on an insulating substrate 1 such as a glass substrate, the light emitting layer 4 is patterned into a predetermined pattern as shown in FIG. 6 or FIG. 7. An insulating layer material having a lower refractive index than layer 4, for example S'1sNa
By forming a film, it can be placed at the end of the light emitting layer and on the top of the light emitting layer 4, and the upper insulating layer 20 which also serves as a reflective layer can be formed at the same time. A back electrode 6 is formed on top of the EL element to obtain an AC thin film EL element having a structure as shown in FIG. As a result, brightness can be improved by improving the efficiency of extracting light to the outside.

本発明の薄膜EL素子の輝度対印加電圧の関係を第8図
に示す、尚、第8図中A、Bは第2図に示した薄膜EL
素子についての結果であり、AはZnS:Mn発光層の
端部にZnS:Mnよりも屈折率の低いSin、を反射
層として配置したもの、BはZnS:Mn発光層の端部
にAIを反射層として配置したもので、Cは従来の反射
層を設けない薄膜EL素子の結果である。このように、
反射層を発光層の端部に配置した薄膜EL素子は、従来
の反射層を配置しない素子の1.5〜2倍程度の輝度向
上を示す 以上発光層と透明電極、背面電極との間に絶縁層を設け
た交流型の薄膜EL素子について説明したが、本発明の
薄膜EL素子は、透明絶縁基板上に透明電極、発光層、
背面電極を順次形成する直流型の薄膜EL素子でも良い
The relationship between brightness and applied voltage of the thin film EL device of the present invention is shown in FIG. 8. In FIG. 8, A and B are the thin film EL elements shown in FIG.
The results are for devices. A is a device in which Sin, which has a lower refractive index than ZnS:Mn, is placed as a reflective layer at the end of a ZnS:Mn light-emitting layer, and B is a device in which AI is placed at the end of a ZnS:Mn light-emitting layer. C is the result of a conventional thin film EL device without a reflective layer. in this way,
Thin-film EL devices in which a reflective layer is placed at the end of a light-emitting layer show an improvement in brightness of about 1.5 to 2 times that of conventional devices without a reflective layer. Although the AC type thin film EL device provided with an insulating layer has been described, the thin film EL device of the present invention has a transparent electrode, a light emitting layer, and a transparent electrode on a transparent insulating substrate.
A direct current type thin film EL element in which back electrodes are sequentially formed may also be used.

透明絶縁基板としてはガラス基板、透明電極としてはI
TO1発光層としては発光中心を少量含有したZ n 
S SS r S % Ca S 、背面電極としては
AI、絶縁層としてはS 1 s Na 、S I O
@、Ta、O,等が好ましくは使用される。
A glass substrate is used as the transparent insulating substrate, and I is used as the transparent electrode.
As the TO1 light-emitting layer, Zn containing a small amount of light-emitting center is used.
S SS r S % Ca S , AI as the back electrode, S 1 s Na , S IO as the insulating layer
@, Ta, O, etc. are preferably used.

〔発明の効果〕〔Effect of the invention〕

本発明の、発光層を画素部分のみ島状又は画素を含む様
にストライプ状に形成し、その端部に発光層より屈折率
の低い物質又は金属等の光を反射する物質を配置した薄
膜EL素子は、従来技術の薄膜EL素子に比べ発光外部
取り出し効率を高くすることができ、その結果発光輝度
の向上を計ることができ、また展延面方向に濡れる光が
少なくなるためコントラストの向上にも効果がある。さ
らに本発明は発光層の蛍光体母体材料、発光中心材料、
発光層形成法等に関係なく適用でき、カラー化に必要な
赤色、青色とといった現在発光輝度向上が望まれる発光
層についても効果的である。
A thin film EL according to the present invention, in which the light-emitting layer is formed in an island shape or in a stripe shape so as to include pixels only in the pixel portion, and a light-reflecting material such as a material having a lower refractive index than the light-emitting layer or a metal is arranged at the end of the light-emitting layer. Compared to conventional thin-film EL devices, the device can increase the efficiency of emitting light to the outside, resulting in improved luminance, and because less light permeates in the direction of the spread surface, contrast can be improved. is also effective. Furthermore, the present invention provides a phosphor matrix material of a luminescent layer, a luminescent center material,
It can be applied regardless of the method of forming the emissive layer, and is also effective for emissive layers for which improvement in luminance is currently desired, such as red and blue necessary for colorization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図、第5図は、それぞれ本発明の薄膜EL
素子の断面図、第2図(a)〜Cr)、第4図(a)〜
<r>はそれぞれ第1図、第3図の薄膜EL素子の発光
層及び反射層の形成工程のを示す断面図、第6図(a)
(b)(c)、第7図(a)(b)(c)は発光層の成
パターンを示すそれぞれ平面図、正面図、側面図、第8
図は本発明の薄膜EL素子の輝度対印加電圧の関係を従
来の輝度対印加電圧の関係を比較して表わすグラフ、第
9図は発光層からの発光の進行を表わした斜視図、第1
0図は一般的な薄膜EL素子の斜視図である。 符号の説明 1、透明基板    2.透明電極 3、下部絶縁層   49発光層 5、上部絶縁層   6.背面電極 10、反射層     11.レジスト20、反射層兼
用上部絶縁層
FIGS. 1, 3, and 5 show the thin film EL of the present invention, respectively.
Cross-sectional views of the device, Fig. 2(a) to Cr), Fig. 4(a) to
<r> is a cross-sectional view showing the formation process of the light-emitting layer and reflective layer of the thin film EL device in FIGS. 1 and 3, respectively, and FIG. 6(a)
(b), (c), and Fig. 7 (a), (b), and (c) are respectively a plan view, a front view, a side view, and a
The figure is a graph showing the relationship between the brightness and the applied voltage of the thin film EL element of the present invention compared with the relationship between the conventional brightness and the applied voltage.
FIG. 0 is a perspective view of a general thin film EL element. Explanation of symbols 1. Transparent substrate 2. Transparent electrode 3, lower insulating layer 49 light emitting layer 5, upper insulating layer 6. Back electrode 10, reflective layer 11. Resist 20, upper insulating layer that also serves as a reflective layer

