JPH03106417A - Reactivating process of waste desulfurizing agent in inner-furnace desulfurization - Google Patents

Reactivating process of waste desulfurizing agent in inner-furnace desulfurization

Info

Publication number
JPH03106417A
JPH03106417A JP1244517A JP24451789A JPH03106417A JP H03106417 A JPH03106417 A JP H03106417A JP 1244517 A JP1244517 A JP 1244517A JP 24451789 A JP24451789 A JP 24451789A JP H03106417 A JPH03106417 A JP H03106417A
Authority
JP
Japan
Prior art keywords
desulfurizing agent
desulfurization
agent
waste
shell layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1244517A
Other languages
Japanese (ja)
Inventor
Michio Ishida
石田 美智男
Teruyuki Doi
土井 照之
Teruhiko Kawanabe
川鍋 輝彦
Yoshimasa Miura
三浦 祥正
Etsuo Ogino
悦生 荻野
Michio Ito
道雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP1244517A priority Critical patent/JPH03106417A/en
Publication of JPH03106417A publication Critical patent/JPH03106417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To recover desulfurizing performance of a waste desulfurizing agent by irradiating a plasma to a waste desulfurizing agent composed of an unreacted desulfurizing agent of a core section and a sulfurized composition outer shell layer covering said unreacted desulfurizing agent. CONSTITUTION:When desulfurizing agent powder 30 is used for desulfurizing reaction in a furnace, a waste desulfurizing agent 34 composed of an unreacted desulfurizing agent 32 and a sulfurized composition outer shell layer 33 covering said agent is formed. Said waste desulfurizing agent 34 and fly ash of fine coal are collected by a dust collector and plasma irradiated by a plasma generating device. The unreacted desulfurizing agent 32 and the sulfurized composition outer shell layer 33 are destructed in a manner that the former is finer than the latter by said process, and the outer shell layer 33 is peeled off the surface of the unreacted desulfurizing agent 32 to prepare a reactivated sulfurizing agent 35. Said reactivated desulfurizing agent 35, a crushed material 36 of the outer shell layer 33 and fly ash are classified by an air classifying machine and the reactivating desulfurizing agent 35 only is recovered and used for desulfurization of the furnace again. As a result, desulfurization performance of the waste desulfurizing agent can be recovered.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、微粉炭焚きボイラやごみ焼却炉などの火炉内
へCaCO,やCa (OR)2などのCa系脱硫剤を
直接投入して、炉内で発生した802、HC/などの酸
性ガスを吸収・除去する乾式のいわゆる゛炉内脱硫に使
用される脱硫剤に関し、さらに詳しくはこの脱硫プロセ
スに一度使用された廃脱硫剤の再活性化方法に関する。 [従来技術および発明の課題] 従来の炉内脱硫法は、石灰石こう法のような湿式排煙脱
硫法に比較して脱硫性能に劣り、実用化に至っていない
。 しかし、炉内脱硫法は、装置の設置コストが安く、処理
用水が必要でなく、排水処理が不要であるといった利点
を有しており、その性能改善が切望されている。 炉内脱硫法の性能が低い原因はつぎのとおりである。 炉内の高温度域に上記Ca系脱硫剤を投入すると、下記
の反応が起こり、S02の吸収が行なわれる。 [11  高温度域における炭酸カルシウムまたは消石
灰の分解 C a C 0 3   C a O + C 0 2
 ↑  ・(1)C a (OH) a   C a 
O+H2 0↑・(2)
[Industrial Field of Application] The present invention is directed to directly injecting a Ca-based desulfurization agent such as CaCO or Ca(OR)2 into a furnace such as a pulverized coal-fired boiler or a garbage incinerator to eliminate the 802% generated in the furnace. The present invention relates to a desulfurizing agent used in dry type so-called in-furnace desulfurization that absorbs and removes acidic gases such as , HC, etc., and more specifically relates to a method for reactivating waste desulfurizing agent once used in this desulfurization process. [Prior Art and Problems of the Invention] Conventional in-furnace desulfurization methods have inferior desulfurization performance compared to wet flue gas desulfurization methods such as the lime-gypsum method, and have not been put into practical use. However, the in-furnace desulfurization method has advantages such as low equipment installation cost, no need for treatment water, and no need for wastewater treatment, and there is a strong desire to improve its performance. The reasons for the low performance of the in-furnace desulfurization method are as follows. When the Ca-based desulfurization agent is introduced into the high temperature region of the furnace, the following reaction occurs and S02 is absorbed. [11 Decomposition of calcium carbonate or slaked lime in high temperature range C a C 0 3 C a O + C 0 2
↑ ・(1) C a (OH) a C a
O+H2 0↑・(2)

