JPH03100483A - Light beam scanning device - Google Patents

Light beam scanning device

Info

Publication number
JPH03100483A
JPH03100483A JP1238060A JP23806089A JPH03100483A JP H03100483 A JPH03100483 A JP H03100483A JP 1238060 A JP1238060 A JP 1238060A JP 23806089 A JP23806089 A JP 23806089A JP H03100483 A JPH03100483 A JP H03100483A
Authority
JP
Japan
Prior art keywords
deflector
light
wavelength plate
axis
tracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1238060A
Other languages
Japanese (ja)
Inventor
Miyao Shiina
椎名 宮雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1238060A priority Critical patent/JPH03100483A/en
Publication of JPH03100483A publication Critical patent/JPH03100483A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accomplish capture and tracking between satellites in optical communication by extracting only received light beam by means of a beam splitter and controlling a deflector. CONSTITUTION:A point ahead deflector 1 inputs transmitted beacon light polarized in a Y-axis direction in accordance with a command signal for making the beam turn to a movement predicted position and deflects it in terms of a Y-axis. The light is rotated by 90 deg. by a lambda/2 wavelength plate, deflected in terms of an X-axis to be two-dimensionally deflected and allowed to scan. Then, it is made to pass the beam splitter 2 and guided to a capture and tracking deflector 3. The deflector 3 outputs Y-axis polarized light, which is converted to counterclockwise circularly polarized light by a lambda/4 wavelength plate 4, beam-expanded 6 and transmitted to a target satellite through a pointing mirror 5. The received beacon light is set clockwise circularly polarized light, converted to X-axis polarized light orthogonally crossed with the transmitted beam by the lambda/4 wavelength plate 4, converted to the Y-axis polarized light by the deflector 3 and reflected by the beam splitter 2 to be guided to a photodetector 7. By controlling the deflector 3 according to the deviation of relative angle detected by a detector 7, the target satellite and the direction of the line of sight of an operator are made coincident.

Description

【発明の詳細な説明】 〔概  要〕 宇宙光通信衛星間の捕捉・追尾技術に適用する光ビーム
走査装置に関し、 機械方式に拠らずに光通信での捕捉・追尾を行うことが
できる光ビーム走査装置を実現することを目的とし、 電気・光学式の捕捉・追尾用及びポイント・アヘッド用
偏向器を用い、受信光ビームに基づいて偏向器を制御し
て送信光ビームと受信光ビームの捕捉・追尾を行うと共
にビーム・スプリッタを挟んで両偏向器の偏向軸を直交
させ受信光ビームのみをビーム・スプリッタで抽出する
ように構成する。
[Detailed Description of the Invention] [Summary] Regarding an optical beam scanning device applied to acquisition and tracking technology between space optical communication satellites, the present invention relates to an optical beam scanning device that can perform acquisition and tracking by optical communication without relying on mechanical methods. With the aim of realizing a beam scanning device, we use electrical/optical acquisition/tracking and point-ahead deflectors to control the deflectors based on the received optical beam to separate the transmitted and received optical beams. In addition to capturing and tracking, the deflection axes of both deflectors are orthogonal to each other with a beam splitter in between, and only the received light beam is extracted by the beam splitter.

〔産業上の利用分野〕[Industrial application field]

本発明は光ビーム走査装置に関し、特に宇宙光通信衛星
間の捕捉・追尾技術に適用する光ビーム走査装置に関す
るものである。
The present invention relates to a light beam scanning device, and more particularly to a light beam scanning device applied to acquisition and tracking technology between space optical communication satellites.

光による衛星間或いは深宇宙での大容量通信は、21世
世紀類頃には実現するものと予想されているが、この場
合の捕捉(ポインティング)・追尾(トラッキング)技
術とは、望遠鏡に例えると、光通信の相手である目標衛
星が発する信号光を自己の視野内に捉え且つそれを視野
中心に保持するもので、宇宙空間での光回線形成に不可
欠な技術の一つになっている。
Large-capacity optical communication between satellites or in deep space is expected to be realized around the 21st century, but the pointing and tracking technology in this case can be compared to a telescope. This technology captures the signal light emitted by the target satellite, which is the other party of optical communication, within its field of view and keeps it centered in its field of view, and is one of the essential technologies for forming optical lines in space. .

