JPH03108392A - Purification of excimer laser gas - Google Patents

Purification of excimer laser gas

Info

Publication number
JPH03108392A
JPH03108392A JP24695489A JP24695489A JPH03108392A JP H03108392 A JPH03108392 A JP H03108392A JP 24695489 A JP24695489 A JP 24695489A JP 24695489 A JP24695489 A JP 24695489A JP H03108392 A JPH03108392 A JP H03108392A
Authority
JP
Japan
Prior art keywords
laser gas
trap
laser
removal
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24695489A
Other languages
Japanese (ja)
Inventor
Shinji Ito
紳二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24695489A priority Critical patent/JPH03108392A/en
Publication of JPH03108392A publication Critical patent/JPH03108392A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Abstract

PURPOSE:To completely remove CF4 by bringing laser gas left behind by removing F2 in the laser gas by an F2 removal trap into contact with activated carbon or silica gel cooled 0 deg.C or lower and 196 deg.C or higher. CONSTITUTION:Laser gas in an excimer laser device 1 containing 200ppm CF4 is purified by using a titanate trap heated to 450 deg.C as an F2 removal trap 2 and using a getter trap cooled to -150 deg.C with liquid nitrogen and filed with 100g activated carbon. Herein, F2 removal by the F2 removal trap 2 is replenished by an F2 addition device 4. Thus, CF4 in the laser gas can substantially completely removed and hence a laser output can stably be maintained over a long period of time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、F2を含むエキシマレーザガスを精製循環し
再利用るすることに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to purifying, circulating and reusing excimer laser gas containing F2.

(従来の技術) レーザガスとしてF2を含むエキシマレーザでは、レー
ザガスに含まれるF2がきわめて活性であるため、レー
ザ管内の構成物表面と反応し、フッ化物等の多くの不純
物がレーザガス中に発生する。この不純物によってレー
ザ光が吸収される等の原因でレーザ出力が減少し、エキ
シマレーザの長時間運転が不可能になる。
(Prior Art) In an excimer laser containing F2 as a laser gas, the F2 contained in the laser gas is extremely active, so it reacts with the surfaces of components in the laser tube, and many impurities such as fluoride are generated in the laser gas. This impurity absorbs the laser light and reduces the laser output, making it impossible to operate the excimer laser for a long time.

各種フッ化物等の主な不純物は、−船釣に沸点が高いこ
とが知られている(1981年10月ベンウェルパブリ
ッシング社発行の文献「レーザフォーカス」参照)。
Main impurities such as various fluorides are known to have high boiling points (see the document "Laser Focus" published by Benwell Publishing Co., October 1981).

また、レーザガス中に発生するフッ化物等の不純物はモ
レキュラシーブ5A(米国リンデ社製)等のゼオライト
によってもある程度除去できる。
Further, impurities such as fluoride generated in the laser gas can be removed to some extent by zeolite such as Molecular Sieve 5A (manufactured by Linde, USA).

したがって、従来、液体窒素で冷却したコールドトラッ
プにレーザガスを接触させる方法やレーザガスをゼオラ
イトに接触させる方法(例えば特開昭62−27982
4号公報に記載されている方法)が用いられている。
Therefore, conventionally, a method of bringing a laser gas into contact with a cold trap cooled with liquid nitrogen or a method of bringing a laser gas into contact with a zeolite (for example, Japanese Patent Laid-Open No. 62-27982
The method described in Publication No. 4) is used.

(発明が解決しようとする課題) レーザガス中にF2を含むArFエキシマレーザやKr
Fエキシマレーザ等においては、レーザガス中に不純物
として発生する微量のCF4がレーザ出力減少の主原因
であることが確かめられた。例えば、ArFエキシマレ
ーザの場合、レーザガス中に役100ppmのCF4が
発生するとレーザ出力が約40%も減少してしまう。
(Problem to be solved by the invention) ArF excimer laser containing F2 in the laser gas and Kr
In F excimer lasers and the like, it has been confirmed that a trace amount of CF4 generated as an impurity in the laser gas is the main cause of the decrease in laser output. For example, in the case of an ArF excimer laser, if 100 ppm of CF4 is generated in the laser gas, the laser output will decrease by about 40%.

CF4は沸点が低いため、液体窒素で冷却したコールド
トラップを用いる方法では微量のCF4をほとんど除去
できない。
Since CF4 has a low boiling point, trace amounts of CF4 can hardly be removed by a method using a cold trap cooled with liquid nitrogen.