【2】高温度域における脱硫剤
によるS02の吸収 CaO+SO2 +l/2  02 →C a  S O 4     − ({)しかし、
(3〉式の反応では、下記の要因により、S O 2の
吸収反応速度が時間の経過とともに極端に低下する。す
なわち、S02の吸収とともに、CaOの粒子表面に吸
収反応生成物であるC a S Oa層(この明細書全
体を通して、これを硫化生成物外殻層という)が形成さ
れ、この層のために反応速度が低下する。 この硫化生成物外殻層を有した廃脱硫剤をそのまま炉内
に再投入したのでは、脱硫率ははなはだ低い。 ここで炉内に投入するCaの量(モル/時)と炉内で発
生したSO2のガス量(モル/時)との比をC a /
 Sモル当量比(以下rCa/S当量比」と呼ぶ)とす
ると、たとえば現在公表されている米国EPAのデータ
では、Ca/S一3にて炉内脱硫率は60%程度である
。このような低い効率の原因は上記の点に由来すると考
えられ、これらの要因を排除しない限りは高効率の脱硫
は望めないことがわかる。 本発明では、前述の要因について対策および改善を行な
い、総合的に脱硫効率を向上させた。 この対策および改善の中で特にコア部の未反応脱硫剤と
これを覆う硫化生成物外殻層とよりなる廃脱硫剤の再活
性化が、脱硫効率向上に大きく貢献しているという知見
を得、本発明を完成するに至った。 〔課題の解決手段〕 本発明による廃脱硫剤の再活性化方法は、上記の如き観
点から、コア部の未反応脱硫剤とこれを覆う硫化生成物
外殻層とよりなる廃脱硫剤にプラズマを照射することを
特徴とする。 本発明の方法において廃脱硫剤は集塵装置で捕集された
ものであって、コア部に未反応脱硫剤を内蔵し、かつ脱
硫、脱塩性能を潜在的に持っている。 プラズマはプラズマトーチのような通常のプラズマ発生
装置によって得られる。プラズマの照射量はコア部の未
反応脱硫剤を覆う硫化生成物外殻層の層厚などによって
決定される。 [作 用] 本発明の廃脱硫剤の再活性化方法では、コア部の未反応
脱硫剤とこれを覆う硫化生成物外殻層とよりなる廃脱硫
剤にプラズマを照射するので、プラズマによって同外殻
層が破砕されてコア部の未反応脱硫剤が少なくとも一部
露出させられる。その結果、廃脱硫剤の脱硫性能が回復
させられる。したがって、このプラズマ照射処理廃脱硫
剤を炉内脱硫に再使用することにより、新規な脱硫剤を
使用した場合にほぼ等しいくらいに高い脱硫率が得られ
る。 [実 施 例] 以下、この発明の実施例を、図面を参照して説明する。 第1図には本発明によるプロセスフローを示し、第2図
には本発明のプロセスにおける脱硫剤の状態変化を模式
的に示す。第1図のフローシートにおいて、微粉炭を火
炉(1)の低NOx燃焼装置(2)で燃焼させる。タン
ク(3)内に蓄えられた脱硫剤は、供給ライン(4)に
設けられたエジェクタ(5)を通過する圧縮空気により
吸引されて供給ライン(4)に吸い出され、圧縮空気と
ともにノズル(6)より火炉(1)内に噴射される。 火炉(1)内に噴射される前の脱硫剤粉末〈30)の状
態は、第2図(a)に示すように、表面に細孔《3l)
を有する粉末状である。火炉(1)内では脱硫反応が起
こり、排ガス中の502濃度はCa供給量に見あった分
だけ下がる。このとき、第2図(b)に示すように、コ
ア部の未反応脱硫剤(32〉とこれを覆う硫化生成物外
殻層(33)とよりなる廃脱硫剤(34)が形成される
。そのため、火炉(1)内においてはCaのH効利用率
は35%程度にも達していない。 火炉(1)内の脱硫反応により生じた廃脱硫剤(34)
と、微粉炭のフライアッシュとは混合しながら、2つの
ヒー5タ(7) (8)を通り、煙道(9〉を経て集塵
装置〈lO〉に至る。ここで廃脱硫剤(34)を含むプ
ライアッシュが捕集され、一方排ガスは誘引ファン(1
1)を通って煙突(l2)より糸外へ排出される。 集塵装置(1G)から出た廃脱硫剤(34)を含むフラ
イアッシュは、貯槽(13)へ空気輸送されてここに蓄
えられ、輪送後の空気はバグフィルタ(l4)を経て系
外へ排出される。 廃脱硫剤(34)を含むフライアッシュは貯槽(l3〉
から一部排出され、プラズマ発生装置(l5)からのプ
ラズマ照射を受け破砕される。プラズマ発生装置(l5
)で廃脱硫剤《34)を含むフライアッシュを粉砕する
ことによって、第2図(e)に示すように、未反応脱硫
剤と硫化生成物との硬度差を利用して未反応脱硫剤〈3
2)および硫化生成物外殻層〈33〉が、後者が前者よ
りも細かくなるように破壊されて硫化生戊物外殻層〈3
3〉が未反応脱硫剤(32)表面から剥落させられる。 未反応脱硫剤(32〉の表面には若干の硫化生成物外殻
が残っている。こうして未反応脱硫剤(32)が一部露
出させられ、再活性化脱硫剤(35)が得られる。 再活性化脱硫剤(35〉および硫化生成物外殻層(33
)の破砕物(36)ならびにフライアッシュは渦流式空
気分級機(ta)により分級され、再活性化脱硫剤(3
5〉だけが貯槽(l7)へ空気輸送されてここへ蓄えら
れ、輸送後の空気はバグフィルタ(l8)を経て系外へ
排出される。一方、硫化生成物外殻層(33)の砕物(
3B)およびフライアッジュの微粉は、系外へ排出され
る。 貯檜(17)内に蓄えられた再活性化脱硫剤〈35〉は
、循環ライン(23)に設けられたエジェクタ(24)
を通過する圧縮空気により吸引されて循環ライン(23
)に吸い出され、火炉(1)および煙道〈9〉まで空気
輸送されて、火炉(1〉または煙道(9)内の900℃
以下600℃以上の温度領域に再投入される。 つぎに、新規な脱硫剤を炉内脱硫に使用した場合、未処
理の廃脱硫剤をそのまま炉内脱硫に再使用した場合、お
よびプラズマ照射処理した廃脱硫剤を炉内脱硫に再使用
した場合についてそれぞれ脱硫率を測定した。その結果
を第3図に示す。同図から明らかなように、未処理の廃
脱硫剤をそのまま炉内脱硫に再使用した場合にははなは
だ低い脱硫率しか得られないのに対し、プラズマ照射処
理した廃脱硫剤を炉内脱硫に再使用した場合には、新規
な脱硫剤を使用した場合にほぼ等しいくらいに高い脱硫
率が得られる。 [発明の効果〕 本発明の廃脱硫剤の再活性化方法によれば、コア部の未
反応脱硫剤とこれを覆う硫化生成物外殻層とよりなる廃
脱硫剤にプラズマを照射するので、プラズマによって同
外殻層を破砕してコア部の未反応脱硫剤を少なくとも一
部露出させ、以て廃脱硫剤の脱硫性能を回復させること
ができる。したがって、このプラズマ照射処理廃脱硫剤
を炉内脱硫に再使用することにより、新規な脱硫剤を再
使用した場合にほぼ等しいくらいに高い脱硫率を得るこ
とができる。
[2] Absorption of S02 by desulfurization agent in high temperature range CaO+SO2 +l/2 02 →C a S O 4 − ({) However,
(In the reaction of formula 3, the absorption reaction rate of SO 2 decreases extremely over time due to the following factors. In other words, along with the absorption of SO 2 , the absorption reaction product Ca A SOa layer (referred to as the sulfided product shell layer throughout this specification) is formed, and this layer reduces the reaction rate. If the waste desulfurization agent with this sulfurized product shell layer is used as is, If it is reinjected into the furnace, the desulfurization rate is extremely low.Here, the ratio of the amount of Ca introduced into the furnace (mol/hour) to the amount of SO2 gas generated in the furnace (mol/hour) is calculated as C. a /
