JPH03107727A - Mass flowmeter - Google Patents

Mass flowmeter

Info

Publication number
JPH03107727A
JPH03107727A JP24437089A JP24437089A JPH03107727A JP H03107727 A JPH03107727 A JP H03107727A JP 24437089 A JP24437089 A JP 24437089A JP 24437089 A JP24437089 A JP 24437089A JP H03107727 A JPH03107727 A JP H03107727A
Authority
JP
Japan
Prior art keywords
output
difference signal
pickups
sensor tube
pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24437089A
Other languages
Japanese (ja)
Other versions
JP2723306B2 (en
Inventor
Hiroyuki Amemori
宏之 雨森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP24437089A priority Critical patent/JP2723306B2/en
Publication of JPH03107727A publication Critical patent/JPH03107727A/en
Application granted granted Critical
Publication of JP2723306B2 publication Critical patent/JP2723306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To increase the SN ratio of flow rate measurement by arraying a 1st and a 2nd linear sensor tube part linearly, and thus making the mass flow rate of a flow in each sensor tube part large and increasing a generated Colioris force. CONSTITUTION:The output of a pickup 12 between pickups 12 and 13 on the inflow sides of the 1st and 2nd sensor tube parts 4 and 5 is applied to the uninverted input terminal of a differential amplifier 20 and the output of the other pickup 13 is applied to the inverted input terminal of the amplifier 20. This amplifier 20 outputs an output difference signal 30. Then the output of a pickup 14 between pickups 14 and 15 on the outflow sides of the tube parts 4 ad 5 is applied to the uninverted input terminal of an differential amplifier 22 and the output of the other pickup 15 is applied to the inverted input terminal of the amplifier 22. This amplifier 22 outputs an output difference signal 31. When those signals 30 and 31 are compared with the outputs of the pickups 12 and 14, they are equal in phase difference, but the levels are doubled. The phases of the signals 30 and 31 are compared by a trailing-stage phase comparing circuit 24 and a phase difference signal corresponding to the phase difference is outputted.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は質量1 ffi 31に係り、特に直線状のセ
ンサチューブを有する質量流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to mass 1 ffi 31, and in particular to mass flow meters with a straight sensor tube.

従来の技術 従来、質ffi流量計として、0字状のセンサチューブ
を並列に配した構成のもの(特開昭59−92314号
)及び、直線状のセンザチl−ブを並列に配した構成の
もの(特開昭61−223616号)がある。
Conventional technology Conventionally, quality FFI flowmeters have been used, including one with a configuration in which 0-shaped sensor tubes are arranged in parallel (Japanese Patent Laid-Open No. 59-92314), and one in which linear sensor tubes are arranged in parallel. There is one (Japanese Unexamined Patent Publication No. 61-223616).

発明が解決しようとする課題 IyJ名においては、0字状のセンザチl−ブを使用す
るため、以下の課題があった。
Problems to be Solved by the Invention In the IyJ name, since a zero-shaped senzatibe is used, the following problems arise.

■圧力損失が大きい、 ■流体中の異物が曲り部に付着し易い。■Large pressure loss, ■Foreign objects in the fluid tend to adhere to curved parts.

付着物が多くなると、センサ′f−1−ブの特性が変化
する。曲管であるため、付着物のWI除がむずかしい。
When the amount of deposits increases, the characteristics of the sensor 'f-1-b' change. Since it is a curved pipe, it is difficult to remove deposits from WI.

■液だまり、空気だまりが生ずることがある。■Liquid pools and air pockets may occur.

後者においては、上記■、■、■の課題は殆ど解決され
る。しかし、各センサチューブを流れる流体の流量が本
管を流れる流量の1/2となるため、発生する」リオリ
も1/2となり、質量流量に比例する信号のS/N比が
低い。
In the latter case, most of the above-mentioned problems (1), (2), and (3) are solved. However, since the flow rate of the fluid flowing through each sensor tube is 1/2 of the flow rate flowing through the main pipe, the "reliability" that occurs is also 1/2, and the S/N ratio of the signal proportional to the mass flow rate is low.

そこで、本発明は上記課題を解決した質量流量計を提供
することを目的とする。
Therefore, an object of the present invention is to provide a mass flowmeter that solves the above problems.