また、レーザガスにゼオライトを接触させる方法でも、
CF4が02と同様に極性が低いため完全に除去するこ
とができない。
In addition, a method in which zeolite is brought into contact with laser gas can also be used.
Like 02, CF4 has low polarity, so it cannot be completely removed.

したがって、従来の方法では、レーザガス中に発生する
CF4を完全に除去することができないため、レーザ出
力が時間とともに減少し、エキシマレーザを長時間運転
することが不可能となる。
Therefore, in the conventional method, CF4 generated in the laser gas cannot be completely removed, so the laser output decreases over time, making it impossible to operate the excimer laser for a long time.

本発明の目的は、CF4を完全に除去することのできる
エキシマレーザガスの精製法を提供することにある。
An object of the present invention is to provide a method for purifying excimer laser gas that can completely remove CF4.

(課題を解決するための手段) 本発明のエキシマレーザガスの精製法は、F2を含むレ
ーザガス中のF2をF2除去トラップによって除去した
残りのレーザガスを0℃以下196℃以上に冷却した活
性炭もしくはシリカゲルに接触させることを特徴とする
(Means for Solving the Problems) In the method for purifying excimer laser gas of the present invention, F2 in the laser gas containing F2 is removed by an F2 removal trap, and the remaining laser gas is heated to activated carbon or silica gel cooled to below 0°C and above 196°C. It is characterized by being brought into contact.

(作用) レーザガス中に発生したCF4は、0℃以下−196℃
以上に冷却した活性炭もしくはシリカゲルに接触させる
ことによってほぼ完全に除去することができる。また、
フッ化物以外の不純物であるF20.CO2,02等の
空気成分も、沸点が高いため前期冷却活性炭と接触させ
る方法で除去される。
(Function) CF4 generated in the laser gas is below 0℃ -196℃
It can be almost completely removed by contacting with activated carbon or silica gel cooled as described above. Also,
F20, which is an impurity other than fluoride. Air components such as CO2, 02 and the like have high boiling points and are therefore removed by bringing them into contact with the pre-cooled activated carbon.

したがって、高温チタントラップ等のF2除去トラップ
でF2を含むレーザガス中のF2を除去した残りのレー
ザガスを00C以下−196℃以上に冷却した活性炭も
しくはシリカゲルと接触させる本発明の方法によれば、
レーザ出力減少の主原因となる不純物でありきわめて除
去しにくいCF4もほぼ完全に除去できるため、エキシ
マレーザガス中の高価な希ガスであるNe、 Kr、 
X6等を循環再利用することが可能となる。
Therefore, according to the method of the present invention, the remaining laser gas after removing F2 in the F2-containing laser gas with an F2 removal trap such as a high-temperature titanium trap is brought into contact with activated carbon or silica gel cooled to below 00C and above -196°C.
CF4, which is an impurity that is the main cause of laser output reduction and is extremely difficult to remove, can be almost completely removed.
It becomes possible to reuse X6 etc.

この結果、レーザ出力を非常に長時間にわたって安定に
維持することが可能となり、エキシマレーザガス中の高
価な希ガスの消費量を大幅に低減できるため、ランニン
グコストの大幅な低減が達成される。
As a result, the laser output can be maintained stably for a very long time, and the consumption of expensive rare gas in the excimer laser gas can be significantly reduced, resulting in a significant reduction in running costs.

(実施例) 次に図面を参照して本発明の実施例を詳細に説明する。(Example) Next, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1の実施例を示す第1図のレーザガス精製シ
ステムにおいて、F2除去トラップ2として450℃に
加熱したチタントラップを用いるとともに、活性炭を1
00g充填し液体窒素で一150℃に冷却した冷却ゲッ
タートラップ3を使用し、200ppmのCF4を含ん
だエキシマレーザ装置1内のレーザガスの精製を行った
結果、レーザガス中のCF4を完全に除去することがで
きた。
In the laser gas purification system shown in FIG. 1 showing the first embodiment of the present invention, a titanium trap heated to 450°C is used as the F2 removal trap 2, and activated carbon is
As a result of purifying the laser gas in the excimer laser device 1 containing 200 ppm of CF4 using a cooled getter trap 3 filled with 0.00 g and cooled to -150°C with liquid nitrogen, CF4 in the laser gas was completely removed. was completed.

