JPH0310216A - Method for driving liquid crystal device - Google Patents

Method for driving liquid crystal device

Info

Publication number
JPH0310216A
JPH0310216A JP14484789A JP14484789A JPH0310216A JP H0310216 A JPH0310216 A JP H0310216A JP 14484789 A JP14484789 A JP 14484789A JP 14484789 A JP14484789 A JP 14484789A JP H0310216 A JPH0310216 A JP H0310216A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal device
frames
gradation
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14484789A
Other languages
Japanese (ja)
Inventor
Yoichi Momose
洋一 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP14484789A priority Critical patent/JPH0310216A/en
Publication of JPH0310216A publication Critical patent/JPH0310216A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

PURPOSE:To obtain an attractive gradational display by employing the driving method for the liquid crystal device which selects (m) out of (n) frames and setting (n) larger than 1.25Xthe total number of gradations. CONSTITUTION:The value of the driving method for the liquid crystal device which selects (m) out of (n) frames (n >= total number of gradations) so that an effective voltage applied to picture elements is an effective voltage corre sponding to the gradation level of display picture elements is set larger than 1.25Xthe total number of gradations. Namely, n>1.25Xthe number of gradations and the difference in the number of frames which are selected between adjacent gradation levels at a part where variation in transmissivity is small is set to >=2 to increase the difference in the effective voltage applied to picture elements. Consequently, display characteristics are prevented from decreasing and the attractive gradational display is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶装置の駆動方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for driving a liquid crystal device.

〔従来の技術〕[Conventional technology]

従来の液晶装置の駆動方法゛を第3図(a)〜(g)に
示す。
A conventional method for driving a liquid crystal device is shown in FIGS. 3(a) to 3(g).

第3図(g)中x1、x2、×3はそれぞれ信号電極、
Yl、¥2、Y3はそれぞれ走査電極、走査電極と信号
電極の交点て斜線が施されているものが選択画素、斜線
が施されていないものが非選択画素、VXI、VX2、
VX3はそれぞれの信号電極に印加される電圧波形、V
Yl、VY2、VY3はそれぞれの走査電極に印加され
る電圧波形、VOは基準電圧、VO+VYは走査電圧、
VO−VYは選択電圧である。
In Fig. 3(g), x1, x2, and x3 are signal electrodes, respectively.
Yl, ¥2, and Y3 are respectively scan electrodes, intersections of the scan electrodes and signal electrodes, the hatched ones are selected pixels, the ones without diagonal lines are unselected pixels, VXI, VX2,
VX3 is the voltage waveform applied to each signal electrode, V
Yl, VY2, VY3 are voltage waveforms applied to the respective scanning electrodes, VO is the reference voltage, VO+VY is the scanning voltage,
VO-VY is a selection voltage.

走査電極¥1が選択されるときは、走査電極)′には走
査電圧vo+vyが印加され、Y2.Y3はVOのまま
である。走査電極¥1上の画素のうち信号電極Xiとの
交点にあるものが選択画素であり、選択電圧vo−vx
が印加、×2、x30〕交点にあるものが非選択画素で
非選択電圧Vo+■xが印加される。各画素には走査電
極の電圧と信号電極の電圧との差が印加されるので、X
IとY ]ノ交点には電圧vy+vxが、x2とYl及
びx3とYlの交点にはVY−VXが印加される。また
この時、Y2、¥3の電圧はVoであるので、¥2、Y
3上の画素にはVXもしくは−V×が印加される。
When scan electrode \1 is selected, scan voltage vo+vy is applied to scan electrode )', and scan voltage vo+vy is applied to scan electrode Y2. Y3 remains VO. Among the pixels on the scanning electrode \1, the one at the intersection with the signal electrode Xi is the selected pixel, and the selection voltage vo-vx
are applied, x2, x30] Those at the intersection are non-selected pixels and the non-selected voltage Vo+x is applied. Since the difference between the voltage of the scanning electrode and the voltage of the signal electrode is applied to each pixel,
A voltage vy+vx is applied to the intersection between x2 and Yl and a voltage VY-VX is applied to the intersection between x2 and Yl and x3 and Yl. Also, at this time, the voltages of Y2 and ¥3 are Vo, so ¥2 and Y
VX or -Vx is applied to the pixel above 3.