〔従来の技術と課題〕[Conventional technology and issues]

宇宙光通信実現のマイルストーンとして、第4図に示す
ように、先ず静止衛星(GEO)と低軌道衛星(LEO
)との光通信を考えると、GEOとLEOの地球に対す
る軌道上の速度VG、VLは、各々次の近似式で与えら
れる。
As a milestone for the realization of space optical communications, as shown in Fig.
), the orbital velocities VG and VL of GEO and LEO with respect to the earth are given by the following approximate expressions.

ve=F77ゴ1ゴ1劉コ : GEO■L−f丁7ゴ
711τゴ: LEO 但し、重力定数u =398,603 kl”/s−地
球半径r−6,3781aiである。
ve=F77go1go1 Liuko: GEO ■L-f ding7go711τgo: LEO However, the gravitational constant u = 398,603 kl"/s - Earth's radius r-6,3781ai.

上記の式に基づき、GEO,LEOの軌道に関する値は
おおよそ次表のようになる。
Based on the above formula, the values regarding the orbits of GEO and LEO are approximately as shown in the following table.

表 また、GEOから見たLEOの相対角速度ω。table Also, the relative angular velocity ω of LEO as seen from GEO.

は、両衛星が同じ軌道面にあるとすれば、CO3ω7Δ
t! (r+hc)−(r+ht)CO5(ωL−ωc)Δt
÷[((r+he)”+(r+ht)’2(r+ h 
G) (r+ h t)CO5(a+ L−ωG)ht
) ] I/!で与えられる。尚、最大角速度は、 Max(ω、 ) =0.012(deg/s)。
If both satellites are in the same orbital plane, then CO3ω7Δ
T! (r+hc)-(r+ht)CO5(ωL-ωc)Δt
÷ [((r+he)"+(r+ht)'2(r+h
G) (r+h t)CO5(a+ L-ωG)ht
) ] I/! is given by Note that the maximum angular velocity is Max (ω, ) = 0.012 (deg/s).

ht =1,000 k]I となる。ht = 1,000k]I becomes.

ここで、GEO−LEO間の光の往復時間は約0.25
秒であり、LEOのビーコン光をGEOが受信してLE
Oの方位を求め、その方位に光ビームを向けて制御され
たGEOのビーコン光がLEOに到達するまでには、処
理遅延が全くないとしてもLEOは最大21am移動し
ていることになる。
Here, the round trip time of light between GEO and LEO is approximately 0.25
seconds, GEO receives LEO's beacon light and
By the time the GEO beacon light, which is controlled by determining the direction of O and directing the light beam in that direction, reaches LEO, LEO will have moved a maximum of 21 am even if there is no processing delay.

一方、ビーコン光の回折角θ4は、 θd −2,44Xλ/D(λは使用波長、Dはアンテ
ナ径)で与えられるから、λ−0,8μs、D= 30
cmの回折限界までビーコン光を絞っても、θ−−6.
5 、crradとなり30c+m径の光ビームは40
. OOOkm離れると260+wにまで広がることに
なる。
On the other hand, the diffraction angle θ4 of the beacon light is given by θd −2,44Xλ/D (λ is the wavelength used and D is the antenna diameter), so λ−0.8μs, D=30
Even if the beacon light is narrowed down to the diffraction limit of θ−6.
5, crrad, and the light beam with a diameter of 30c + m is 40
.. If you move OOOkm away, it will expand to 260+w.

この場合、100s+Hの半導体レーザを使用したとす
ると、途中の伝播損失を零としても受信パワーは0.1
3μ−に減少する。
In this case, if a 100s+H semiconductor laser is used, the received power will be 0.1 even if the propagation loss in the middle is zero.
decreases to 3 μ−.

