JPH0297679A - Device for forming deposited film - Google Patents

Device for forming deposited film

Info

Publication number
JPH0297679A
JPH0297679A JP24630688A JP24630688A JPH0297679A JP H0297679 A JPH0297679 A JP H0297679A JP 24630688 A JP24630688 A JP 24630688A JP 24630688 A JP24630688 A JP 24630688A JP H0297679 A JPH0297679 A JP H0297679A
Authority
JP
Japan
Prior art keywords
chamber
transfer chamber
deposited film
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24630688A
Other languages
Japanese (ja)
Inventor
Toshihito Yoshino
豪人 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24630688A priority Critical patent/JPH0297679A/en
Publication of JPH0297679A publication Critical patent/JPH0297679A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably produce a high quality film by installing a transfer chamber for moving a substrate on which a deposited film is formed between plural chambers and by fitting a means for introducing gaseous ClF3 to the transfer chamber. CONSTITUTION:In a device for forming a deposited film, a series of stages for forming a deposited film on a substrate 204 is carried out in plural chambers. The substrate 204 is moved between the plural chambers with the movable transfer chamber 201. An introducing pipe 206 as a means of introducing gas is fitted to the chamber 201 and gaseous ClF3 is introduced from the pipe 206 to remove remaining material such as a film, powder, remaining in the chamber 201 by etching. A high quality film can stably be produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は堆積膜を形成する為の堆積膜形成装置に複数の
室を備え、該複数の室間での基体及び必要に応じて該基
体を支持する支持具の移動を行なう為の移動可能な搬送
室を備えた量産型の装置に係わり、前記搬送室を効果的
にクリーニングできる堆積膜形成装置に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a deposited film forming apparatus for forming a deposited film, which includes a plurality of chambers, and a substrate between the plurality of chambers and, if necessary, a substrate. The present invention relates to a mass-produced device having a movable transfer chamber for moving a support for supporting a device, and relates to a deposited film forming device that can effectively clean the transfer chamber.

[従来の技術] 固体撮像装置、像形成分野における電子写真用像形成部
材や原稿読取装置あるいは太陽電池等における光電変換
層を形成する堆積膜としては、高感度でS/N比(光電
流[Ipl/暗電流[1dl )が高く、照射する電磁
波のスペクトル特性にマツチングした吸収スペクトルを
有する事、人体に対して無害である事等の特性が要求さ
れている。
[Prior Art] As a deposited film forming a photoelectric conversion layer in a solid-state imaging device, an electrophotographic image forming member in the image forming field, a document reading device, or a solar cell, it has a high sensitivity and a low S/N ratio (photocurrent [ It is required to have a high Ipl/dark current [1 dl], an absorption spectrum that matches the spectral characteristics of the electromagnetic waves to be irradiated, and be harmless to the human body.

このような光電変換性をもつ堆積膜を構成する材料とし
ては、例えばアモルファスシリコン(以降rA−3iJ
と表記する。) セレン(Se)、ctis、BN等が
挙げられる。そして、このような堆積膜の形成は例えば
真空蒸着法、スパッタリング法、気相化学法等を用いて
減圧下で行なわれてきた。
As a material constituting such a deposited film having photoelectric conversion properties, for example, amorphous silicon (hereinafter referred to as rA-3iJ) is used.
It is written as. ) Selenium (Se), ctis, BN, etc. can be mentioned. The formation of such a deposited film has been carried out under reduced pressure using, for example, a vacuum evaporation method, a sputtering method, a vapor phase chemical method, or the like.

このような堆積膜の形成装置としては、堆積膜形成に要
する全工程を工程毎に分割し例えば基体の投入、基体の
加熱、堆積膜形成、冷却の4工程に分割し、各々の工程
を4つの異なった室で実施し、又、各々の室間での基体
の移動を移動可能な搬送室を用いて行なう堆積膜形成装
置が提案されている。
Such a deposited film forming apparatus divides the entire process required for deposited film formation into four steps, for example, loading a substrate, heating the substrate, forming a deposited film, and cooling, and each step is performed in four steps. A deposited film forming apparatus has been proposed in which the deposition is performed in two different chambers, and a movable transfer chamber is used to move the substrate between the chambers.

第2図は、前記−4室すなわち、投入室、加熱室、堆積
室、冷却室並びに搬送室を備えた堆積膜形成装置の一例
を示す模式的構成図である。
FIG. 2 is a schematic configuration diagram showing an example of a deposited film forming apparatus including the -4 chambers, that is, an input chamber, a heating chamber, a deposition chamber, a cooling chamber, and a transfer chamber.

第2図において、101,111,121゜131.1
41は各々投入室、加熱室、堆積室。
In Figure 2, 101, 111, 121° 131.1
41 are a charging chamber, a heating chamber, and a deposition chamber, respectively.

冷却室、I2送室であり、各々不図示の真空ポンプを備
えている。102,112,122゜132.142は
各々の室と搬送室141が連結され、堆積膜形成用の基
体が出し入れされる際に開閉し、各室での処理作業が行
なわれている時には対応各室内を真空状態に保持するこ
とを可能にする扉である(以降ゲート・バルブと表記す
る)。143は搬送室141と各室との連結。
They are a cooling chamber and an I2 sending chamber, each of which is equipped with a vacuum pump (not shown). 102, 112, 122, 132, and 142 are connected to each chamber and the transfer chamber 141, and are opened and closed when substrates for deposited film formation are taken in and out. This is a door that makes it possible to maintain a vacuum inside the room (hereinafter referred to as a gate valve). 143 is a connection between the transfer chamber 141 and each chamber.

切り離しをする為の可動部分を持つ搬送室昇降機であり
、内部に支持具104.吊り具145を備えている。1
44は搬送室141を各々の室に連結可能となる位置迄
移動する為のレールである。
It is a transfer chamber elevator that has a movable part for separating, and has a support 104 inside. A hanging tool 145 is provided. 1
44 is a rail for moving the transfer chamber 141 to a position where it can be connected to each chamber.

又、103は堆積膜形成用の基体や基体支持具104を
投入室に設置する為のゲート・バルブ、133は堆積膜
の形成された基体や基体支持具104を冷却室131か
ら取り出す為のゲート・バルブである。
Further, 103 is a gate valve for installing the substrate for forming the deposited film and the substrate support 104 in the input chamber, and 133 is a gate for taking out the substrate on which the deposited film is formed and the substrate support 104 from the cooling chamber 131.・It is a valve.

第2図に示す装置を用いて、堆積膜を形成する方法の概
略を述べる。
An outline of a method for forming a deposited film using the apparatus shown in FIG. 2 will be described.