次の選択期間では、¥2が選択され上記の動作をY2に
ついて行い、以下、各走査電極について同様な走査を順
次行う。
In the next selection period, ¥2 is selected and the above operation is performed for Y2, and thereafter similar scanning is sequentially performed for each scanning electrode.

すなわち、選択期間に選択画素にはvy+vxが非選択
画素にはVY−VXが印加され、非選択期間には−Vx
もしくは■xが印加されるため、選択画素に印加される
電圧の実効値が、非選択画素の実効値より高くなり表示
が現れる。
That is, vy+vx is applied to the selected pixel during the selection period, VY-VX is applied to the non-selected pixel, and -Vx is applied during the non-selection period.
Alternatively, x is applied, so the effective value of the voltage applied to the selected pixel becomes higher than the effective value of the non-selected pixel, and a display appears.

さらに、この様な駆動方法において階調表示を行う方法
としては、例えば、8階調表示のときC」7フレームを
基準とし階調レベル3(階調レベルの値が大きいほど画
素に印加される実効電圧値が高いとする。)では7フレ
ーム中、選択フレームが2フレーム、非選択フレームが
5フレームと場−る様に、k階調表示を行う場合、(k
−1)フレムを基準としその中に選択フレームと非選択
フレームを混ぜることにより画素に印加される実効電圧
の値を変化させ選択と非選択の中間の表示を行っていた
Furthermore, as a method for performing gradation display in such a driving method, for example, in the case of 8-gradation display, gradation level 3 is set based on C'7 frame (the larger the gradation level value, the more applied to the pixel. ), when performing k gradation display such that out of 7 frames, there are 2 selected frames and 5 non-selected frames, (k
-1) By mixing selected frames and non-selected frames within the frame as a reference, the value of the effective voltage applied to the pixel is changed to provide an intermediate display between selected and non-selected.

〔発明が解決しようとする課題] 一般的な液晶装置に電圧を印加したときの実効電圧値と
透過率の関係を第1図に示す。これより明らかなように
、印加された電圧がしきい値を越えた付近では(2,1
Vl−1近)透過率の変化は小さいが、その後変化は大
きくなり(21〜22■)、やがてまた小さくなる(2
2■以」二)。
[Problems to be Solved by the Invention] FIG. 1 shows the relationship between the effective voltage value and the transmittance when a voltage is applied to a general liquid crystal device. As is clear from this, in the vicinity where the applied voltage exceeds the threshold (2, 1
The change in transmittance is small (near Vl-1), but after that the change becomes large (21~22■), and then becomes small again (2
2).

従って、前述の従来技術では、k階調表示を行う場合、
(k−1)フレームを基準として階調を行うため、隣合
う階調レベル間での画素に印加される実効電圧の差は等
しくなり、透過率の変化の小さい実効電圧の低い部分で
の階調レベルもしくは高い部分での階調レベルの見分け
がつきにくくなってしまうという問題点を有する。
Therefore, in the prior art described above, when performing k-gradation display,
(k-1) Since gradation is performed using the frame as a reference, the difference in effective voltage applied to pixels between adjacent gradation levels is equal, and gradation is achieved in areas where the effective voltage is low and where the change in transmittance is small. This has the problem that it becomes difficult to distinguish the tone level or the tone level in a high part.

そこで本発明はこの様な問題点を解決するもので、その
目的とするところは、上記の理由による表示特性の低下
を防止し、見栄えのよい階調表示を提供するところにあ
る。
The present invention is intended to solve these problems, and its purpose is to prevent deterioration of display characteristics due to the above-mentioned reasons and provide a gradation display with good appearance.