従つて、捕捉・追尾を容易にするためビーム幅を広げる
のは受信パワーの点で限界があるが、光ビームの制御範
囲は、アンテナプームの熱歪み、姿勢揺動等のランダム
誤差を吸収するため0.6度程度まで広げなくてはなら
ない。
Therefore, widening the beam width to facilitate acquisition and tracking has a limit in terms of received power, but the control range of the optical beam can absorb random errors such as thermal distortion of the antenna pool and attitude fluctuation. Therefore, it must be widened to about 0.6 degrees.

宇宙光通信は現段階ではまだ研究途上であるが、従来よ
り、この種の捕捉・追尾技術として機械的走査で光ビー
ムを制御する方式が提案されて来ているが、機械方式で
は、■走査が遅いため高速の捕捉・追尾ができない、■
走査可動部が宇宙環境での長時間の使用に耐え得ない、
■走査反力により衛星本体の姿勢制御への干渉、ひいて
は光ビームの制御に悪影響を及ぼす、等の問題点の存在
が当然予測される。
Space optical communication is still in the research stage at this stage, but methods that control light beams by mechanical scanning have been proposed as this type of acquisition and tracking technology. Because of the slow speed, high-speed capture and tracking is not possible.■
The scanning movable part cannot withstand long-term use in the space environment.
■It is naturally expected that there will be problems such as interference with the attitude control of the satellite body due to the scanning reaction force, and even adverse effects on the control of the light beam.

従って、本発明は、機械方式に拠らずに光通信での捕捉
・追尾を行うことができる光ビーム走査装置を実現する
ことを目的とする。
Therefore, an object of the present invention is to realize a light beam scanning device that can capture and track by optical communication without relying on a mechanical method.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明に係る光ビーム走査
装置では、第1図に原理的に示すように、偏向軸が互い
に直交する2つの電気・光学偏向器をλ/2波長板を挟
んで光路上に縦続配置し移動予測位置にビームを向ける
ための指令信号を受けるポイント・アヘッド用偏向器1
と、該ポイント・アヘッド用偏向器1から出力される送
信ビーコン光をそのまま透過させるビーム・スプリッタ
2と、該ビーム・スゲリッタ2に関して該ポイント・ア
ヘッド用偏向器1と対称に配列された電気・光学偏向器
及びλ/2波長板から成り、該ビーム・スプリッタ2を
透過した送信ビーコン光を互いに直交した方向に偏向さ
せる捕捉・追尾用偏向器3と、該捕捉・追尾用偏向器3
から出力される送信ビーコン光を円偏光に変換するλ/
4波長板4と、該λ/4.波長板4の出力光を送信する
と共に該λ/4波長Fi4の出力光の円偏光とは逆旋回
方向に予め設定された円偏光の受信ビーコン光を反射し
て該λ/4波長板4に送るポインティング・ミラー5と
、該ポインティング・ミラー5とλ/4波長板4との間
に設けたビーム・エクスパンダ6と、該ビーム・スプリ
ッタ2の反射光を検出して該捕捉・追尾用偏向器3を制
御する光検出器7とを備え、該ビーム・スプリッタ2が
、該捕捉・追尾用偏向器3から出力される該受信ビーコ
ン光のみを反射させるものである。
In order to achieve the above object, in the optical beam scanning device according to the present invention, as shown in principle in FIG. A point ahead deflector 1 is arranged in series on the optical path and receives a command signal for directing the beam to a predicted moving position.
, a beam splitter 2 that transmits the transmitted beacon light outputted from the point-ahead deflector 1 as it is, and an electrical/optical device arranged symmetrically with the point-ahead deflector 1 with respect to the beam splitter 2. an acquisition/tracking deflector 3 consisting of a deflector and a λ/2 wavelength plate, which deflects the transmitted beacon light transmitted through the beam splitter 2 in mutually orthogonal directions;
λ/ which converts the transmitted beacon light output from the
4 wavelength plate 4 and the λ/4. While transmitting the output light of the wavelength plate 4, the receiving beacon light having a circularly polarized light set in advance in a rotation direction opposite to the circularly polarized light of the output light of the λ/4 wavelength Fi4 is reflected to the λ/4 wavelength plate 4. A pointing mirror 5 to send, a beam expander 6 provided between the pointing mirror 5 and the λ/4 wavelength plate 4, and a beam splitter 2 that detects the reflected light and deflects it for capturing and tracking. The beam splitter 2 reflects only the received beacon light output from the capture/tracking deflector 3.