まず、投入室101を大気圧造リークし、ゲート・バル
ブ103を開け、予め所望の表面処理及び洗浄の行なわ
れた堆積膜形成用の基体がセットされた支持具104を
投入室101内に設置する。基体と支持具が設置された
後、不図示の真空ポンプにより投入室101内を所望の
圧力まで減圧にする。投入室101内が所望の圧力とな
った後、予め不図示の真空ポンプにより内部を減圧状態
とされた搬送室141をレール144及び昇降機143
により移動し、投入室101に連結する。投入室101
と搬送室141が連結されたならば、ゲート・バルブ1
02及び142を開き、支持具104を吊り具145に
より搬送室141内へ移動する。基体と支持具104の
搬送室内への移動が完了したならばゲート・バルブ10
2゜142を閉じ、昇降機143により投入室101と
搬送室141を切り離す。
First, the input chamber 101 is leaked to atmospheric pressure, the gate valve 103 is opened, and the support 104 on which the substrate for forming the deposited film, which has been previously subjected to the desired surface treatment and cleaning, is set is installed in the input chamber 101. do. After the base and the support are installed, the inside of the charging chamber 101 is reduced to a desired pressure by a vacuum pump (not shown). After the inside of the loading chamber 101 reaches the desired pressure, the transfer chamber 141, whose inside has been reduced in pressure by a vacuum pump (not shown), is moved to the rail 144 and the elevator 143.
, and connects to the charging chamber 101 . Loading room 101
If the transfer chamber 141 is connected, the gate valve 1
02 and 142 are opened, and the support tool 104 is moved into the transfer chamber 141 using the hanging tool 145. When the movement of the substrate and support 104 into the transfer chamber is completed, the gate valve 10
2° 142 is closed, and the loading chamber 101 and the transfer chamber 141 are separated by the elevator 143.

次に、搬送室141はレール144により、予め内部を
減圧状態にしである加熱室111に連結可能な位置迄移
動し、昇降機143により加熱室と連結される。連結の
後、ゲート・バルブ112.142を開き基体と支持具
104を搬送室141内から加熱室111内へ移動する
。基体と支持具104の移動が完了したならば、ゲート
・バルブ112.142を閉じ、昇降機143により加
熱室111、搬送室141を切り離す。
Next, the transfer chamber 141 is moved by the rails 144 to a position where it can be connected to the heating chamber 111 whose interior has been previously reduced in pressure, and connected to the heating chamber by the elevator 143. After the connection, the gate valves 112 and 142 are opened and the substrate and support 104 are moved from the transfer chamber 141 to the heating chamber 111. When the movement of the substrate and the support 104 is completed, the gate valves 112 and 142 are closed, and the heating chamber 111 and the transfer chamber 141 are separated by the elevator 143.

加熱室111内に設置された基体は不図示の例えばヒー
ター等の加熱手段により所定の温度迄加熱される。
The substrate placed in the heating chamber 111 is heated to a predetermined temperature by a heating means such as a heater (not shown).

以下、同様に加熱を終えた基体と支持具104は、搬送
室141を介して堆積室121へ、更に所望の堆積膜形
成を終えた後、冷却室131へと移動される。
Thereafter, the substrate and support 104 that have been heated in the same manner are moved to the deposition chamber 121 via the transfer chamber 141, and further to the cooling chamber 131 after forming the desired deposited film.

最後に冷却の完了した基体と支持具104は冷却室13
1を大気圧造リークし、ゲート・バルブ133を開けて
冷却室131より取り出される。
Finally, the cooled base and support 104 are placed in the cooling chamber 13.
1 is leaked to atmospheric pressure, and the gate valve 133 is opened to take it out from the cooling chamber 131.

以上のようにして基体上に成膜がなされる。しかし、こ
の堆積膜形成装置においても、以下の様な問題点が残存
している。
A film is formed on the substrate as described above. However, even in this deposited film forming apparatus, the following problems remain.

すなわち、堆積室121において堆積膜の形成を終えた
基体と支持具104は搬送室141を介して冷却室13
1へ移動される訳であるが、移動中に搬送室141内に
ある基体と支持具104の一部から堆積膜の膜剥れが生
じる事が少なからず有り、剥れた膜は搬送室下部に残留
し、ゲート・バルブ142の真空シール面に付着して真
空シール不良を起こし、連続的に堆積膜の形成を行なう
場合に堆積室に大気を持ち込む結果となり、得られた膜
の特性及び品質の低下を招くばかりでなく、剥れた膜が
基体に付着し、堆積膜にピンホール等の欠陥を生む要因
となるという問題点があった。
That is, the substrate and support 104 on which the deposited film has been formed in the deposition chamber 121 are transferred to the cooling chamber 13 via the transfer chamber 141.
However, during the movement, the deposited film often peels off from part of the substrate and support 104 in the transfer chamber 141, and the peeled film is removed from the lower part of the transfer chamber. It remains on the vacuum seal surface of the gate valve 142, causing a vacuum seal failure, and when continuously forming a deposited film, results in atmospheric air being brought into the deposition chamber, impairing the properties and quality of the resulting film. There is a problem in that not only does this lead to a decrease in the quality of the film, but also the peeled film adheres to the substrate, causing defects such as pinholes in the deposited film.

現状では上記の問題点による成膜への悪影響を避ける為
に堆積膜形成を数サイクル繰り返す度に堆積膜形成装置
の稼動を停止し、搬送室内に残存する粉体や膜体等の残
存物質を除去する清掃作業を行なっている。その為に、
堆積膜形成装置全体の実質的な稼動効率の低下を招いて
いた。
Currently, in order to avoid the adverse effects on film formation due to the above-mentioned problems, the operation of the deposited film forming apparatus is stopped every few cycles of deposited film formation, and residual substances such as powder and film bodies remaining in the transfer chamber are removed. Cleaning work is underway to remove it. For that reason,
This resulted in a substantial decrease in the operating efficiency of the entire deposited film forming apparatus.

又、搬送室内に残存する粉体や膜体等の残存物質を除去
する清掃方法の一つとして、例えばCF4.NF、等の
エツチング・ガスを搬送室内に導入し1、残存物質を還
元し気体状態にして除去する方法が挙げられる。しかし
、前記のエツチング・ガスすなわちCF4.NF3等を
用いた場合に於いては、外部から熱、プラズマ、光等の
エネルギーの供給なしでは前記残存物質を気体状態へ還
元することができない。従って、CF4NF3等のエツ
チング・ガスで前記残存物質を除去する為には、該エツ
チング・ガスへのエネルギー供給する必要があるのとそ
の設備が多大となることから、CF4 、NF3等のエ
ツチング・ガスを用いた前記残存物質の除去は実用には
あまり適していない。
In addition, as one of the cleaning methods for removing residual substances such as powder and film remaining in the transfer chamber, for example, CF4. An example of this method is to introduce an etching gas such as NF into the transfer chamber 1 to reduce the remaining material and convert it into a gaseous state for removal. However, the etching gas, ie CF4. When NF3 or the like is used, the residual substance cannot be reduced to a gaseous state without external supply of energy such as heat, plasma, or light. Therefore, in order to remove the residual substances with an etching gas such as CF4NF3, it is necessary to supply energy to the etching gas and the equipment required is large. Removal of the residual substances using the method is not very suitable for practical use.

更に、搬送室を2室設け、1室を膜堆積前の基体と基体
支持具との稼動専用、残りの一室を膜堆積後の基体と支
持具との移動専用として機能分離の構成とする事により
、剥れ落ちた膜が膜堆積前の基体に付着する事を防ぐ方
法が提案されている。しかし、この方法においても膜堆
積後の基体と支持具移動専用の搬送室の定期的な清掃工
程が必要となり、又、搬送室を2室持つ為に設備全体が
多大となるという欠点をもっている。
Furthermore, two transfer chambers are provided, with one chamber dedicated to operating the substrate and substrate support before film deposition, and the remaining chamber dedicated to movement of the substrate and support after film deposition, with a functionally separated configuration. Therefore, methods have been proposed to prevent the peeled-off film from adhering to the substrate before the film is deposited. However, this method also requires a periodic cleaning process of a transfer chamber dedicated to moving the substrate and support after film deposition, and has the disadvantage that the entire equipment becomes large because it has two transfer chambers.