Assuming the S molar equivalent ratio (hereinafter referred to as rCa/S equivalent ratio), for example, according to currently published data from the US EPA, the in-furnace desulfurization rate is about 60% at Ca/S-3. The cause of such low efficiency is thought to be due to the above points, and it can be seen that unless these factors are eliminated, highly efficient desulfurization cannot be expected. In the present invention, countermeasures and improvements have been made to the above-mentioned factors, and the desulfurization efficiency has been comprehensively improved. Among these measures and improvements, we have found that reactivation of waste desulfurization agent, which consists of unreacted desulfurization agent in the core and the sulfurized product shell layer covering it, greatly contributes to improving desulfurization efficiency. , we have completed the present invention. [Means for Solving the Problems] From the above-mentioned viewpoint, the method for reactivating a waste desulfurization agent according to the present invention applies plasma to the waste desulfurization agent consisting of the unreacted desulfurization agent in the core portion and the sulfurized product shell layer covering the unreacted desulfurization agent. It is characterized by irradiating. In the method of the present invention, the waste desulfurization agent is collected by a dust collector, contains unreacted desulfurization agent in the core, and has potential desulfurization and desalination performance. The plasma is obtained by a conventional plasma generating device such as a plasma torch. The amount of plasma irradiation is determined by the thickness of the sulfurized product shell layer that covers the unreacted desulfurizing agent in the core. [Function] In the method for reactivating a waste desulfurization agent of the present invention, the waste desulfurization agent consisting of the unreacted desulfurization agent in the core portion and the sulfurized product shell layer covering it is irradiated with plasma, so that the waste desulfurization agent is irradiated with plasma. The outer shell layer is crushed to expose at least a portion of the unreacted desulfurization agent in the core. As a result, the desulfurization performance of the waste desulfurization agent is restored. Therefore, by reusing this plasma irradiation-treated waste desulfurization agent for in-furnace desulfurization, it is possible to obtain a desulfurization rate almost as high as when a new desulfurization agent is used. [Example] Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 shows a process flow according to the present invention, and FIG. 2 schematically shows changes in the state of the desulfurizing agent in the process of the present invention. In the flow sheet of FIG. 1, pulverized coal is combusted in a low NOx combustion device (2) of a furnace (1). The desulfurizing agent stored in the tank (3) is suctioned by the compressed air passing through the ejector (5) provided in the supply line (4) and sucked out to the supply line (4), and is sent together with the compressed air to the nozzle ( 6) is injected into the furnace (1). The state of the desulfurizing agent powder (30) before being injected into the furnace (1) is as shown in Figure 2 (a), with pores (3L) on the surface.
It is in powder form with . A desulfurization reaction occurs in the furnace (1), and the 502 concentration in the exhaust gas decreases by an amount corresponding to the amount of Ca supplied. At this time, as shown in FIG. 2(b), a waste desulfurizing agent (34) is formed consisting of an unreacted desulfurizing agent (32) in the core part and a sulfurized product shell layer (33) covering it. Therefore, the H efficiency of Ca in the furnace (1) does not even reach about 35%.The waste desulfurization agent (34) generated by the desulfurization reaction in the furnace (1)