課題を解決するための手段 本発明は、実n上同−長さを有し、両端を支持されて一
直線に整列された直線状の第1.第2のセンサナ1−フ
部と、 該第1.第2のセンケチl−1部を、180度位相をf
らして励振させる手段と、 該第1.第2のセンサチューブ部の流入側の対応する部
位の変位を検出する一対の流入側ピックアップと、 該第1.第2のセンサチューブ部の流出側の対応する部
位の変位を検出する一対の流出側ピックアップと、 該一対の流入側ピックアップの出力差信号を得る第1の
出力差信号形成回路と、 法一対の流出側ピックアップの出力差信号を(する第2
の出力差信号形成回路と、 該第1.第2の出力差信号形成回路の出力差信号の位相
を比較して質量流量に比例した位相差信号を出力する位
相比較回路とより構成してなる。
Means for Solving the Problems The present invention provides linear first . a second sensor antenna 1-f part; The second Senkechi l-1 part, the 180 degree phase is f
means for exciting the first. a pair of inflow side pickups for detecting displacement of corresponding portions on the inflow side of the second sensor tube section; a pair of outflow side pickups that detect displacement of corresponding parts on the outflow side of the second sensor tube section; a first output difference signal forming circuit that obtains an output difference signal of the pair of inflow side pickups; The output difference signal of the outflow side pickup (second
an output difference signal forming circuit of the first. It is constituted by a phase comparison circuit that compares the phases of the output difference signals of the second output difference signal forming circuit and outputs a phase difference signal proportional to the mass flow rate.

作用 共に直線状の第1.第2のセンサナ1−フ部が一直線に
整列しているため、従来の・一対の曲線状のもの、直線
状の分岐型のものに比べて、各セン%1チl−ブ部に流
れる質量流量が人となり、これにより、発生するコリオ
リカが人となって、流子+i1測のS/N比が向上する
The first one has a linear action. Since the second sensa na 1-fu section is aligned in a straight line, the mass flowing through each cen % 1 chive section is greater than the conventional one with a pair of curved lines or the linear branch type. The flow rate becomes human, thereby the generated Coriolis becomes human, and the S/N ratio of the flow +i1 measurement improves.

また、圧力損失も低減し、異物の付着も少なくなり、液
だまり、空気だまりも生じない。
In addition, pressure loss is reduced, there is less adhesion of foreign matter, and no liquid or air pockets occur.

また流入側のピックアップの出力同士の差信号、流出側
のピックアップの出力同士の差信号を形成しているため
、流量計測値には外部振動の影響が表われない。
Furthermore, since a difference signal between the outputs of the pickups on the inflow side and a difference signal between the outputs of the pickups on the outflow side are formed, the influence of external vibration does not appear on the flow rate measurement value.

実施例 第1図は、本発明の一実施例になる質量流量計1を示す
Embodiment FIG. 1 shows a mass flowmeter 1 according to an embodiment of the present invention.

同図中、2は−のセンケチ1−ブであり、第2図にOf
せて示すようにベース3上の固定部3a。
In the same figure, 2 is the -senkechi 1-bu, and in Figure 2 Of
As shown in the figure, the fixed part 3a on the base 3.

3b、3cに固定されて直線状に且つ水平に支持されて
いる。
It is fixed to 3b and 3c and supported linearly and horizontally.

これにより、質量流量h1本体1aは、両端を固定部3
aと3bとにより固定された直線状の第1のセンサチュ
ーブ部4と、両端を固定部3bと3Cとにより固定され
た直線状の第2のセンサチューブ部5とよりなる。
As a result, the mass flow rate h1 main body 1a has both ends connected to the fixed portion 3.
It consists of a linear first sensor tube part 4 fixed by fixing parts 3b and 3b, and a linear second sensor tube part 5 fixed at both ends by fixing parts 3b and 3C.

第1.第2のセンサチューブ4.5は等しい長さLであ
り、−直線に整ダ1している。
1st. The second sensor tube 4.5 is of equal length L and is aligned in a straight line.

6は流入側、7は流出側である。6 is the inflow side, and 7 is the outflow side.

10.11は電磁ソレノイドと同様な構成の加fjlf
fiであり、各センケチl−1部4.5の中央に設けで
ある。
10.11 is an addition fjlf with the same configuration as an electromagnetic solenoid.
fi, and is provided at the center of each center part 4.5.