〔作   用〕[For production]

冬盪底翌皇立数皿 第1図において、光学系の座標を紙面に垂直方向をX軸
、紙面内をY軸に設定する。ポイント・アヘッド用偏向
器1及び捕捉・追尾偏向器3は、それぞれX偏向器、λ
/2波長板、及びX偏向器を基本構成要素としており、
第2図に示すように、X偏向器はY軸直線偏光の入射光
ビームをY軸方向にθ、偏向させ、このX偏向器から出
力される直線偏光光の偏光方位がλ/2波長板により9
0度何回転せられ、X偏向器と同じ偏向軸となるため、
X偏向器によりθ8偏向させるようになっている。
In Figure 1, the coordinates of the optical system are set such that the X-axis is perpendicular to the plane of the paper and the Y-axis is within the plane of the paper. The point ahead deflector 1 and the acquisition/tracking deflector 3 are an X deflector and a λ
The basic components are a /2 wavelength plate and an X deflector.
As shown in Figure 2, the X deflector deflects the incident light beam of Y-axis linearly polarized light by θ in the Y-axis direction, and the polarization direction of the linearly polarized light output from this X deflector is set to a λ/2 wavelength plate. By 9
How many times is it rotated by 0 degrees so that it becomes the same deflection axis as the X deflector?
The beam is deflected by θ8 using an X deflector.

ビームスプリッタ2は、Y軸偏光光のみを反射しX軸偏
光光は透過させて送受光を分離するためのものが選択さ
れている。
The beam splitter 2 is selected to reflect only the Y-axis polarized light and transmit the X-axis polarized light, thereby separating transmitted and received light.

また、ビーム・エクスパンダ6は送受光のビーム径を変
換するためのもので、焦点距離の異なる二つの放物面鏡
を対向させて配列しており、ビーム径の拡大・縮小率は
同鏡の焦点距離の比で決まるものである。上述のように
、ビームの広がり角はアンテア径に比例するから、鋭い
指向性を得るために、送光ビーム径が拡大される方向に
配列されている。
In addition, the beam expander 6 is used to convert the beam diameter of transmitted and received light, and consists of two parabolic mirrors with different focal lengths facing each other, and the beam diameter expansion/reduction ratio is the same. It is determined by the ratio of the focal lengths of As mentioned above, since the spread angle of the beam is proportional to the antenna diameter, in order to obtain sharp directivity, the beams are arranged in a direction in which the transmitted beam diameter is expanded.

ポインティング・ミラー5は、偏向器1.3では追従し
切れない、大きなオフセットをカバーして行くもので、
この部分だけは機械的に走査する必要がある。
The pointing mirror 5 covers large offsets that cannot be tracked by the deflector 1.3.
Only this part needs to be scanned mechanically.

髪作艮皿 まず、送信ビーコン光は、光源、コリメータレンズ、偏
光子(図示せず)を経てY軸方向に直線偏光されている
ものとする。
First, it is assumed that the transmitted beacon light is linearly polarized in the Y-axis direction through a light source, a collimator lens, and a polarizer (not shown).

この送信ビーコン光はポイント・アヘッド偏向器1に入
力され、移動予測位置にビームを向けるための指令信号
に応じてまずX偏向器でY軸偏向され、そしてλ/2波
長板で90度何回転れてX偏向器でX軸偏向を受けて二
次元的に偏向走査される。
This transmitted beacon light is input to the point ahead deflector 1, first deflected in the Y axis by the X deflector in response to a command signal to direct the beam to the predicted movement position, and then rotated by 90 degrees by the λ/2 wavelength plate. The beam is then subjected to an X-axis deflection by an X deflector, and is deflected and scanned two-dimensionally.