そこで、基体や支持具の一部より剥れ落ちて、搬送室内
に残留する粉体あるいは膜体等の残存物質の除去が容易
であり、ゲート・バルブの真空シール不良を防止すると
共に形成される膜におけるピンホールの発生を防止でき
、良質で品質の安定した堆積膜が容易に得られ、且つ量
産性に優れた堆積膜形成装置が切望されている。
Therefore, it is easy to remove residual substances such as powder or film that has fallen off from a part of the base or support and remains in the transfer chamber, and prevents vacuum seal failure of gate valves. There is a strong need for a deposited film forming apparatus that can prevent the occurrence of pinholes in the film, easily obtain a deposited film of good quality and stable quality, and has excellent mass productivity.

[発明の目的] 本発明は従来の堆積膜形成装置における上述の問題点を
克服し、大気の混入が抑えられ、且つピンホール等欠陥
の少ない良質の堆積膜が安定して得られる堆積膜形成装
置を提供することを目的とする。更に本発明の別の目的
は生産性に優れ、稼動効率の高い堆積膜形成装置を提供
することである。
[Object of the Invention] The present invention overcomes the above-mentioned problems in conventional deposited film forming apparatuses, suppresses air intrusion, and provides a deposited film forming method that can stably obtain a high quality deposited film with few defects such as pinholes. The purpose is to provide equipment. Furthermore, another object of the present invention is to provide a deposited film forming apparatus with excellent productivity and high operating efficiency.

[問題点を解決するための手段及び作用]本発明におけ
る堆積膜形成装置は、基体上に堆積膜を形成する一連の
工程を行なう為の複数の室を備えた堆積膜形成装置にお
いて、前記複数の室間での堆積膜形成用基体の稼動を行
なう為の移動可能な搬送室を有し、且つ前記搬送室にC
l1Fjガスを導入するガス導入手段を設けた事を特徴
とするものである。
[Means and effects for solving the problems] A deposited film forming apparatus according to the present invention is provided with a plurality of chambers for performing a series of steps of forming a deposited film on a substrate. It has a movable transfer chamber for moving the deposited film forming substrate between the chambers, and the transfer chamber has a C.
This device is characterized by being provided with a gas introduction means for introducing l1Fj gas.

上記の構成のように搬送室にCuF3ガスを導入する手
段を設けた本発明の堆積膜形成装置に於いては搬送室内
に残留する粉体あるいは膜体等の残存物質をエツチング
で除去することが可能となる為、搬送室内に残留する粉
体あるいは膜体が、膜堆積前の支持体に付着する事が皆
無となり、得られた堆積膜にはピンホール等の欠陥が極
めて少なくなると共に、搬送室のゲート・バルブによる
真空シールが確実となり、その結果、堆積膜中への大気
の混入が抑えられた高品質の膜が安定して生産可能とな
る。
In the deposited film forming apparatus of the present invention having a means for introducing CuF3 gas into the transfer chamber as configured above, residual substances such as powder or film remaining in the transfer chamber can be removed by etching. As a result, powder or film remaining in the transport chamber will not adhere to the support before film deposition, and the resulting deposited film will have extremely few defects such as pinholes. Vacuum sealing by the gate valve of the chamber is ensured, and as a result, it is possible to stably produce a high-quality film that suppresses air intrusion into the deposited film.

又、前記搬送室内に残留する粉体あるいは膜体の除去を
、基体上への堆積膜の堆積処理、基体の冷却処理等、堆
積膜形成に要する工程を中断せずに該堆積膜形成に要す
る工程と並行して行なえる為、優れた生産性を得ること
ができる。更に加熱室について言えば、ヒーターは基体
の冷却あるいは大気リークの為に冷却する必要が無くな
り、常時加熱状態を保つ事が出来る為、ヒーターの加熱
、冷却に要する時間を大幅に削減でき、生産性の向上が
図れる。又、堆積室について言えば、支持体の投入及び
取り出しの為のリークをする必要が無く、常に減圧状態
にしておく事が可能となるので、堆積室の実質的な利用
効率が向上する。
Further, the powder or film remaining in the transfer chamber can be removed without interrupting the steps necessary for forming the deposited film, such as depositing the deposited film on the substrate, cooling the substrate, etc. Since it can be performed in parallel with the process, excellent productivity can be achieved. Furthermore, regarding the heating chamber, the heater no longer needs to be cooled due to cooling the substrate or atmospheric leakage, and can maintain a constant heating state, which greatly reduces the time required to heat and cool the heater, increasing productivity. can be improved. Furthermore, as for the deposition chamber, there is no need for leakage for loading and unloading the support, and it is possible to keep the deposition chamber always in a reduced pressure state, thereby improving the substantial utilization efficiency of the deposition chamber.

加えて、従来数サイクル毎に必要とされていた搬送室の
分解、清掃9組立作業を省略出来、堆積膜形成装置の稼
動率を大幅に向上させる事が可能となる。
In addition, it is possible to omit the disassembly, cleaning and assembly operations of the transfer chamber, which were conventionally required every few cycles, and it is possible to significantly improve the operating rate of the deposited film forming apparatus.

以下、本発明を図面に従って具体的に説明する。第1図
は、本発明の好適な実施態様例の1つの主構成の模式的
な構成図である。
Hereinafter, the present invention will be specifically explained with reference to the drawings. FIG. 1 is a schematic configuration diagram of one main configuration of a preferred embodiment of the present invention.

第1図にはCuF3ガスを含むガスを導入する導入手段
を設けた搬送室の模式的構成図が示され、該搬送室は、
この実施態様例においては、第2図における搬送室14
1に置き代るものである。その他は第2図に示す装置と
同様なので省略する。
FIG. 1 shows a schematic configuration diagram of a transfer chamber provided with an introduction means for introducing a gas containing CuF3 gas, and the transfer chamber includes:
In this example embodiment, the transfer chamber 14 in FIG.
It replaces 1. The rest is the same as the device shown in FIG. 2, so a description thereof will be omitted.

第1図において201は搬送室、202は搬送室201
内部を真空保持をし、かつ基体204の出入れ時には開
閉するゲート・バルブ、203は基体支持具、205は
基体204を支持具203ごとつかみ、各室との出入れ
を行なう吊り具、206は(1!F、ガスを導入する為
のガス導入管、207は搬送室201内を減圧にする為
の真空ポンプであり、排気は不図示の排気処理設備に導
かれる。210は搬送室201の昇降機、211は搬送
室201を各室に連結可能な位置迄移動する為のレール
である。以下、第1図の搬送室201において、基体や
支持具の一部より剥がれ落ちて搬送室201内に残留す
る粉体、あるいは膜体をエツチングし、搬送室201内
をクリーニングする方法を具体的に述べる。
In FIG. 1, 201 is a transfer chamber, and 202 is a transfer chamber 201.
A gate valve that maintains a vacuum inside and opens and closes when the base body 204 is taken in and out; 203 is a base support; 205 is a hanging fixture that grasps the base body 204 together with the support 203; (1!F is a gas introduction pipe for introducing gas, 207 is a vacuum pump for reducing the pressure inside the transfer chamber 201, and the exhaust gas is led to an exhaust treatment facility (not shown). 210 is a gas introduction pipe for introducing gas into the transfer chamber 201. The elevator 211 is a rail for moving the transfer chamber 201 to a position where it can be connected to each chamber.Hereinafter, in the transfer chamber 201 shown in FIG. A method for cleaning the inside of the transfer chamber 201 by etching residual powder or film will be specifically described.