12.13.14.15は夫々マグネット片とコイル部
とよりなるピックアップであり、第1゜′;ji2のセ
ンケチl−1部4,5の流入側の対応する部位と、流出
側の対応する部位とに設けである。
12.13.14.15 are pickups each consisting of a magnet piece and a coil part. It is provided in each part.

16は励振回路、17は位相反転回路であり、これらと
加振器10,11とが励振手段18を構成する。
16 is an excitation circuit, 17 is a phase inversion circuit, and these and the exciters 10 and 11 constitute excitation means 18.

20は差動増幅器であり、共に流入側にあるピックアッ
プ12及び13の出力が接続しである。
20 is a differential amplifier, to which the outputs of pickups 12 and 13, both on the inflow side, are connected.

これらが第1の出力差信号形成回路21を構成し、ピッ
クアップ12.13の出力差信号を形成する。
These constitute the first output difference signal forming circuit 21 and form the output difference signals of the pickups 12 and 13.

22は差動増幅器であり、共に流出側にあるピックアッ
プ14.15の出力が接続しである。これらが、第2の
出力差信号形成回路23を構成し、ピックアップ14.
15の出力差信号を形成する。
22 is a differential amplifier, to which the outputs of pickups 14 and 15, both located on the outflow side, are connected. These constitute the second output difference signal forming circuit 23, and the pickup 14.
15 output difference signals are formed.

24は位相比較回路であり、差動増G器20゜22の出
力信号の位相比較して、質3流邸に比例した位相差信号
を出力する。
A phase comparison circuit 24 compares the phases of the output signals of the differential amplifiers 20 and 22 and outputs a phase difference signal proportional to the quality.

25は処理回路であり、上記の位相差信号を整形、増幅
、時間積分し、質m流mに応じたパルス信号を形成する
。これが端F26より出力される。
25 is a processing circuit which shapes, amplifies and time-integrates the above phase difference signal to form a pulse signal corresponding to quality m and flow m. This is output from end F26.

次に上記構成の質m流量計1の動作について説明する。Next, the operation of the flowmeter 1 having the above configuration will be explained.

励振回路16よりの出力が、加振器10には直接、加振
器11には位相反転回路17を介して加えられ、第1.
第2のセンケチ1−1部4.5が第3図、第4図に二点
鎖線で示すように、180度位相がずれた状態で振動す
る。
The output from the excitation circuit 16 is applied directly to the exciter 10 and to the exciter 11 via the phase inversion circuit 17.
The second sensor 1-1 section 4.5 vibrates with a phase shift of 180 degrees, as shown by two-dot chain lines in FIGS. 3 and 4.

流体が振動しているセンサチューブ2内を矢印27で示
すように流れると、コリオリの力が発生する。第1.第
2のセンケチl−1部4,5においては、チl−ブの振
動が流入側では正の加速度であり、流出側では負の加速
度であるため、流体が流れたことにより発生するコリオ
リカは、第3図及び第4図に示すように、流出側が進み
、流入側が遅れるように働く。
When fluid flows in the vibrating sensor tube 2 as shown by arrow 27, a Coriolis force is generated. 1st. In the second Senkechi l-1 parts 4 and 5, the vibration of the tube has a positive acceleration on the inflow side and a negative acceleration on the outflow side, so the Coriolis generated by the flow of fluid is , as shown in FIGS. 3 and 4, the outflow side advances and the inflow side lags behind.

第1のセンナナ1−1部4の流入側のピックアップ12
の出力は、第5図中符112aで示す如くになり、流出
側のピックアップ14の出力は同図中符号14aで示す
如くになる。
Pickup 12 on the inflow side of the first Senana 1-1 section 4
The output of the pickup 14 on the outflow side is as indicated by the reference numeral 112a in FIG. 5, and the output of the pickup 14 on the outflow side is indicated by the reference numeral 14a in the figure.

第2のセンケチ1−1部5の流入側のピックアップ13
の出力は、第6図中符号13aで示す如くになり、流出
側のピックアップ15の出力は同図中符号15aで示す
如くになる。
Pickup 13 on the inflow side of second sensor 1-1 section 5
The output of the pickup 15 on the outflow side is as shown by the reference numeral 13a in FIG. 6, and the output of the pickup 15 on the outflow side is shown by the reference numeral 15a in the same figure.

共に流入側の出力の位相が流出側の出力よりφだけ遅れ
ている。
In both cases, the phase of the output on the inflow side lags the output on the outflow side by φ.