[課題を解決するための手段] 本発明の液晶装置の駆動方法は、走査電極を有する基板
と信号電極を有する基板間に液晶層を挟持し、かつ、走
査電極と信号電極の重なる部分に表示画素を形成する液
晶装置の階調表示を行う際に、走査電極には順次走査電
圧を印加し、また信号電極と走査電極の交点に存在する
表示画素で信号電極に印加される信号電圧波形と走査電
極に印加される走査電圧波形の合成波形の実効電圧が表
示画素の階調レベルに応じた実効電圧となるようにnフ
レーム中(n≧全階調数)、mフレームを選択状態とす
る液晶装置の駆動方法において、上記nの値を1.25
X (全階調数)<nとすることを特徴とする。
[Means for Solving the Problems] A method for driving a liquid crystal device of the present invention includes sandwiching a liquid crystal layer between a substrate having a scanning electrode and a substrate having a signal electrode, and displaying a liquid crystal layer in a portion where the scanning electrode and the signal electrode overlap. When performing gradation display of a liquid crystal device that forms pixels, scanning voltages are sequentially applied to the scanning electrodes, and the signal voltage waveforms applied to the signal electrodes at the display pixels that exist at the intersections of the signal electrode and the scanning electrode Set m frames in n frames (n≧total number of gradations) to a selected state so that the effective voltage of the composite waveform of the scanning voltage waveforms applied to the scanning electrodes becomes an effective voltage corresponding to the gradation level of the display pixel. In the method for driving a liquid crystal device, the value of n is set to 1.25.
It is characterized in that X (total number of gradations)<n.

〔作 用] 一1Kiに階調表示が最も見易い条件は、階調レベルに
ての液晶装置の透過率をT (k)とすると1′(k)
  −T  (k−1)  =T  (k−1)  −
T  (k2)=・ ・・=T (2) −”I’ (
1)となるときである。従って、前述のnの値をn>1
.’25X(全階調数)として、透過率の変化の小さい
部分に於ける隣合う階調レベル間での選択状態となるフ
レーム数の差を2以上とすることにより、画素に印加さ
れる実効電圧の差を大きくし、上記の条件を満たすよう
に各階調レベルでの選択状態となるフレーム数を決定す
れば見栄えのよい階調表示が得られる。
[Function] The condition under which the gradation display is most visible at -1Ki is 1'(k), where the transmittance of the liquid crystal device at the gradation level is T(k).
-T (k-1) =T (k-1) -
T (k2)=...=T (2) −"I' (
1). Therefore, the value of n mentioned above is set to n>1
.. '25 By increasing the voltage difference and determining the number of frames in the selected state at each gradation level so as to satisfy the above conditions, a good-looking gradation display can be obtained.

[実 施 例] 以下本発明の実施例を図と共に説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図に本実施例で用いた液晶装置の印加電圧の実効値
と透過率の関係を示す。液晶のツイスト角は230度、
配向膜としてポリイミドを用いその表面を綿によりラビ
ングすることにより液晶分子を配向させている。
Example 1 FIG. 1 shows the relationship between the effective value of the applied voltage and the transmittance of the liquid crystal device used in this example. The twist angle of the liquid crystal is 230 degrees.
Polyimide is used as an alignment film, and its surface is rubbed with cotton to align liquid crystal molecules.