While mixing, the pulverized coal fly ash passes through two heaters (7) and (8), passes through the flue (9), and reaches the dust collector <lO>.Here, the waste desulfurization agent (34 ) is collected, while the exhaust gas is collected by an induction fan (1
1) and is discharged from the chimney (l2) to the outside of the thread. The fly ash containing the waste desulfurizing agent (34) discharged from the dust collector (1G) is pneumatically transported to the storage tank (13) and stored there, and the air after being transported is sent out of the system via the bag filter (14). is discharged to. The fly ash containing the waste desulfurization agent (34) is stored in the storage tank (13).
A portion of the material is discharged from the plasma generator (l5) and crushed by plasma irradiation from the plasma generator (l5). Plasma generator (l5
) by pulverizing the fly ash containing the waste desulfurization agent << 3
2) and the sulfided product outer shell layer <33> is destroyed so that the latter is finer than the former, forming the sulfurized product outer shell layer <3
3> is peeled off from the surface of the unreacted desulfurization agent (32). Some shells of sulfurized products remain on the surface of the unreacted desulfurizing agent (32). In this way, a portion of the unreacted desulfurizing agent (32) is exposed, and a reactivated desulfurizing agent (35) is obtained. Reactivated desulfurization agent (35) and sulfurized product shell layer (33)
) crushed material (36) and fly ash are classified by a vortex air classifier (TA), and the reactivated desulfurization agent (3
5> is air-transported to the storage tank (l7) and stored there, and the air after transport is discharged to the outside of the system through the bag filter (l8). On the other hand, crushed material of the sulfurized product outer shell layer (33) (
3B) and the fine powder of flyage are discharged out of the system. The reactivated desulfurization agent <35> stored in the storage cypress (17) is transferred to the ejector (24) provided in the circulation line (23).
The compressed air passing through the circulation line (23
), air transported to the furnace (1) and flue <9>, and the temperature inside the furnace (1> or flue (9)) reaches 900℃.
Thereafter, it is reinjected into a temperature range of 600°C or higher. Next, when a new desulfurization agent is used for in-furnace desulfurization, when untreated waste desulfurization agent is reused as is for in-furnace desulfurization, and when waste desulfurization agent treated with plasma is reused for in-furnace desulfurization. The desulfurization rate was measured for each. The results are shown in FIG. As is clear from the figure, if untreated waste desulfurization agent is reused for in-furnace desulfurization, a very low desulfurization rate can be obtained, whereas waste desulfurization agent treated with plasma irradiation can be used for in-furnace desulfurization. When reused, the desulfurization rate is almost as high as when using a new desulfurization agent. [Effects of the Invention] According to the method for reactivating waste desulfurization agent of the present invention, the waste desulfurization agent consisting of the unreacted desulfurization agent in the core portion and the sulfurized product shell layer covering it is irradiated with plasma. By crushing the outer shell layer with plasma to expose at least a portion of the unreacted desulfurizing agent in the core, the desulfurizing performance of the waste desulfurizing agent can be restored. Therefore, by reusing this plasma irradiation-treated waste desulfurization agent for in-furnace desulfurization, it is possible to obtain a desulfurization rate almost as high as when a new desulfurization agent is reused.