第1.第2のセンサチューブ部4.5の流入側のピック
アップ12.13のうち、−のピックアップ12の出力
12aは差動増幅器20の非反転入力端fに加えられ、
別のピックアップ13の出力13aは差動増幅器20の
反転入力端子に加えられる。
1st. Among the pickups 12.13 on the inflow side of the second sensor tube section 4.5, the output 12a of the negative pickup 12 is applied to the non-inverting input terminal f of the differential amplifier 20,
The output 13a of another pickup 13 is applied to the inverting input terminal of a differential amplifier 20.

差動増幅″fS20は、第7図中、符号30で示す波形
の出力差信号を出力する。
The differential amplifier "fS20" outputs an output difference signal having a waveform indicated by reference numeral 30 in FIG.

第1.第2のセンサチューブ部4.5の流出側のピック
アップ14.15のうち、−のピックアップ14の出力
14aは差動増幅器22の非反転入力端Tに加えられ、
別のピックアップ15の出力15au差動増幅器22の
反転入力端Iに加えられる。
1st. Among the pickups 14.15 on the outflow side of the second sensor tube section 4.5, the output 14a of the negative pickup 14 is applied to the non-inverting input terminal T of the differential amplifier 22,
The output 15au of another pickup 15 is applied to the inverting input terminal I of the differential amplifier 22.

差動増幅器22は、第7図中、符号31で示す波形の出
力差信号を出力する。
The differential amplifier 22 outputs an output difference signal having a waveform indicated by reference numeral 31 in FIG.

ここで、出力差信号30.31をピックアップ12.1
4の出力12a、14aと比較するに、(Q相差φは同
じであるが、レベルが2倍となっている。
Here, the output difference signal 30.31 is picked up 12.1
Compared with the outputs 12a and 14a of No. 4, the Q phase difference φ is the same, but the level is twice as high.

この出力差信号30.31の位相が、次段の位相比較回
路24で比較され、位相差φに対応する位相差信号が出
力される。
The phases of the output difference signals 30 and 31 are compared in the next stage phase comparison circuit 24, and a phase difference signal corresponding to the phase difference φ is output.

この位相差信号が処理回路25に加えられ、ここで、整
形、増幅、時開積分され、端子26より質量流量に比例
したパルス信号が出力される。
This phase difference signal is applied to a processing circuit 25, where it is shaped, amplified, and integrated over time, and is output from a terminal 26 as a pulse signal proportional to the mass flow rate.

外部から振動がベース3に加わった場合、この振動の影
gは、第1.第2のセンサチューブ部4゜5に略等しく
及び、流入側のピックアップ12と13の出力は等しり
fLvJシ、流出側のピックアップ14と15の出力も
等しく変動する。上記の差動増幅器20.22では夫々
一方のピックアップの出力12a、14aより他方のピ
ックアップの出力13a、、15aを減算しているため
、ここで外部振動の影響は′f4′1iされ、出力差信
号30゜31には外部振動の影響は生じない。従って、
位相比較回路24からは、外部振動の影響の無い位相差
信号が出力され、端子26よりのパルス信号は外部振動
の影響が無いものとなり、上記実燕例の質i!l’l流
M計1は、質量流mを外部振動の影響を受けずに開側出
来る。
When vibration is applied to the base 3 from the outside, the shadow g of this vibration is the first. The output of the pickups 12 and 13 on the inflow side is equal to fLvJ, and the outputs of the pickups 14 and 15 on the outflow side also vary equally. In the above differential amplifiers 20 and 22, the outputs 13a, 15a of one pickup are subtracted from the outputs 12a, 14a of one pickup, respectively, so the influence of external vibration is ``f4''1i, and the output difference Signals 30°31 are not influenced by external vibrations. Therefore,
The phase comparison circuit 24 outputs a phase difference signal that is not affected by external vibrations, and the pulse signal from the terminal 26 is not affected by external vibrations, and the quality i! The l'l flow M meter 1 can open the mass flow m without being affected by external vibrations.

また、第1.第2のヒンサチ1−ブ部4.5が一列に整
列しているため、同一流速とした場合センサチューブE
7の径dは従来の分岐型の各セン(tチl−プの径の二
倍となる。
Also, 1st. Since the second hinge part 4.5 is aligned in one line, if the flow rate is the same, the sensor tube E
The diameter d of 7 is twice the diameter of each conventional branched tip.