ビーム・スプリッタ2を通過して捕捉・追尾用偏向器3
のX偏向器に導かれた送信ビーコン光は、偏光方位とX
偏向器の固有軸とが一致しているからX軸方向に偏向さ
れ、更にλ/2波長板を経由することによりビームの偏
光方位はX偏向器の固有軸と一致することになるからビ
ームはY軸方向にも偏向されることになる。
Passing through the beam splitter 2 and capturing/tracking deflector 3
The transmitted beacon light guided to the X deflector of
Since the eigenaxis of the deflector coincides with the eigenaxis of the beam, it is deflected in the X-axis direction, and by passing through the λ/2 wavelength plate, the polarization direction of the beam coincides with the eigenaxis of the X-deflector, so the beam is It will also be deflected in the Y-axis direction.

従って、捕捉・追尾用偏向器3からの出力ビームはY軸
偏光光であるから、λ/4波長板4の進相軸との相対角
θが45度となるように同波長板を設定しておけば、同
出力ビームは、公知のように左旋回の円偏光に変換され
ることになる。
Therefore, since the output beam from the acquisition/tracking deflector 3 is Y-axis polarized light, the wavelength plate is set so that the relative angle θ with the fast axis of the λ/4 wavelength plate 4 is 45 degrees. In this case, the output beam is converted into left-handed circularly polarized light, as is known in the art.

そして、λ/4波長板4の出力光はビーム・エキスパン
ダ6で拡大され、ポインティング・ミラー5を経て目標
衛星に向けてビーコン光を任意の方位に送出する。
Then, the output light from the λ/4 wavelength plate 4 is expanded by a beam expander 6, and the beacon light is sent out in an arbitrary direction toward the target satellite via the pointing mirror 5.

一方、受信ビーコン光は、送信ビーコン光とは逆の右旋
回円偏光となるように設定される。これは、二つの衛星
間で、ポイント・アヘッド偏向器1に入射する直線偏光
ビーコン光の偏光方位が直交するように予め決めておけ
ばよく、これは例えば地上からのテレメトリ・コマンド
信号により、偏光子を操作すれば容易に実現できる。
On the other hand, the received beacon light is set to be right-handed circularly polarized light, which is opposite to that of the transmitted beacon light. This can be done by predetermining between the two satellites so that the polarization directions of the linearly polarized beacon lights incident on the point-ahead deflector 1 are orthogonal. This can be easily achieved by manipulating the child.

従って、受信ビ〒コン光はλ/4波長板4で送信ビーコ
ン光と直交するX軸偏光光に変換され、捕捉・追尾偏向
器3のY軸偏向器の固有軸とは90度を成すことになる
から、受信ビーコン光は偏向されずにそのまま通過し、
λ/2波長板でY軸偏光光に変換された後、X軸偏向器
に入るが、ここでもその固有軸とは直交するから偏向さ
れない。
Therefore, the received beacon light is converted into X-axis polarized light orthogonal to the transmitted beacon light by the λ/4 wavelength plate 4, and the eigenaxis of the Y-axis deflector of the acquisition/tracking deflector 3 forms 90 degrees. Therefore, the received beacon light passes through without being deflected,
After being converted into Y-axis polarized light by the λ/2 wavelength plate, it enters the X-axis deflector, but it is not deflected here as it is perpendicular to the eigenaxis.

そして、このY軸偏光光のみを反射するビーム・スプリ
ッタ2により、受信ビーコン光のみが分離され光検出器
7に導かれることになる。
The beam splitter 2 that reflects only this Y-axis polarized light separates only the received beacon light and guides it to the photodetector 7.

そして、目標衛星と自己の視線方向を一敗させるために
、自己の光検出器6で検出した目標衛星のビーコン光と
自己の受信光学系の視線との相対角度偏差を、目標衛星
の送信光学系の視線方向のずれとみなし、そしてその量
だけ自己のビーコン光を捕捉・追尾用偏向器3を制御し
て偏向させ目標衛星に伝達して目標衛星の視線を修正さ
せる。
In order to completely change the line-of-sight direction between the target satellite and itself, the transmitting optical system of the target satellite calculates the relative angular deviation between the beacon light of the target satellite detected by its own photodetector 6 and the line-of-sight of its own receiving optical system. It is regarded as a deviation in the line of sight direction of the system, and the own beacon light is deflected by that amount by controlling the capture/tracking deflector 3 and transmitted to the target satellite, thereby correcting the line of sight of the target satellite.