【図面の簡単な説明】 第1図は本発明の実施例を示すフローシート、第2図は
本発明の実施例における脱硫剤の状態変化を模式的に示
す断面図、第3図はC a / S当量比と脱硫率との
関係を示すグラフである。 (1)・・・火炉、(9〉・・・煙道、(15)・・・
プラズマ発生装置:. (aO)・・・脱硫剤粉末(C
a系脱硫剤)、(32〉・・・未反応脱硫剤、(33〉
・・・硫化生成物外殻層、〈34)・・・廃脱硫剤、(
35)・・・再活性化脱硫剤。 以  上
[Brief Description of the Drawings] Figure 1 is a flow sheet showing an example of the present invention, Figure 2 is a sectional view schematically showing changes in the state of a desulfurizing agent in an example of the present invention, and Figure 3 is a flow sheet showing an example of the present invention. It is a graph showing the relationship between the /S equivalent ratio and the desulfurization rate. (1)... Furnace, (9>... Flue, (15)...
Plasma generator:. (aO)...Desulfurizing agent powder (C
a-based desulfurization agent), (32>... unreacted desulfurization agent, (33>
... Sulfurized product outer shell layer, <34) ... Waste desulfurization agent, (
35)...Reactivation desulfurization agent. that's all

Claims (1)