このため、各センサチューブ部4.5の内部を流れる質
!!l流屋は、従来の分岐型の場合の各センサチューブ
を流れる質量流量の二倍となる。これにより、発生する
」リオリカが従来の二倍となり、ピックアップ12〜1
5の出力信号のS/N比が従来の二倍となり、質伍流場
を従来に比べて安定に検出することが出来、広い流量範
囲に亘って計測することが出来る。
For this reason, the quality of the flow inside each sensor tube section 4.5! ! 1 flow rate is twice the mass flow rate flowing through each sensor tube in the conventional branch type case. As a result, the amount of "Riorica" generated is twice as much as before, and pickups 12 to 1
The S/N ratio of the output signal of No. 5 is twice that of the conventional method, making it possible to detect poor-quality flow fields more stably than before, and making it possible to measure over a wide flow rate range.

また、圧力損失は従来の場合より小さくすることができ
る。
Moreover, pressure loss can be made smaller than in the conventional case.

またセンサチューブ2内への異物の付着の稈度も極力小
となる。付着した異物の掃除も容易である。
Furthermore, the degree of adhesion of foreign matter into the sensor tube 2 is also minimized. It is also easy to clean adhered foreign matter.

勿論、センサチューブ2内には液だまり、空気だまりは
生じない。
Of course, no liquid or air pockets are generated within the sensor tube 2.

また、センサナ1−ブ2は必ずしも水平でなくてもよい
Moreover, the sensor antenna 1-2 does not necessarily have to be horizontal.

発明の効果 上述の如く、本発明になる質量流filは、直線状の第
1.第2のセンケチl−1部が一直線に整列してなるた
め、並列に二木設けた構成に比べてセン(tチ1−1の
径を太くでき、各センサチューブ部を流れる質恒流伍を
大とし臀、これにより発生するコリオリカを大きくし得
、流1測のS/N比を改善することが出来る。また、圧
力n失を低減し1!すると共に、センナチュー1部内へ
の異物の付着を少なくし得、センサチューブ2内の液だ
まり、空気だまりの発生を防止し得る。
Effects of the Invention As described above, the mass flow fil according to the present invention has a linear first . Since the second sensor tubes 1-1 are arranged in a straight line, the diameter of the second sensor tubes 1-1 can be increased compared to a configuration in which two sensor tubes are provided in parallel, and the quality of the flow through each sensor tube can be increased. This increases the amount of Coriolis generated and improves the S/N ratio of flow measurements.Also, it reduces pressure loss and prevents foreign matter from entering the 1st part of the senna tube. Adhesion can be reduced, and generation of liquid pools and air pockets within the sensor tube 2 can be prevented.

更には、第1.第2のセンリチ1−ブ部を180度位相
をずらして励振させ、各センサチューブ部の流入側のピ
ックアップの出力同士の差(ii号及び流出側のピック
アップの出力同士の差信号を形成しているため、外部振
動の影響が相殺され、外部振動を受けても、流量計測を
粘度良く行うことが出来る等の特長を有する。
Furthermore, the first. The second sensor tube section is excited with a phase shift of 180 degrees, and a difference signal between the outputs of the pickups on the inflow side (No. ii and the difference signals between the outputs of the pickups on the outflow side) of each sensor tube section is formed. Because of this, the influence of external vibrations is canceled out, and the flow rate can be measured with good viscosity even when external vibrations are applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の質璽流量削の一実施例を示す図、第2
図は第1図中の質量流量計本体の平面図、第3図はセン
ケチl−1部の−の変形状態を示す図、第4図はセンサ
ナ1−1部の別の変形状態を示す図、第5図は第1のセ
ンサチューブ部の流入側、流出側のピックアップの出力
波形を示す図、第6図は第2のセンサチューブ部の流入
側、流出側のピックアップの出力波形を示す図、第7図
は二つの出力差信号の波形図である。
Fig. 1 is a diagram showing an embodiment of the reduction of the seal amount of the present invention;
The figure is a plan view of the mass flow meter main body in Figure 1, Figure 3 is a diagram showing a deformed state of the Senkechi 1-1 part, and Figure 4 is a diagram showing another deformed state of the Senkechi 1-1 part. , FIG. 5 is a diagram showing the output waveforms of the pickups on the inflow side and outflow side of the first sensor tube section, and FIG. 6 is a diagram showing the output waveforms of the pickups on the inflow side and outflow side of the second sensor tube section. , FIG. 7 is a waveform diagram of two output difference signals.