また、このレーザガス精製システムを用い、レーザガス
を連続的に精製した結果、エキシマレーザ出力は1時間
たってもほとんど減少しなかった。なお、F2除去トラ
ップ2によって除去されたF2はF2添加装置4によっ
て補填された。
Furthermore, as a result of continuously purifying laser gas using this laser gas purification system, the excimer laser output hardly decreased even after one hour. Note that the F2 removed by the F2 removal trap 2 was supplemented by the F2 addition device 4.

また、シリカゲルを100g充填し液体窒素で一150
℃に冷却した冷却ゲッタートラップ3を使用した場合も
活性炭を用いた場合と同様に、レーザガス中のCF4を
完全に除去することができ、エキシマレーザ出力を約1
時間はぼ一定に維持できた。
Also, fill 100g of silica gel and add 150g of silica gel to 150g with liquid nitrogen.
When using the cooled getter trap 3 cooled to
The time was kept more or less constant.

以上述べたように、レーザガスを0℃以上−196℃以
下に冷却した活性炭もしくはシリカゲルに接触させる方
法を取ることにより、レーザガス中のCF4をほぼ完全
に除去できるため、レーザ出力を長時間安定に維持する
ことが可能となる。
As mentioned above, by bringing the laser gas into contact with activated carbon or silica gel that has been cooled to a temperature above 0°C and below -196°C, CF4 in the laser gas can be almost completely removed, and the laser output can be maintained stably for a long time. It becomes possible to do so.

第2図は、本発明の第2の実施例を示すレーザガス精製
システムである。本実施例では、F2除去トラップ2で
F2を除去したレーザガスを最初にゼオライトトラップ
5内に充填されたゼオライトと接触させることにより、
レーザガス中のCF4等の不純物を粗く除去し、次に冷
却ゲッタートラップ3内の00C以下−196以上に冷
却された活性炭もしはシリカゲルに接触させることによ
り、CF4等の不純物を完全に除去する方法を取ってい
る。
FIG. 2 is a laser gas purification system showing a second embodiment of the present invention. In this example, by first bringing the laser gas from which F2 has been removed in the F2 removal trap 2 into contact with the zeolite filled in the zeolite trap 5,
A method of completely removing impurities such as CF4 by roughly removing impurities such as CF4 in the laser gas, and then contacting activated carbon or silica gel cooled to below 00C - above 196C in the cooling getter trap 3. taking it.

この結果、レーザガス中のCF4等の不純物はより完全
に除去されるため、レーザ出力をより長時間安定に維持
することが可能となる。
As a result, impurities such as CF4 in the laser gas are more completely removed, making it possible to maintain stable laser output for a longer period of time.

第3図は、本発明の第3の実施例を示すレーザガス精製
システムである。本実施例では、第2図に示した本発明
第2の実施例の構成に加え、ゼオライトトラップ5及び
冷却ゲッタートラップ3で精製したレーザガス最終的に
ダストフィルター6に通すことによってレーザガス中の
ダストも除去する方法を取っている。
FIG. 3 is a laser gas purification system showing a third embodiment of the present invention. In this embodiment, in addition to the configuration of the second embodiment of the present invention shown in FIG. 2, the laser gas purified by the zeolite trap 5 and the cooling getter trap 3 is finally passed through the dust filter 6 to remove dust in the laser gas. I am taking steps to remove it.

この結果、CF4等の気体状の不純物に加えレーザカス
中のダストも除去できるため、より長時間レーザ出力を
安定に維持できる。
As a result, dust in the laser scum can be removed in addition to gaseous impurities such as CF4, so that the laser output can be stably maintained for a longer period of time.

(発明の効果) 以上述べたように、本発明の方法によれば、レーザ出力
減少の主原因となる不純物でありきわめて除去しにくい
CF4もほぼ完全に除去できるため、エキシマレーザ中
の高価な希ガスであるNe、Kr、 Xe等の循環再利
用することが可能となる。
(Effects of the Invention) As described above, according to the method of the present invention, CF4, which is an impurity that is the main cause of laser output reduction and is extremely difficult to remove, can be almost completely removed. It becomes possible to recycle and reuse gases such as Ne, Kr, and Xe.