搬送室201内は真空ポンプ207により減圧状態とな
っている。又、搬送室201の下部及びゲート・バルブ
202近辺には、堆積室121から冷却室131へ基体
204及び支持具203を移動する際に、基体204及
び支持具203より剥れ落ちた粉体や膜体が残留してい
る。基体204及び支持具203を冷却室131に移動
した後、搬送室201内にガス導入管206よりCJ2
F3ガスを導入する。搬送室201内に導入されたCβ
F3ガスは、搬送室201下部及びゲート・バルブ20
2近辺に残留している粉体あるいは膜体をエツチングし
て気体状物質にし、該気体状物質は真空ポンプ207か
ら排気される。
The pressure inside the transfer chamber 201 is reduced by a vacuum pump 207. In addition, in the lower part of the transfer chamber 201 and near the gate valve 202, there are powders and particles that have fallen off from the base 204 and the support 203 when the base 204 and the support 203 are moved from the deposition chamber 121 to the cooling chamber 131. Membrane remains. After moving the base 204 and the support 203 to the cooling chamber 131, CJ2 is introduced into the transfer chamber 201 from the gas introduction pipe 206.
Introduce F3 gas. Cβ introduced into the transfer chamber 201
The F3 gas is supplied to the lower part of the transfer chamber 201 and the gate valve 20.
The powder or film remaining in the vicinity of 207 is etched into a gaseous substance, and the gaseous substance is exhausted from the vacuum pump 207.

以上の如く、搬送室201内に残留する粉体あるいは膜
体をエツチングにより清掃できる為、ゲート・バルブ2
02における真空シールが確実なものとなり、搬送室2
01内への大気の流入が減少する結果、堆積室121へ
の大気の持ち込みも押さえられ、堆積膜への大気の混入
が極少となり高品質の膜が安定して形成可能となる。
As described above, since the powder or film remaining in the transfer chamber 201 can be cleaned by etching, the gate valve 2
The vacuum seal in 02 is ensured, and the transfer chamber 2
As a result of reducing the amount of air flowing into the deposition chamber 121, air is also prevented from entering the deposition chamber 121, and the amount of air mixed into the deposited film is minimized, making it possible to stably form a high-quality film.

又、本発明の搬送室201のクリーニングにより、従来
数サイクルの膜堆積毎に不可欠とされた搬送室の分解、
清掃1組立作業の省略が可能となり、堆積膜形成装置全
体の稼働率を大幅に向上する事が出来る。更に、残留す
る粉体あるいは膜体が、投入室101あるいは加熱室1
11に進入して膜堆積前の基体204に付着する事が皆
無となり、得られた堆積膜中のピンホールが減少し、製
品の歩留まりが向上し、しいては製品のコストを下げる
要因となる。
Furthermore, by cleaning the transfer chamber 201 of the present invention, the disassembly of the transfer chamber, which was conventionally considered indispensable after every several cycles of film deposition, is eliminated.
It becomes possible to omit the cleaning 1 assembly work, and the operating rate of the entire deposited film forming apparatus can be greatly improved. Furthermore, the remaining powder or film is removed from the charging chamber 101 or the heating chamber 1.
11 and adhering to the substrate 204 before film deposition, the number of pinholes in the resulting deposited film is reduced, which improves the yield of the product and also reduces the cost of the product. .

本発明の堆積膜形成装置において用いられるCILF!
ガスは、堆積膜へのいわゆるエツチング・ガスとして作
用する点は従来より用いられているCF4 、NFs 
、SFa等のガスと同様である。
CILF! used in the deposited film forming apparatus of the present invention!
The gas acts as a so-called etching gas on the deposited film, unlike conventionally used CF4 and NFs.
, SFa, and other gases.

Cl3F、ガスは、堆積膜との反応性に富み、例えば結
晶シリコン膜、A−St膜、更にポリシランと呼ばれる
粉体状のシリコンの水素化物とも反応し、Si原子をS
iF4,5iCuF3等の常温で気体状態のハロゲン化
シリコン分子ガスへと還元する作用がある。
Cl3F gas is highly reactive with deposited films, for example, it reacts with crystalline silicon films, A-St films, and even powdered silicon hydride called polysilane, converting Si atoms into S
It has the effect of reducing to silicon halide molecular gas, such as iF4, 5iCuF3, which is in a gaseous state at room temperature.

上述したCuF3ガスのエツチング作用は、シリコン膜
のみにとどまらず、堆積膜形成材料として知られている
他の物質、例えば、窒化シリコン(S i N)膜、炭
化シリコン(SiC)膜、アモルファスシリコン・ゲル
マニウム(A−S i Ge)膜、タングステン(W)
 膜、炭化チタン(Tic)膜、窒化チタン(TiN)
膜、窒化ホウ素(BN)膜、透明電極材料として用いら
れるITO膜等の物質と反応し、各々の物質をシリコン
の場合と同様に気体状物質へと還元する作用を持つ。
The etching effect of the CuF3 gas mentioned above is not limited to silicon films, but also to other materials known as deposited film forming materials, such as silicon nitride (S i N) films, silicon carbide (SiC) films, amorphous silicon films, etc. Germanium (A-S i Ge) film, tungsten (W)
membrane, titanium carbide (Tic) membrane, titanium nitride (TiN)
It reacts with substances such as films, boron nitride (BN) films, and ITO films used as transparent electrode materials, and has the effect of reducing each substance to a gaseous substance in the same way as silicon.

更にCρF3ガスには従来よりエツチング・ガスとして
用いられているCF4 、NF3 、SF6等のガスと
は異なった以下に記す二つの特徴がある。
Furthermore, CρF3 gas has the following two characteristics that are different from gases such as CF4, NF3, SF6, etc. that have been conventionally used as etching gases.

第一の特徴はCJ2F3ガスは熱、プラズマ、光等の外
部エネルギーの供給なしにエツチング反応が進行する点
にある。CF4 、NF3 、SFa等は処理空間に供
給したのみではエツチング作用はなく、外部からエネル
ギーを与えてフッ素ラジカルを生成させる事によっては
じめてエツチング作用をもつようになる。一方それに対
してCl2F3ガスは、ガスを供給するのみでエツチン
グが進行し、熱、プラズマ、光等のエネルギーを外部よ
り供給する必要が無い。更に、その結果、堆積膜形成装
置の設計上のレイアウトの自由度が増すという利点があ
る。
The first feature is that the etching reaction of CJ2F3 gas proceeds without the supply of external energy such as heat, plasma, or light. CF4, NF3, SFa, etc., do not have an etching effect only when supplied to the processing space, but only become effective when energy is applied from the outside to generate fluorine radicals. On the other hand, with Cl2F3 gas, etching proceeds simply by supplying the gas, and there is no need to supply energy such as heat, plasma, light, etc. from the outside. Furthermore, as a result, there is an advantage that the degree of freedom in designing the layout of the deposited film forming apparatus increases.