【特許請求の範囲】[Claims] コア部の未反応脱硫剤とこれを覆う硫化生成物外殻層と
よりなる廃脱硫剤にプラズマを照射することを特徴とす
る炉内脱硫における廃脱硫剤の再活性化方法。
A method for reactivating waste desulfurization agent in in-furnace desulfurization, characterized by irradiating plasma to the waste desulfurization agent consisting of an unreacted desulfurization agent in a core portion and a sulfurized product shell layer covering it.
JP1244517A 1989-09-19 1989-09-19 Reactivating process of waste desulfurizing agent in inner-furnace desulfurization Pending JPH03106417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1244517A JPH03106417A (en) 1989-09-19 1989-09-19 Reactivating process of waste desulfurizing agent in inner-furnace desulfurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1244517A JPH03106417A (en) 1989-09-19 1989-09-19 Reactivating process of waste desulfurizing agent in inner-furnace desulfurization

Publications (1)

Publication Number Publication Date
JPH03106417A true JPH03106417A (en) 1991-05-07

Family

ID=17119859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1244517A Pending JPH03106417A (en) 1989-09-19 1989-09-19 Reactivating process of waste desulfurizing agent in inner-furnace desulfurization

Country Status (1)

Country Link
JP (1) JPH03106417A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314783A (en) * 2005-04-13 2006-11-24 Masaaki Inoue Urination auxiliary implement
JP2019105399A (en) * 2017-12-12 2019-06-27 住友金属鉱山株式会社 Limestone preliminary supply facility for circulating fluidized bed boiler and preliminary supply method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314783A (en) * 2005-04-13 2006-11-24 Masaaki Inoue Urination auxiliary implement
JP2019105399A (en) * 2017-12-12 2019-06-27 住友金属鉱山株式会社 Limestone preliminary supply facility for circulating fluidized bed boiler and preliminary supply method

Similar Documents

Publication Publication Date Title
AU2007258119B2 (en) Integrated dry and wet flue gas cleaning process and system
KR890000512B1 (en) Process for removal of nitrogen oxides and sulfur oxides from waste gases
US4600568A (en) Flue gas desulfurization process
KR920003768B1 (en) Method and system for purifying exhaust gas
JPS6136969B2 (en)
JP2977759B2 (en) Exhaust gas dry treatment method and apparatus
US5112588A (en) Method of and apparatus for the removal of gaseous contaminants from flue gas or reduction of the content of gaseous contaminants in a flue gas
JPH01284382A (en) Treatment of fly ash
JPH03106417A (en) Reactivating process of waste desulfurizing agent in inner-furnace desulfurization
JP4507291B2 (en) Method and apparatus for treating flue gas desulfurization waste
JPH0467085B2 (en)
JPS61157328A (en) Purification of exhaust gas by dry dolomite method
JPH0376963B2 (en)
JPS6025531A (en) Dry purification of exhaust gas
JPS62216630A (en) Method for removing mercury and acid gas contained in combustion exhaust gas
JPS62186925A (en) Treatment of exhaust gas
JPS5836621A (en) Desulfurizing method for waste gas of pulverized coal firing boiler
JPH0389916A (en) In-furnace desulfurization process
JPS6251644B2 (en)
JPS6019019A (en) Dry purifying method of waste gas
JPH02268809A (en) Thermal plant system provided with wet type stack gas treatment equipment
JP3204694B2 (en) Method for producing desulfurizing agent and desulfurizing method
JPH04141216A (en) Wet exhaust gas desulfurizing method
JPH1057757A (en) Treatment of dry waste gas
JPH07116454A (en) Process and device for desulfurizing exhaust gas