Claims (2)

【特許請求の範囲】[Claims] 1.透明絶縁基板上に、透明電極と背面電極で挟んだ発
光層を形成した薄膜エレクトロルミネッセンス素子に於
いて、発光層が画素部分のみの島状又は画素を含む様に
ストライプ状に形成した発光層であり、発光層の端面に
隣接して光を一部又は全部反射する反射層を配置したこ
とを特徴とする薄膜エレクトロルミネッセンス素子。
1. In a thin film electroluminescent device in which a light emitting layer is formed between a transparent electrode and a back electrode on a transparent insulating substrate, the light emitting layer is formed in the form of an island only in the pixel portion or in the form of a stripe so as to include the pixels. 1. A thin film electroluminescent device, characterized in that a reflective layer that partially or completely reflects light is disposed adjacent to an end face of a light emitting layer.
2.画素部分のみの島状又は画素を含む様にストライプ
状に形成した発光層の端面を断面台形のテーパ状に形成
したことを特徴とする請求項1記載の薄膜エレクトロル
ミネッセンス素子。
2. 2. The thin film electroluminescent device according to claim 1, wherein the end face of the light emitting layer formed in the form of an island only in the pixel portion or in the form of a stripe so as to include the pixels is formed in a tapered shape with a trapezoidal cross section.
JP1256869A 1989-09-30 1989-09-30 Thin-film electroluminescence element Pending JPH03119691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1256869A JPH03119691A (en) 1989-09-30 1989-09-30 Thin-film electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1256869A JPH03119691A (en) 1989-09-30 1989-09-30 Thin-film electroluminescence element

Publications (1)

Publication Number Publication Date
JPH03119691A true JPH03119691A (en) 1991-05-22

Family

ID=17298549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256869A Pending JPH03119691A (en) 1989-09-30 1989-09-30 Thin-film electroluminescence element

Country Status (1)

Country Link
JP (1) JPH03119691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525288A (en) * 1993-06-22 1996-06-11 Toyoda Gosei Co., Ltd. Method of manufacturing a hose having an expanded portion and a compression formed portion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525288A (en) * 1993-06-22 1996-06-11 Toyoda Gosei Co., Ltd. Method of manufacturing a hose having an expanded portion and a compression formed portion

Similar Documents

Publication Publication Date Title
JP2553696B2 (en) Multicolor light emitting thin film electroluminescent device
CN100593225C (en) Electron emission display
JPH01220394A (en) High-intensity el element
US5400047A (en) High brightness thin film electroluminescent display with low OHM electrodes
JPH06275381A (en) Multicolor luminous element and substrate thereof
US6781307B2 (en) Electroluminescent device and method for manufacturing the same
RU2129344C1 (en) Luminescent indication board which is visible under day light
JP2842956B2 (en) Thin film matrix configuration especially for electroluminescent displays
US5521465A (en) Sunlight viewable thin film electroluminscent display having darkened metal electrodes
KR20020025862A (en) Organic el display
JPS60180093A (en) Thin film el element
JPH08509834A (en) High contrast thin film EL display
JP2001043981A (en) Display device and manufacture of the same
JP3601289B2 (en) EL display device
JPH03119691A (en) Thin-film electroluminescence element
JPH05108014A (en) Formation of light emitting film for color display of el display panel
US6621215B1 (en) Front plate of a plasma display panel (PDP) and the method of fabricating the same
US5783904A (en) High luminescence display
JPS63299092A (en) Thin film electroluminescent panel
JPH0527996U (en) EL display element
JPH01186587A (en) Display device and its manufacture
JPH0527835Y2 (en)
US5762527A (en) High luminescence display
JPH0322394A (en) Thin film el device
JPH0460317B2 (en)