第二の特徴はCl1F3ガスによるエツチングは極めて
その速度が速いという点にある。具体的にはC11F 
3ガスによるエツチング速度は、上述した従来のガスに
対して数倍のエツチング速度を持つ。その結果、堆積膜
形成に伴なうエツチング工程に要する時間の短縮が可能
となり、更には製品のコストを下げる事が可能となる。
The second feature is that etching with Cl1F3 gas is extremely fast. Specifically, C11F
The etching speed using the three gases is several times that of the conventional gases mentioned above. As a result, it becomes possible to shorten the time required for the etching process associated with the formation of the deposited film, and furthermore, it becomes possible to reduce the cost of the product.

搬送室内をエツチングする為のCρF3ガスはCρF3
ガス単体で使用しても良いし、あるいは装置への損傷の
低減、エツチング速度の制御等の目的で、更には装置の
構成、真空ポンプの排気能力に応じてAr、He、N2
等のガスで希釈して用いても良い。特に(12F3ガス
による装置への損傷を低減する為に、好ましくはCfL
F3ガス濃度を1%乃至80%の希釈率で使用する事が
望ましい。
The CρF3 gas for etching the inside of the transfer chamber is CρF3.
The gas may be used alone, or Ar, He, N2, etc. may be used for purposes such as reducing damage to the equipment and controlling the etching rate, depending on the equipment configuration and the exhaust capacity of the vacuum pump.
It may be used after being diluted with a gas such as. In particular (preferably CfL to reduce damage to the equipment due to 12F3 gas)
It is desirable to use the F3 gas concentration at a dilution rate of 1% to 80%.

又、CJZF3ガスは、外部からエネルギーを与える事
なしにエツチング反応が進行するが、必要に応じて熱、
プラズマ、光等のエネルギーを外部から与えてエツチン
グ速度を促進させても差し支えない。この場合、CJZ
 F3ガスの希釈ガスとしては前述のAr、He、N2
等に限らず、CF4.NF3 、SFa 、C112等
のエツチング作用を持つガスを混合して用いる事もエツ
チング速度の制御に有効である。
In addition, the etching reaction of CJZF3 gas proceeds without applying energy from the outside, but if necessary, heat,
There is no problem in accelerating the etching speed by applying energy such as plasma or light from the outside. In this case, C.J.Z.
As the diluent gas for F3 gas, the above-mentioned Ar, He, N2
etc., but also CF4. It is also effective to use a mixture of etching gases such as NF3, SFa, C112, etc. to control the etching rate.

CuF3ガスを導入する際の搬送室内の圧力は目的に応
じて、あるいは真空ポンプの排気能力等に応じて適宜設
定され得るが実用上充分なエツチング速度を得る為には
、好ましくは0.01Torr乃至700To r r
の範囲に設定する事が望ましい。又、(12F3ガスの
導入により搬送室内の残存物質を除去するにはCIl 
F 3ガス導入と同時に排気を行なって導入と排気のバ
ランスにより前述の搬送室内の圧力を所望値に維持して
行う。又、別には搬送室内に、CuF3ガスを所望圧力
の下に封じ込めて前述の搬送室内をエツチングしても良
い。
The pressure inside the transfer chamber when introducing the CuF3 gas can be set as appropriate depending on the purpose or the evacuation capacity of the vacuum pump, but in order to obtain a practically sufficient etching rate, it is preferably 0.01 Torr or more. 700Torr
It is desirable to set it within the range of . In addition, (in order to remove residual substances in the transfer chamber by introducing 12F3 gas,
The F 3 gas is introduced and simultaneously exhausted, and the pressure inside the transfer chamber is maintained at a desired value by balancing the introduction and exhaust. Alternatively, CuF3 gas may be sealed in the transfer chamber under a desired pressure and the interior of the transfer chamber described above may be etched.

本発明の堆積膜形成装置に於て採用される堆積膜形成法
としては、常圧又は減圧下で行なわれるものであれば、
何ら制限は受けず、例えばグロー放電による気相化学反
応法、熱気相化学反応法。
The deposited film forming method employed in the deposited film forming apparatus of the present invention includes any method that is carried out under normal pressure or reduced pressure.
There are no restrictions, such as a gas phase chemical reaction method using glow discharge or a hot vapor phase chemical reaction method.

光気相化学反応法、スパッタリング法、真空蒸着法等が
挙げられる。
Examples include a photovapor phase chemical reaction method, a sputtering method, and a vacuum evaporation method.

又、本発明の堆積膜形成装置によって堆積される膜は特
に制限を受けるものではなく、例えばシリコン膜、タン
グステン(W)膜、炭化チタン(”ric)@、窒化チ
タン(TiN)膜、窒化ホウ素(BN)膜、ITO等、
 CILF3ガスによるエツチング作用のある物質であ
れば本発明の堆積膜形成装置の効力を発揮し得る。
Further, the film deposited by the deposited film forming apparatus of the present invention is not particularly limited, and may include, for example, a silicon film, a tungsten (W) film, a titanium carbide ("ric") film, a titanium nitride (TiN) film, and a boron nitride film. (BN) film, ITO, etc.
Any substance that can be etched by CILF3 gas can exhibit the effectiveness of the deposited film forming apparatus of the present invention.

本発明の堆積膜形成装置において堆積膜を形成する一連
の工程を行なう為に設層される室、例えば加熱室、堆積
室等は単室でも良く、又、実行される工程が同種の室を
複数設けても良い。更に1つの工程が複数の小工程に分
割可能な場合、例えば太陽電池におけるp層、i層、n
層の各層堆積を各層別の異なった堆積室で行ない、それ
ら各堆積室間での基体や基体支持具の穆動を搬送室を用
いて行なう事も有効である。
In the deposited film forming apparatus of the present invention, the chambers installed to perform a series of steps for forming a deposited film, such as a heating chamber and a deposition chamber, may be a single chamber, or the same type of chamber may be used for the steps to be executed. You may provide more than one. Furthermore, when one process can be divided into multiple small processes, for example, p-layer, i-layer, n-layer in a solar cell
It is also effective to deposit each layer in a different deposition chamber, and to move the substrate and substrate support between the deposition chambers using a transfer chamber.

更に搬送室は単室であっても良いし、目的に応じて複数
設けても良い。
Further, the transfer chamber may be a single chamber or may be provided in plurality depending on the purpose.

以下、本発明の具体的実施例を説明するが、本発明は実
施例により何ら制限されるものではない。
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited to the examples in any way.

[実施例1及び比較例1] 第2図に示した堆積膜形成装置の搬送室141の代りに
第1図の搬送室201を有し、堆積室121の代りに第
3図の堆積室301を有する以外、第2図に示した堆積
膜形成装置と同一の装置を用いてアモルファスシリコン
・シングルセル太陽電池を作成した。尚、堆積室301
にはマイクロ波導入用の導波管305が設けられている
[Example 1 and Comparative Example 1] The deposited film forming apparatus has the transport chamber 201 shown in FIG. 1 instead of the transport chamber 141 shown in FIG. 2, and the deposition chamber 301 shown in FIG. 3 instead of the deposition chamber 121. An amorphous silicon single cell solar cell was produced using the same deposited film forming apparatus as shown in FIG. Furthermore, the deposition chamber 301
A waveguide 305 for introducing microwaves is provided.