この結果、レーザ出力を非常に長時間にわたって安定に
維持することが可能となり、エキシマレーザガス中の高
価な希ガスの消費量を大幅に低減できるため、ランニン
グコストの大幅な低減が達成される。
As a result, the laser output can be maintained stably for a very long time, and the consumption of expensive rare gas in the excimer laser gas can be significantly reduced, resulting in a significant reduction in running costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第3図は、本発明のそれぞれ第1、
第2及び第3の実施の態様を示す図である。 図において、 1・・・エキシマレーザ装置、2・・・F2除去トラッ
プ、3・・・冷却ゲッタートラップ、4・・・F2添加
装置、5・・・ゼオライトトラップ、6・・・ダストフ
ィルターである。
FIGS. 1, 2 and 3 illustrate the first and second embodiments of the present invention, respectively.
It is a figure which shows the aspect of 2nd and 3rd implementation. In the figure, 1... excimer laser device, 2... F2 removal trap, 3... cooling getter trap, 4... F2 addition device, 5... zeolite trap, 6... dust filter .

Claims (1)

【特許請求の範囲】[Claims]  F_2を含むレーザガス中のF_2をF_2除去トラ
ップによって除去した残りのレーザガスを0℃以下19
6℃以上に冷却した活性炭もしくはシリカゲルに接触さ
せることを特徴とするエキシマレーザガスの精製法。
F_2 in the laser gas containing F_2 is removed by the F_2 removal trap, and the remaining laser gas is heated to 0°C or lower19.
A method for purifying excimer laser gas, characterized by bringing it into contact with activated carbon or silica gel cooled to 6°C or higher.
JP24695489A 1989-09-21 1989-09-21 Purification of excimer laser gas Pending JPH03108392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24695489A JPH03108392A (en) 1989-09-21 1989-09-21 Purification of excimer laser gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24695489A JPH03108392A (en) 1989-09-21 1989-09-21 Purification of excimer laser gas

Publications (1)

Publication Number Publication Date
JPH03108392A true JPH03108392A (en) 1991-05-08

Family

ID=17156204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24695489A Pending JPH03108392A (en) 1989-09-21 1989-09-21 Purification of excimer laser gas

Country Status (1)

Country Link
JP (1) JPH03108392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417742A (en) * 1993-12-03 1995-05-23 The Boc Group, Inc. Removal of perfluorocarbons from gas streams

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271837A (en) * 1987-04-28 1988-11-09 San'eisha Mfg Co Ltd Sf6 decomposition gas adsorbing device for electric equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271837A (en) * 1987-04-28 1988-11-09 San'eisha Mfg Co Ltd Sf6 decomposition gas adsorbing device for electric equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417742A (en) * 1993-12-03 1995-05-23 The Boc Group, Inc. Removal of perfluorocarbons from gas streams

Similar Documents

Publication Publication Date Title
US4740982A (en) Method of refining rare gas halide excimer laser gas
EP0366078A3 (en) Method for purifying nitrogen trifluoride gas
CA2008294C (en) Method of refining rare gas fluoride excimer laser gas
JPS61251186A (en) Closed cycle rare gas refining apparatus and method for fluorine rare gas laser
EP0771887A1 (en) Gas recovery unit
US5784898A (en) Process and device for the preparation of a cry ogenic fluid in the high purity liquid state
EP0345354A4 (en) Process for purifying nitrogen-fluoride.
JP5116406B2 (en) Fluorine compound purification method
DE69206655T2 (en) Process for the treatment of gases from the electrolytic production of fluorine, which may contain uranium compounds
US6565821B1 (en) Process for removing the fluorocompounds or fluorosulphur compounds from a stream of xenon and/or krypton by permeation
JPH03108392A (en) Purification of excimer laser gas
JP5216220B2 (en) Neon recovery method
JP2001232134A (en) Method and device for neon recovering
JPS6274430A (en) Method of purifying rare gas halide excimer laser gas
ES2023088T3 (en) PROCEDURE AND DEVICE FOR ELIMINATION OF INORGANIC FLUORIDE AND FLUORIDES FROM GASES.
JPH08139389A (en) Method of refining excimer laser gas and apparatus for producing the same
KR970704630A (en) PROCESS FOR PRODUCING HIGH-PURITY SULFURIC ACID
US7029519B2 (en) System and method for gas recycling incorporating gas-insulated electric device
JP2000005561A (en) Treatment of fluoride
ATE139903T1 (en) METHOD FOR DISPOSAL OF HALONS OR HALON-CONTAINING HYDROFLUOROCARBONS OR HYDROCHLOROFLOROCROBONS
GB1525686A (en) Separation of radioactive krypton and xenon from waste gases from nuclear plants
JP2002068716A (en) Method of refining high purity nf3 gas
JPS62279824A (en) Refining method for rare gas halide excimer laser gas
JPH06275902A (en) Excimer laser device
JPH0489387A (en) Inert gas recovering device for single crystal pulling up device