この液晶装置をバイアス比13.1/200d u t
 y、1選択期間70JLsecで駆動したところ、コ
ントラスl−比が最大となる実効電圧はVon=2.2
00v、Voff=2.052vてあった。また、この
とき階調表示が最も見易い条件を満たず各階調レベルで
の実効電圧値は8階調表示の場合、 V (8)=2.200v (=Von)V (7)=
2.189v V (6)=2.178v V (5) =2.167v V (4)=2.153v V (3)=2.137v V (2)=2.114v V C]、)=2.052v (=Voff)てあり、
各階調レベル間での実効電圧の差はV (8) −V 
(7)二0.01.]VV (7)−V (6)=0.
011VV (6)  V (5)二0.01.lVV
  (5)−V  (4)=O,O]4VV  (4)
−V  (3)=0.  O]6VV  (3)−V 
 (2)=0. 023VV  (2)−V  (1,
)=0. 062Vとなる。ここてV (k)は階言周
レベルにのときの実効電圧である。この値を基にフレー
ム数nを12として各階調レベルでの選択状態となるフ
レム数を m (8) =12 m(7)=11 m (6) =10 m(5)=9 m(4)=8 m(3)=7 m(2)=5 m(]i=0 と設定した。ここでm (k)は階調レベル1くのとき
の選択状態となるフレーム数である。
This liquid crystal device has a bias ratio of 13.1/200d u t
y, when driven with one selection period of 70 JLsec, the effective voltage at which the contrast l-ratio is maximum is Von = 2.2
00v, Voff=2.052v. Also, in this case, when the gradation display does not meet the condition for the easiest viewing and the effective voltage value at each gradation level is 8 gradation display, V (8) = 2.200v (=Von)V (7) =
2.189v V (6) = 2.178v V (5) = 2.167v V (4) = 2.153v V (3) = 2.137v V (2) = 2.114v V C], ) = 2 There is .052v (=Voff),
The difference in effective voltage between each gradation level is V (8) −V
(7) 20.01. ]VV (7)-V (6)=0.
011VV (6) V (5)20.01. lVV
(5)-V (4)=O,O]4VV (4)
−V (3)=0. O]6VV (3)-V
(2)=0. 023VV (2)-V (1,
)=0. It becomes 062V. Here, V (k) is the effective voltage at the quantum level. Based on this value, the number of frames n is set to 12, and the number of frames that become selected at each gradation level is m (8) = 12 m (7) = 11 m (6) = 10 m (5) = 9 m (4 )=8 m(3)=7 m(2)=5 m(]i=0. Here, m(k) is the number of frames in the selected state when the gradation level is 1.

表1に本実施例の駆動方法を用いた場合の各階調レベル
での透過率と従来の駆動方法を用いた場合の各階調レベ
ルでの透過率を階調レベル8を100として示す。
Table 1 shows the transmittance at each gradation level when using the driving method of this embodiment and the transmittance at each gradation level when using the conventional driving method, with gradation level 8 being 100.

表  1 これより明らかなように、従来の駆動方法ては階調レベ
ル8と7ての透過率の差は26.9、ド皆調レベル7と
6の差は234であるのに対し階調レベル2と1での透
過率の差は16、階調レベル3と2の差は42と小さい
ため、階調レベルの小さい部分て階調の差が見分けにく
い。しかし、本実施例の駆動方法では、透過率の差の最
大値は】70、最小値は95とばらつきが少ないため階
調の差が非常に見分けやすくなった。
Table 1 As is clear from this, in the conventional driving method, the difference in transmittance between gradation levels 8 and 7 is 26.9, and the difference between total gradation levels 7 and 6 is 234; The difference in transmittance between levels 2 and 1 is as small as 16, and the difference between gradation levels 3 and 2 is as small as 42, so it is difficult to distinguish between gradations in areas where the gradation levels are small. However, in the driving method of this embodiment, the maximum value of the difference in transmittance was 70, and the minimum value was 95, with little variation, making it very easy to distinguish the difference in gradation.

実施例2 第2図に本実施例で用いた液晶装置の印加電圧の実効値
と透過率の関係を示ず。液晶のライスi・角は260度
、SiOを斜方蒸着することに」二り液晶分子を配向さ
せている。
Example 2 FIG. 2 does not show the relationship between the effective value of the applied voltage and the transmittance of the liquid crystal device used in this example. The rice angle of the liquid crystal is 260 degrees, and the liquid crystal molecules are oriented by obliquely depositing SiO.