基体としては1cm角のアルミニウム板を用いた。A−
Siのn層、i層、9層を第1表に示す条件のもとに堆
積させ、堆積膜を取り出した後、P層上に厚さ1000
人の透明電極(ITO)を通常行なわれている方法で真
空蒸着して試料とし、特性の評価を行なった。その具体
的方法を以下に述べる。
A 1 cm square aluminum plate was used as the base. A-
After depositing the n layer, i layer, and 9 layers of Si under the conditions shown in Table 1, and taking out the deposited film, a layer with a thickness of 1000 nm was deposited on the P layer.
A human transparent electrode (ITO) was vacuum-deposited using a commonly used method as a sample, and its characteristics were evaluated. The specific method will be described below.

本実施例に於て用いた堆積膜形成装置は第2図における
搬送室141を第1図の搬送室201に置き代えたもの
であり、堆積室としては第3図に示した堆積室301を
用いた。尚、各室とも膜形成前に予め清掃しておいた。
In the deposited film forming apparatus used in this example, the transfer chamber 141 in FIG. 2 was replaced with the transfer chamber 201 in FIG. 1, and the deposition chamber 301 shown in FIG. 3 was used as the deposition chamber. Using. Note that each chamber was cleaned in advance before film formation.

アルミニウム基体304はトリクロルエチレン中で超音
波洗浄(10分間)を2回行ない、アルミニウム基体1
0枚をまとめて支持具303にセットした。
The aluminum substrate 304 was subjected to ultrasonic cleaning (for 10 minutes) twice in trichlorethylene, and the aluminum substrate 1
0 sheets were set together on the support 303.

投入室101は大気圧造リークされ、ゲート・バルブ1
03を開けて、アルミニウム基体のセットされた支持具
303を、投入室1,01内に設置した。次に投入室1
01内を不図示の真空ポンプにより減圧させた。投入室
101内がlXl0−6Torrの高真空となったとこ
ろで、予め減圧させておいた搬送室201をレール21
1及び昇降機210を用いて投入室101に連結させた
。連結後ゲート・バルブ202,102を開け、吊り具
205により基体304と支持具303を搬送室201
内へ移動させた。その後ゲート・バルブ202.102
を閉じ、昇降機210により投入室101と搬送室20
1を切り離した。切り離した搬送室201はレール21
1により加熱室111に連結可能な位置迄8動させた。
The charging chamber 101 is leaked with atmospheric pressure, and the gate valve 1
03 was opened, and the support 303 on which the aluminum base was set was placed in the charging chambers 1 and 01. Next, input chamber 1
The pressure inside the 01 was reduced using a vacuum pump (not shown). When the inside of the loading chamber 101 is in a high vacuum of lXl0-6 Torr, the transfer chamber 201, which has been depressurized in advance, is moved to the rail 21.
1 and an elevator 210 to connect it to the charging chamber 101. After connection, the gate valves 202 and 102 are opened, and the base 304 and the support 303 are moved to the transfer chamber 201 using the hanging tool 205.
Moved it inside. Then gate valve 202.102
is closed, and the loading chamber 101 and the transfer chamber 20 are moved by the elevator 210.
1 was separated. The separated transfer chamber 201 is connected to the rail 21
1, it was moved 8 times to a position where it could be connected to the heating chamber 111.

以下、同様に基体304と支持具303を加熱室111
内へ移し、250℃迄加熱した後に堆積室301へ移し
た。堆積室301内にはマイクロ波導入用導波管305
が設けられており、第1表に示す条件により、マイクロ
波グロー放電気相化学反応法により基体上に順にn型A
−Si層、i型A−3i層、p型A−3t層の堆積を行
なった。全層の堆積の後、基体304と支持具303は
前述と同様の方法で冷却室131に移し室温迄冷却した
後、ゲート・バルブ133より取り出した。基体304
と支持具303を冷却室131に移した後、搬送室20
1内へはガス導入口206よりCl1F3ガス0.4S
LM%Arガス0. 6SLM(希釈率40%)を導入
し、真空ポンプ207の排気速度を調節する事により、
搬送室201内を10To r rに保った。
Thereafter, the base 304 and the support 303 are placed in the heating chamber 111 in the same manner.
After being heated to 250° C., it was transferred to the deposition chamber 301. Inside the deposition chamber 301 is a waveguide 305 for introducing microwaves.
Under the conditions shown in Table 1, n-type A is sequentially deposited on the substrate by a microwave glow discharge electrophase chemical reaction method.
-Si layer, i-type A-3i layer, and p-type A-3t layer were deposited. After all layers were deposited, the substrate 304 and the support 303 were transferred to the cooling chamber 131 in the same manner as described above, cooled to room temperature, and then taken out through the gate valve 133. Base body 304
After moving the support tool 303 to the cooling chamber 131, the transfer chamber 20
Cl1F3 gas 0.4S is introduced into 1 from the gas inlet 206.
LM%Ar gas 0. By introducing 6SLM (dilution rate 40%) and adjusting the pumping speed of the vacuum pump 207,
The inside of the transfer chamber 201 was maintained at 10 Torr.

以上の様にして、搬送室201内を10分間エツチング
した後、CuF3ガス及びArガスの流入を止め、搬送
゛室201内を再びtxto−’Torrの高真空状態
とした。以上の工程で一回の膜堆積が完了しく以降1サ
イクルと呼ぶ)、次のサイクルの最初の工程に戻った。
After etching the inside of the transfer chamber 201 for 10 minutes as described above, the inflow of CuF3 gas and Ar gas was stopped, and the inside of the transfer chamber 201 was again brought into a high vacuum state of txto-'Torr. With the above steps, one cycle of film deposition is completed (hereinafter referred to as 1 cycle), and the process returns to the first step of the next cycle.

1サイクル毎に10枚の太陽電池を作成したが、その内
、ピン・ホールによる短絡の為、太陽電池として使用不
可能な枚数を除いた枚数を使用可能枚数として数え、使
用可能な太l!M電池についてAM−1のもとに一般的
な方法で変換効率(η)を調べ、その平均を平均効率(
%)として評価を行なった。 太陽電池の作成は3サイ
クル行ない、各々のサイクル毎に前記の評価を行なった
。更に、3サイクル終了後、搬送室内の残留物の有無を
目視で確認した。その結果を第2表に示す。 又、搬送
室201内のCuF3ガスによるエツチングなしに膜堆
積サイクルを繰り返した以外は、本実施例と同様の方法
により太陽電池を作成した。その評価結果を比較例1と
して、本実施例と合わせて第2表に示す。
Ten solar cells were created for each cycle, but the number of solar cells that could not be used as solar cells due to short circuits due to pin holes was counted as the usable number. The conversion efficiency (η) of the M battery was investigated using a general method under AM-1, and the average was calculated as the average efficiency (
%). The solar cell was produced in three cycles, and the above evaluation was performed for each cycle. Furthermore, after the completion of the third cycle, the presence or absence of any residue in the transfer chamber was visually confirmed. The results are shown in Table 2. Further, a solar cell was fabricated in the same manner as in this example except that the film deposition cycle was repeated without etching with CuF3 gas in the transfer chamber 201. The evaluation results are shown in Table 2 as Comparative Example 1 together with this example.