Claims (1)

【特許請求の範囲】 実質上同一長さを有し、両端を支持されて一直線に整列
された直線状の第1、第2のセンサチューブ部と、 該第1、第2のセンサチューブ部を、180度位相をず
らして励振させる手段と、 該第1、第2のセンサチューブ部の流入側の対応する部
位の変位を検出する一対の流入側ピックアップと、 該第1、第2のセンサチューブ部の流出側の対応する部
位の変位を検出する一対の流出側ピックアップと、 該一対の流入側ピックアップの出力差信号を得る第1の
出力差信号形成回路と、 該一対の流出側ピックアップの出力差信号を得る第2の
出力差信号形成回路と、 該第1、第2の出力差信号形成回路の出力差信号の位相
を比較して質量流量に比例した位相差信号を出力する位
相比較回路とよりなることを特徴とする質量流量計。
[Scope of Claims] Straight first and second sensor tube parts having substantially the same length, supported at both ends and aligned in a straight line; the first and second sensor tube parts; , a means for excitation with a phase shift of 180 degrees, a pair of inflow side pickups for detecting displacement of corresponding portions on the inflow sides of the first and second sensor tube sections, and the first and second sensor tubes. a pair of outflow side pickups that detect displacement of corresponding parts on the outflow side of the section; a first output difference signal forming circuit that obtains an output difference signal of the pair of inflow side pickups; and an output of the pair of outflow side pickups. a second output difference signal forming circuit that obtains a difference signal; and a phase comparison circuit that compares the phases of the output difference signals of the first and second output difference signal forming circuits and outputs a phase difference signal proportional to the mass flow rate. A mass flowmeter characterized by:
JP24437089A 1989-09-20 1989-09-20 Mass flow meter Expired - Lifetime JP2723306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24437089A JP2723306B2 (en) 1989-09-20 1989-09-20 Mass flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24437089A JP2723306B2 (en) 1989-09-20 1989-09-20 Mass flow meter

Publications (2)

Publication Number Publication Date
JPH03107727A true JPH03107727A (en) 1991-05-08
JP2723306B2 JP2723306B2 (en) 1998-03-09

Family

ID=17117685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24437089A Expired - Lifetime JP2723306B2 (en) 1989-09-20 1989-09-20 Mass flow meter

Country Status (1)

Country Link
JP (1) JP2723306B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307689A (en) * 1991-01-18 1994-05-03 Tokico Ltd. Mass flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307689A (en) * 1991-01-18 1994-05-03 Tokico Ltd. Mass flowmeter

Also Published As

Publication number Publication date
JP2723306B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
RU2159410C2 (en) Device and method for processing of signal to determine phase shift
JP2866060B2 (en) Coriolis mass flowmeter having at least one measuring tube
US4934195A (en) Coriolis mass flowmeter
WO2004099733A1 (en) Coriolis flowmeter
GB2192714A (en) Coriolis mass flow meter
JPH05248900A (en) Double wing type eddy flux measuring device and its measuring method
JPH03107727A (en) Mass flowmeter
CN111417841B (en) Method for determining the viscosity of a medium by means of a coriolis mass flowmeter and coriolis mass flowmeter for carrying out the method
JP6303025B2 (en) Improved vibratory flow meter and associated method
JP2002522756A (en) Apparatus for measuring the flow rate of liquid in pipes
JPH0341319A (en) Coriolis mass flowmeter
RU2366901C1 (en) Coriolis flow metre (versions), method for detection of ratio between amplifications of two branches of signals processing in coriolis flow metre and method for flow rate measurement
US6553845B2 (en) Coriolis flowmeter utilizing three-forked plate vibrator mode
JP3058094B2 (en) Mass flow meter
JPH0242319A (en) Fluid measuring device
JPH06331405A (en) Vibration type measuring instrument
DK1402236T3 (en) METHOD FOR DETERMINING THE MASS FLOW IN A Coriolis mass flowmeter
JPH067324Y2 (en) Mass flow meter
JPS63233328A (en) Mass flowmeter
JPH04130226A (en) Mass flowmeter
JPH04191620A (en) Coriolis mass flowmeter
JPH0499918A (en) Mass flowmeter
JPS63285415A (en) Mass flowmeter
JPH04130227A (en) Mass flowmeter
JP2007051942A (en) Mass flowmeter