この液晶装置をバイアス比]3.1. / 200du
ty、1選択期間70μsecで駆動したところ、コン
トラスト比が最大となる実効電圧はVon=、2.27
0v、Voff=2.1 ] 7vてあった。また、こ
のときlli調表不表示も見易い条件を満たす各階調レ
ベルでの実効電圧値は8階調表示の場合、 V (8)=2.270v (=Von)V (7)=
2.258v V (6)=2.248v V (5)=2.239v V (4)=2.229v V (3)=2.2]4v V (2)=2.188v V (1)=2.J−] 7v (=Voff)てあり
、各階調レベル間での実効電圧の差はV (8) −V
 (7)=0.012VV (7)−V (6)=0.
0IOVV (6) −V (5)=0.009VV 
(5) −V (4)’ =0. 0 ] OVV (
4)−V (3)=0.015VV (3)−V (2
)=0.026VV (2)−V (1)=0.071
Vとなる。この値を基にフレーム数nを13として各階
調レベルでの選択状態となるフレーム数をm(8)=1
3 m (7) =12 m(6)=11 m (5) =10 m(4)=9 m(3)=8 m(2)=6 m(1)=  0 と設定した。
Bias ratio of this liquid crystal device] 3.1. / 200du
When driving with ty, one selection period of 70 μsec, the effective voltage at which the contrast ratio is maximum is Von=, 2.27
0v, Voff=2.1] It was 7v. In addition, at this time, the effective voltage value at each gradation level that satisfies the condition that it is easy to see even when the LLI scale table is not displayed is V (8) = 2.270v (=Von) V (7) =
2.258v V (6) = 2.248v V (5) = 2.239v V (4) = 2.229v V (3) = 2.2]4v V (2) = 2.188v V (1) = 2. J-] 7v (=Voff), and the difference in effective voltage between each gradation level is V (8) -V
(7)=0.012VV (7)-V (6)=0.
0IOVV (6) −V (5)=0.009VV
(5) -V (4)' =0. 0 ] OVV (
4)-V (3)=0.015VV (3)-V (2
)=0.026VV (2)-V (1)=0.071
It becomes V. Based on this value, the number of frames n is set to 13, and the number of frames that become selected at each gradation level is m(8) = 1
The following settings were made: 3 m (7) = 12 m (6) = 11 m (5) = 10 m (4) = 9 m (3) = 8 m (2) = 6 m (1) = 0.

表2に本実施例の駆動方法を用いた場合の各階調レベル
での透過率と従来の駆動方法を用いた場合の各階調レベ
ルでの透過率を階調レベル8を]00として示す。
Table 2 shows the transmittance at each gradation level when the driving method of this embodiment is used and the transmittance at each gradation level when the conventional driving method is used, with gradation level 8 being ]00.

表  2 これより明らかなように、従来の駆動方法てC」階調レ
ベル8と7での透過率の差t、−J、:30.  ] 
、li皆調レベル7と6の差は283であるのに対し階
調レベル2と1での透過率の差は20、階調レベル3と
2の差は29と小さいため、階調レベルの小さい部分で
階調の差が見分(づにくい。しかし、本実施例の駆動方
法では、透過率の差の最大値は18.5、最小値は76
とばらつきが少な1 2 くなり階調の差が非常に見分けやすくなった。
Table 2 As is clear from this table, the difference in transmittance between gradation levels 8 and 7 in the conventional driving method, t, -J, is 30. ]
, li The difference between total gradation levels 7 and 6 is 283, while the difference in transmittance between gradation levels 2 and 1 is 20, and the difference between gradation levels 3 and 2 is 29, which is small. Differences in gradation are difficult to discern in small areas.However, with the driving method of this embodiment, the maximum value of the difference in transmittance is 18.5, and the minimum value is 76.
1 2 , and the variation in gradation became much easier to distinguish.

実施例3 上言己実施例1及び2では8階調表示を行っているが本
発明の効果は3〜6411皆調の場合も同様の効果を有
することが認められている。また、階調レベルが64を
越えるときも同様の効果を有することは言うまでもなく
明らかである。
Embodiment 3 Although in Examples 1 and 2 above, 8-gradation display is performed, it is recognized that the effect of the present invention is similar in the case of 3 to 6411 tone. Furthermore, it is obvious that the same effect can be obtained when the gradation level exceeds 64.

[発明の効果] 以上述べたように本発明は、画素に印加される実効電圧
が表示画素のバ皆調レベルに応した実効電圧となるよう
にnフレーム中(n≧全階調数)、mフレームを選択状
態とする液晶装置の駆動方法において、上記nの値を1
.25X (全階調数)〈nとすることにより見栄えの
よい階調表示が得られるという効果を有する。
[Effects of the Invention] As described above, the present invention provides an effective voltage applied to a pixel during n frames (n≧total number of gradations) so that the effective voltage applied to the pixel becomes an effective voltage corresponding to the total gradation level of the display pixel. In a method for driving a liquid crystal device in which m frames are selected, the value of n is set to 1.
.. By setting 25X (total number of gradations) <n, it is possible to obtain an attractive gradation display.