第2表に示す通り比較例においては3サイクル終了後、
搬送室内に粉体及び膜が残留していたのに対して、本実
施例では、残留物は認められなかった。
As shown in Table 2, in the comparative example, after 3 cycles,
While powder and film remained in the transfer chamber, no residue was observed in this example.

又、比較例においては使用可能な太陽電池枚数は膜堆積
サイクルを繰り返す毎に減少するのに対して、本実施例
では減少する事なく安定であり、この結果は搬送室内の
残留物の有無に依存していた。又、平均効率は比較例で
は膜堆積サイクルを繰り返す毎に低下するのに対して本
実施例では安定していた。
In addition, in the comparative example, the number of usable solar cells decreases each time the film deposition cycle is repeated, but in the present example, it does not decrease and remains stable, and this result depends on the presence or absence of residue in the transfer chamber. I was dependent on it. Furthermore, the average efficiency decreased with each repetition of the film deposition cycle in the comparative example, whereas it remained stable in the present example.

次に太陽電池のi層中に含まれる窒素量及び酸素量を二
次イオン質量分析機(SIMS)を用いて測定した。照
射イオンとしてCs”イオンを用い、透明電極(ITO
)とP層をCs+イオンの照射によって除去した後、i
層中の窒素及び酸素含有量を測定した。その結果、比較
例の太陽電池ではi層中に窒素が8xlO”atm/a
m”、酸素が5 X 10 I9a tm/ crn’
含まれていたのに対し、本実施例では窒素が4 X 1
0 ”a t m/ Crr?及び、酸素が2x101
9atm/Cm’といずれも減少している事が判明した
Next, the amount of nitrogen and oxygen contained in the i-layer of the solar cell was measured using a secondary ion mass spectrometer (SIMS). Cs” ions were used as irradiation ions, and a transparent electrode (ITO
) and P layer are removed by Cs+ ion irradiation, i
The nitrogen and oxygen content in the layer was measured. As a result, in the solar cell of the comparative example, the nitrogen content in the i-layer was 8xlO" atm/a
m'', oxygen is 5 X 10 I9a tm/ crn'
In contrast, in this example, nitrogen was contained in 4
0 ”at m/ Crr? and oxygen is 2x101
It was found that both values decreased to 9 atm/Cm'.

以上より、搬送室に、CJ2F3ガスを導入し、搬送室
内をエツチングすることにより、搬送室中の残留物を除
去できる為、搬送室のゲート・バルブの真空シール不良
が防止でき、膜中への大気の混入を減少させることがで
きる事、又、得られた太陽電池の特性が安定である事が
明1らかになつた。更に、搬送室内に残留した粉体及び
膜の膜堆積前の基体への付着が無くなる為、ピンホール
による短絡を抑え、高品質の太陽電池を高い歩留まりで
安定して生産する事が可能となる。
From the above, by introducing CJ2F3 gas into the transfer chamber and etching the inside of the transfer chamber, it is possible to remove the residue in the transfer chamber, thereby preventing vacuum seal failure of the gate valve of the transfer chamber, and preventing the transfer chamber from entering the film. It has become clear that atmospheric contamination can be reduced and that the characteristics of the obtained solar cells are stable. Furthermore, since the powder remaining in the transfer chamber and the film will not adhere to the substrate before film deposition, short circuits due to pinholes will be suppressed, making it possible to stably produce high-quality solar cells at a high yield. .

[実施例2及び比較例2] 第2図に示した堆積膜形成装置の搬送室141の代りに
第1図の搬送室201を有し、堆積室121の代りに第
4図の堆積室401を有する以外、第2図に示した堆積
膜形成装置と同一の装置を用いてA−3t系の電子写真
用光受容部材を作成した。堆積室401は同軸円筒型R
,F、グロー放電装置である。尚、本実施例に於て用い
た堆積膜形成装置の各室は膜形成前に予め清掃しておい
た。基体には外径φ80mm、肉厚5mm。
[Example 2 and Comparative Example 2] The deposited film forming apparatus has the transport chamber 201 shown in FIG. 1 instead of the transport chamber 141 shown in FIG. 2, and the deposition chamber 401 shown in FIG. 4 instead of the deposition chamber 121. An A-3t-based electrophotographic light-receiving member was prepared using the same deposited film forming apparatus as shown in FIG. The deposition chamber 401 has a coaxial cylinder type R
, F is a glow discharge device. Note that each chamber of the deposited film forming apparatus used in this example was cleaned in advance before film formation. The base body has an outer diameter of φ80 mm and a wall thickness of 5 mm.

長さ358mmのアルミニウム製円筒型基体404を用
いた。堆積条件を第3表に示す。
An aluminum cylindrical base 404 with a length of 358 mm was used. The deposition conditions are shown in Table 3.

投入室101には支持具403にセットした円筒型基体
404を1サイクル毎にl木づつ投入した。基体404
と支持具403は実施例1と同様に投入室101がlX
l0−’Torrまで減圧された後、加熱室111に移
され、300℃迄加熱された。加熱終了後、堆積室40
1に穆され、第3表に示す条件により基体404から順
に長波長光吸収層、電荷注入阻止層、光導電層1表面保
護層の堆積を行なった。膜堆積終了後、基体404と支
持具403を冷却室131に移し室温迄冷却した後、ゲ
ート・バルブ133より取り出した。
A cylindrical base 404 set on a support 403 was loaded into the loading chamber 101 one by one for each cycle. Base body 404
And the support 403 is similar to Embodiment 1 when the input chamber 101 is 1X.
After the pressure was reduced to 10-' Torr, it was transferred to a heating chamber 111 and heated to 300°C. After heating, the deposition chamber 40
1, and a long wavelength light absorbing layer, a charge injection blocking layer, and a surface protective layer of the photoconductive layer 1 were deposited in order from the substrate 404 under the conditions shown in Table 3. After the film deposition was completed, the substrate 404 and the support 403 were transferred to the cooling chamber 131 and cooled to room temperature, and then taken out from the gate valve 133.

基体404と支持具403を冷却室131に移した後、
搬送室201内へはガス導入口206よりCl3 F3
ガス0.2SLM、Heガス0.8SLM(希釈率20
%)が導入され、真空ポンプ207の排気速度を調節す
る事により、搬送室201内を10To r rに保っ
た。以上の様にして、搬送室201内を15分間エツチ
ングした後、C11F 、ガス及びHeガスの流入を止
め、搬送室内を再び1xlO−’Torrの高真空状態
とした。以上の工程で1回の膜堆積が完了し、次のサイ
クルの最初の工程に戻った。
After moving the base 404 and the support 403 to the cooling chamber 131,
Cl3 F3 is introduced into the transfer chamber 201 from the gas inlet 206.
Gas 0.2SLM, He gas 0.8SLM (dilution rate 20
%) was introduced, and by adjusting the exhaust speed of the vacuum pump 207, the inside of the transfer chamber 201 was maintained at 10 Torr. After etching the inside of the transfer chamber 201 for 15 minutes as described above, the inflow of C11F, gas, and He gas was stopped, and the inside of the transfer chamber was again brought into a high vacuum state of 1.times.1O-'Torr. One cycle of film deposition was completed through the above steps, and the process returned to the first step of the next cycle.