即ち、双方向光通信の光ビーム制御を考えたとき、各衛
星の光検出信号は、一方の衛星のビーコン光が受は持つ
ことになる。この為、捕捉・追尾用偏向器3は、自己の
ビーコン光のみに作用し、受信ビーコン光には作用しな
いようにボンイト・アヘッド用偏向器1とはX偏向器と
λ/2波長板とY偏向器の配列が逆になっているおり、
送信ビーコン光は、ボンイト・アヘッド用偏向器1で9
0度回転しX偏光光となるので、ビーム・スプリッタ2
では透過してしまい、光検出器7へはガイドされないの
で送受信のアイソレーシヨンが高められることになる。
That is, when considering optical beam control in two-way optical communication, the light detection signal of each satellite is received by the beacon light of one satellite. For this reason, the capture/tracking deflector 3 acts only on its own beacon light and does not act on the received beacon light. The deflector arrangement is reversed,
The transmitted beacon light is transmitted by deflector 1 for Bonito Ahead.
Since it rotates by 0 degrees and becomes X-polarized light, beam splitter 2
Since the light passes through the light and is not guided to the photodetector 7, isolation between transmission and reception is increased.

このようにして機械的可動部を減らし、加えて送受光の
アイソレーションを高めた光ビーム走査を行うことがで
きる。
In this way, it is possible to perform light beam scanning with fewer mechanically movable parts and with increased isolation of light transmission and reception.

〔実 施 例〕〔Example〕

第3図は、本発明に係る光走査ビーム装置の偏向器制御
系統の一実施例を示したものであり、第1図に示したポ
イント・アヘッド偏向器1は指令値を受けてVCOII
と増幅器12と偏向器1の偏向センサ13とにより制御
されるようになっている。尚、この指令値は、衛星間の
距離による光の伝播遅延を補償して光ビームを所望の精
度で目標衛星に指向させるために移動方向の前方の予測
位置にビームを向けなければならなず、この移動前方の
予測位置に見合った予測角を指示するもので、地上から
又は衛星のオンボード指示により与えられる。
FIG. 3 shows an embodiment of the deflector control system of the optical scanning beam device according to the present invention, in which the point-ahead deflector 1 shown in FIG.
It is controlled by the amplifier 12 and the deflection sensor 13 of the deflector 1. Note that this command value must be used to direct the beam to the predicted position ahead in the direction of movement in order to compensate for the propagation delay of light due to the distance between the satellites and direct the light beam to the target satellite with the desired accuracy. , which indicates a predicted angle commensurate with the predicted position ahead of the movement, and is given from the ground or by onboard instructions from the satellite.

また、第1図に示した光検出器7は、ビーム・スプリッ
タ2からの受信光ビームの視線角θ7.?(及び受信側
の視線角θ、。、)を受けるCCDセンサ71と4象限
センサ72とモード選択器73とで構成されており、各
センサ71.72の出力信号はモード選択スイッチ20
に送られている。
The photodetector 7 shown in FIG. 1 also has a line-of-sight angle θ7. ? It is composed of a CCD sensor 71, a four-quadrant sensor 72, and a mode selector 73, which receive the line of sight angle θ, .
is being sent to.

このモード選択スイッチ20のスイッチ位置は最初は図
示の初期捕捉位置に在り、宇宙空間での光回線形成の初
期段階において狭い視野の中に初めて目標衛星を捕捉す
るためのモードであり、地上又はオンボードからの相手
衛星の視線を予測した3次元座標軸情報から導出した指
令値をポインティング・ミラー5からエンコーダ21を
介して受けたフィードバック信号との偏差をリミッタ2
2を経てVCO14と増幅器15とにより捕捉・追尾用
偏向器3に与えられるようになっている。
The switch position of the mode selection switch 20 is initially in the initial acquisition position shown in the figure, which is the mode for capturing the target satellite for the first time within a narrow field of view at the initial stage of optical line formation in space. The limiter 2 calculates the deviation between the command value derived from the three-dimensional coordinate axis information that predicted the line of sight of the partner satellite from the board and the feedback signal received from the pointing mirror 5 via the encoder 21.
2, the signal is applied to the acquisition/tracking deflector 3 by a VCO 14 and an amplifier 15.