印加電圧の実効値と透過率の関係を示す図。FIG. 3 is a diagram showing the relationship between the effective value of applied voltage and transmittance.

第3図(a)〜(g)は従来の液晶装置の駆動方法を示
す図。
FIGS. 3(a) to 3(g) are diagrams showing a conventional method for driving a liquid crystal device.

以」ニI”d

Claims (1)

【特許請求の範囲】[Claims] 走査電極を有する基板と信号電極を有する基板間に液晶
層を挟持し、かつ、該走査電極と信号電極の重なる部分
に表示画素を形成する液晶装置の階調表示を行う際に、
該走査電極には順次走査電圧を印加し、また該信号電極
と前記走査電極の交点に存在する表示画素で該信号電極
に印加される信号電圧波形と該走査電極に印加される走
査電圧波形の合成波形の実効電圧が該表示画素の階調レ
ベルに応じた実効電圧となるようにnフレーム中(n≧
全階調数)、mフレームを選択状態とする液晶装置の駆
動方法において、上記nの値を1.25×(全階調数)
<nとすることを特徴とする液晶装置の駆動方法。
When performing gradation display in a liquid crystal device in which a liquid crystal layer is sandwiched between a substrate having a scanning electrode and a substrate having a signal electrode, and display pixels are formed in a portion where the scanning electrode and the signal electrode overlap,
Scanning voltages are sequentially applied to the scanning electrodes, and the signal voltage waveform applied to the signal electrode and the scanning voltage waveform applied to the scanning electrode are changed at display pixels existing at the intersections of the signal electrode and the scanning electrode. During n frames (n≧
In a method of driving a liquid crystal device in which m frames are selected (total number of gradations), the value of n above is set to 1.25 x (total number of gradations).
A method for driving a liquid crystal device, characterized in that <n.
JP14484789A 1989-06-07 1989-06-07 Method for driving liquid crystal device Pending JPH0310216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14484789A JPH0310216A (en) 1989-06-07 1989-06-07 Method for driving liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14484789A JPH0310216A (en) 1989-06-07 1989-06-07 Method for driving liquid crystal device

Publications (1)

Publication Number Publication Date
JPH0310216A true JPH0310216A (en) 1991-01-17

Family

ID=15371805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14484789A Pending JPH0310216A (en) 1989-06-07 1989-06-07 Method for driving liquid crystal device

Country Status (1)

Country Link
JP (1) JPH0310216A (en)

Similar Documents

Publication Publication Date Title
US6229583B1 (en) Liquid crystal display device and method for driving the same
JP4685954B2 (en) Liquid crystal display device having OCB mode and driving method thereof
US6320562B1 (en) Liquid crystal display device
JP2001281634A (en) Method for driving liquid crystal element
KR100366933B1 (en) Liquid crystal display device, and method for driving the same
WO1995034020A1 (en) Method of driving liquid crystal display device, liquid crystal display device, electronic machine, and drive circuit
JP3107980B2 (en) Liquid crystal display
KR920012987A (en) Driving Method of Matrix Liquid Crystal Display
JPH02914A (en) Driving of display device
JP3196998B2 (en) Liquid crystal display
JPH10115819A (en) Matrix type liquid crystal display device and its drive method
JPH08262406A (en) Display device driving method
US7154465B2 (en) Multi-line selection driving method for a super-twisted nematic liquid crystal display having low-power consumption
JPH0310216A (en) Method for driving liquid crystal device
JPH0667626A (en) Liquid crystal driving method
JPS59111622A (en) Liquid-crystal display type picture receiver
JPH04360192A (en) Liquid crystal display device
KR100343381B1 (en) Liquid crystal display
JP2000330093A (en) Matrix type liquid crystal display device
JP3210385B2 (en) Liquid crystal display
JPH03257426A (en) Liquid crystal display device
JPH02310519A (en) Liquid crystal element and driving method thereof
JPH1152917A (en) Liquid crystal driving method
JPH07261149A (en) Liquid crystal device
JPH02130525A (en) Liquid crystal device