尚、リミッタ22の出力には、この偏向器3の出力をセ
ンサ16で検出して一定ゲイン17を与えたものが加え
られるようになっている。また、このループでは指令値
が大きいため、主としてポインティング・ミラーしか動
作しない。このポインティング・ミラー5は、LEOが
極軌道衛星の場合には、±180度の走査が必要となり
、大きな偏向角の取れない電気・光学偏向器では置き換
えができないため用いられている。また、偏向器は、例
えば音響光学素子では、現在2度以上の偏向が可能であ
り所定の偏向角へのアクセス時間も10μs程度であり
、0.6°程度の高速のビーム走査には十分使用できる
Incidentally, the output of the deflector 3 detected by a sensor 16 and given a constant gain 17 is added to the output of the limiter 22. Furthermore, since the command value is large in this loop, only the pointing mirror operates mainly. This pointing mirror 5 is used when the LEO is a polar orbit satellite because it requires scanning of ±180 degrees and cannot be replaced with an electric/optical deflector that cannot take a large deflection angle. In addition, deflectors, such as acousto-optic devices, are currently capable of deflection of 2 degrees or more, and the access time to a predetermined deflection angle is about 10 μs, which is sufficient for high-speed beam scanning of about 0.6 degrees. can.

Claims (1)

【特許請求の範囲】 偏向軸が互いに直交する2つの電気・光学偏向器をλ/
2波長板を挟んで光路上に縦続配置し移動予測位置にビ
ームを向けるための指令信号を受けるポイント・アヘッ
ド用偏向器(1)と、該ポイント・アヘッド用偏向器(
1)から出力される送信ビーコン光をそのまま透過させ
るビーム・スプリッタ(2)と、 該ビーム・スプリッタ(2)に関して該ポイント・アヘ
ッド用偏向器(1)と対称に配列された電気・光学偏向
器及びλ/2波長板から成り、該ビーム・スプリッタ(
2)を透過した送信ビーコン光を互いに直交した方向に
偏向させる捕捉・追尾用偏向器(3)と、 該捕捉・追尾用偏向器(3)から出力される送信ビーコ
ン光を円偏光に変換するλ/4波長板(4)と、該λ/
4波長板(4)の出力光を送信すると共に該λ/4波長
板(4)の出力光の円偏光とは逆旋回方向に予め設定さ
れた円偏光の受信ビーコン光を反射して該λ/4波長板
(4)に送るポインティング・ミラー(5)と、 該ポインティング・ミラー(5)とλ/4波長板(4)
との間に設けたビーム・エクスパンダ(6)と、該ビー
ム・スプリッタ(2)の反射光を検出して該捕捉・追尾
用偏向器(3)を制御する光検出器(7)と、を備え、
該ビーム・スプリッタ(2)が、該捕捉・追尾用偏向器
(3)から出力される該受信ビーコン光のみを反射させ
るものであることを特徴とした光ビーム走査装置。
[Claims] Two electrical/optical deflectors whose deflection axes are orthogonal to each other are
A point-ahead deflector (1) that is arranged in series on an optical path with a two-wavelength plate in between and receives a command signal for directing a beam to a predicted moving position;
a beam splitter (2) that transmits the transmitted beacon light output from 1) as it is; and an electric/optical deflector arranged symmetrically with the point-ahead deflector (1) with respect to the beam splitter (2). and a λ/2 wavelength plate, and the beam splitter (
an acquisition/tracking deflector (3) that deflects the transmitted beacon light transmitted through the acquisition/tracking deflector (3) in mutually orthogonal directions; and a capture/tracking deflector (3) that converts the transmitted beacon light output from the acquisition/tracking deflector (3) into circularly polarized light. λ/4 wavelength plate (4) and the λ/4 wavelength plate (4);
It transmits the output light of the 4-wavelength plate (4), and also reflects the received beacon light, which is circularly polarized light set in advance in the direction of rotation opposite to the circularly polarized light of the output light of the λ/4-wavelength plate (4). a pointing mirror (5) feeding the /4 wavelength plate (4); and the pointing mirror (5) and the λ/4 wavelength plate (4).
a beam expander (6) provided between the beam expander (6) and a photodetector (7) that detects the reflected light of the beam splitter (2) and controls the capture/tracking deflector (3); Equipped with
An optical beam scanning device characterized in that the beam splitter (2) reflects only the received beacon light output from the acquisition/tracking deflector (3).
JP1238060A 1989-09-13 1989-09-13 Light beam scanning device Pending JPH03100483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1238060A JPH03100483A (en) 1989-09-13 1989-09-13 Light beam scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1238060A JPH03100483A (en) 1989-09-13 1989-09-13 Light beam scanning device

Publications (1)

Publication Number Publication Date
JPH03100483A true JPH03100483A (en) 1991-04-25

Family

ID=17024560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1238060A Pending JPH03100483A (en) 1989-09-13 1989-09-13 Light beam scanning device

Country Status (1)

Country Link
JP (1) JPH03100483A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214901A (en) * 2002-12-27 2004-07-29 Canon Inc Optical transmitter-receiver
PL423300A1 (en) * 2017-10-30 2019-05-06 Univ Warszawski Receiver for receiving information transmitted by means of very weak pulses of light, system that contains such a receiver, designed to transmit information, and method for transmitting information by means of very weak pulses of light
WO2023073834A1 (en) * 2021-10-27 2023-05-04 日本電信電話株式会社 Mobile body, communication system, and control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214901A (en) * 2002-12-27 2004-07-29 Canon Inc Optical transmitter-receiver
JP4574111B2 (en) * 2002-12-27 2010-11-04 キヤノン株式会社 Optical transmission / reception device, optical space transmission device, and optical communication system
PL423300A1 (en) * 2017-10-30 2019-05-06 Univ Warszawski Receiver for receiving information transmitted by means of very weak pulses of light, system that contains such a receiver, designed to transmit information, and method for transmitting information by means of very weak pulses of light
WO2023073834A1 (en) * 2021-10-27 2023-05-04 日本電信電話株式会社 Mobile body, communication system, and control method

Similar Documents

Publication Publication Date Title
JP4729104B2 (en) Acquisition, indication, and tracking architecture for laser communications
US5062150A (en) Fiber-based free-space optical system
US8160452B1 (en) Rapid acquisition, pointing and tracking optical system for free space optical communications
EP0911995B1 (en) Optical space communication apparatus
US5627669A (en) Optical transmitter-receiver
US20040151504A1 (en) Multi-beam laser terminal and method
JP2022517505A (en) Two-mirror tracking system for free-space optical communication
EP0977070B1 (en) Telescope with shared optical path for an optical communication terminal
JP2001251248A (en) Communications equipment and method using optical beam from satellite
CN112713935B (en) Free space optical communication scanning tracking method, system, device and medium
US6968133B2 (en) Optical free-space communication apparatus
CN108923859B (en) Coherent tracking device and method based on electro-optic deflection
US11916593B2 (en) Point ahead offset angle for free space optical nodes
JP4581111B2 (en) Optical space communication device
WO2004099849A1 (en) Optical unit and system for steering a light beam
US5991062A (en) Method and device for obtaining error signals for spatial beam regulation of an optical coherent receiver
JPH03100483A (en) Light beam scanning device
JP5599365B2 (en) Acquisition and tracking device
US6982678B2 (en) Apparatus and method using wavefront phase measurements to determine geometrical relationships
EP1362385B1 (en) Scanning antenna systems
CN113904721B (en) Microwave-assisted wireless optical link acquisition tracking alignment system and method
JP4262407B2 (en) Method and apparatus for connecting satellites
JPH05133716A (en) Bi-directional spatial optical communication device
WO1994017566A1 (en) Radar apparatus
JPH04110926A (en) Light beam scanner