1サイクル毎に1本づつ作成される電子写真用光受容部
材をキャノン製複写機NP−9330に搭載し、電子写
真用光受容部材としての評価を行なった。
The electrophotographic light-receiving member produced one by one for each cycle was mounted on a Canon copier NP-9330, and evaluated as an electrophotographic light-receiving member.

評価方法としてはA3サイズの複写を行ない、堆積膜中
のピンホールに起因する直径φ0.3mm以上の点状の
画像欠陥の数を数えた。
As an evaluation method, A3 size copies were made and the number of point-like image defects with a diameter of 0.3 mm or more caused by pinholes in the deposited film was counted.

電子写真用光受容部材の作成は3サイクル行ない、各々
のサイクル毎に前記の評価を行なった。
The electrophotographic light-receiving member was produced in three cycles, and the above evaluation was performed for each cycle.

又、3サイクル終了後、搬送室201内の残留物の有無
を目視にて確認した。その結果を第4表に示す。又、搬
送室201内のCjZF3ガスによるエツチングなしに
膜堆積サイクルを繰り返した以外は、本実施例と同様の
方法により電子写真用光受容部材を作成した。その評価
結果を比較例2として、本実施例と合わせて第4表に示
す。第4表に示す通り、比較例においては、3サイクル
終了後、搬送室201内に粉体及び膜が残留していたの
に対して、本実施例では、残留物は認められなかった。
Furthermore, after the completion of the third cycle, the presence or absence of any residue in the transfer chamber 201 was visually confirmed. The results are shown in Table 4. Further, an electrophotographic light-receiving member was prepared in the same manner as in this example except that the film deposition cycle was repeated without etching with the CJZF3 gas in the transfer chamber 201. The evaluation results are shown in Table 4 as Comparative Example 2 together with this example. As shown in Table 4, in the comparative example, powder and film remained in the transfer chamber 201 after three cycles, whereas in the present example, no residue was observed.

又、比較例においては複写画面上の画像欠陥の数は膜堆
積サイクルを繰り返す毎に増大するのに対して、本実施
例では増大する事はなかった。次に堆積膜の光導電層中
に含まれる窒素量及び酸素量を測定する為、膜の堆積し
たアルミニウム製円筒基体からSIMS用の試料片(1
0xlOx5mm)をダイヤモンドカッターを用いて切
り出した。照射イオンとしてCs”イオンを用い、堆積
膜の表面保護層をCs”イオンの照射によって除去した
後、光導電層中の窒素及び酸素含有量を測定した。その
結果、比較例の電子写真用光受容部材においては窒素が
6X10”atm/crn’、酸素が4X10”atm
/crn’含まれているのに対して、本実施例の電子写
真用光受容部材においては窒素が4X10”atm/c
rr?、酸素が2xlOI8atm/cm’といずれも
減少している事が判明した。
Further, in the comparative example, the number of image defects on the copy screen increased each time the film deposition cycle was repeated, whereas in the present example, the number of image defects did not increase. Next, in order to measure the amount of nitrogen and oxygen contained in the photoconductive layer of the deposited film, a sample piece for SIMS (1
0x1Ox5mm) was cut out using a diamond cutter. Cs'' ions were used as irradiation ions, and after the surface protective layer of the deposited film was removed by irradiation with Cs'' ions, the nitrogen and oxygen contents in the photoconductive layer were measured. As a result, in the electrophotographic light-receiving member of the comparative example, nitrogen was 6X10"atm/crn' and oxygen was 4X10"atm/crn'.
/crn', whereas in the electrophotographic light-receiving member of this example, nitrogen is 4X10"atm/c
rr? It was found that the oxygen content decreased to 2xlOI8atm/cm' in both cases.

以上から、搬送室にCuF3ガスを導入し、搬送室内を
エツチングすることにより搬送室のゲート・バルブの真
空シール不良を防止でき、膜中への大気の混入を減少さ
せる事が可能となることが明らかになると共に、ピンホ
ールによる画像欠陥の発生を抑える事が出来、高品質の
電子写真用光受容部材を高い歩留まりで安定して生産可
能である事が示された。
From the above, by introducing CuF3 gas into the transfer chamber and etching the inside of the transfer chamber, it is possible to prevent the vacuum seal failure of the transfer chamber gate valve and reduce the intrusion of air into the film. It has been shown that it is possible to suppress the occurrence of image defects due to pinholes, and that it is possible to stably produce high-quality electrophotographic light-receiving members at a high yield.

[発明の効果] 以上説明したように、搬送室にCj2F3ガスを導入す
る手段を設けた本発明の堆積膜形成装置に於いては、搬
送室内に残留する粉体あるいは膜体等の残存物質をエツ
チングで除去することが可能となる為、搬送室内に残留
する粉体あるいは膜体が、膜堆積前の支持体に付着する
事が皆無となり、得られた堆積膜にはピンホール等の欠
陥が極めて少なくなると共に、搬送室のゲート・バルブ
による真空シールが確実となり、その結果、堆積膜中へ
の大気の混入が抑えられた高品質の膜が安定して生産可
能となる。
[Effects of the Invention] As explained above, in the deposited film forming apparatus of the present invention provided with means for introducing Cj2F3 gas into the transfer chamber, residual substances such as powder or film remaining in the transfer chamber can be removed. Since it can be removed by etching, there is no possibility that the powder or film remaining in the transfer chamber will adhere to the support before the film is deposited, and the resulting deposited film will have no defects such as pinholes. In addition to extremely reducing the amount of air, the vacuum sealing by the gate valve of the transfer chamber becomes reliable, and as a result, it becomes possible to stably produce a high-quality film in which air is suppressed from entering the deposited film.

又、前記搬送室内に残留する粉体あるいは膜体の除去を
、基体上への堆積膜の堆積処理、基体の冷却処理環、堆
積膜形成に要する工程を中断せずに該堆積膜形成に要す
る工程と並行して行なえる為、優れた生産性を得ること
ができる。よに、加熱室にpいて言えば、ヒーターは基
体の冷却あるいは大気リークの為に冷却する必要が無く
なり、常時加熱状態を保つ事が出来る為、ヒーターの加
熱、冷却に要する時間がJul減され、生産性を向上さ
せることが可能となる。又、堆積室について言えば、支
持体の投入及び取り出しの為のリークをする必要が無く
、常に減圧状態にしておく事が可能となるので、堆積室
の実質的な利用効率が向上する。
Further, the powder or film remaining in the transfer chamber can be removed without interrupting the deposition process of the deposited film on the substrate, the cooling treatment ring of the substrate, and the steps necessary for forming the deposited film. Since it can be performed in parallel with the process, excellent productivity can be achieved. In terms of the heating chamber, the heater does not need to be cooled due to cooling the substrate or atmospheric leakage, and can maintain a constant heating state, so the time required for heating and cooling the heater is reduced by 1. , it becomes possible to improve productivity. Furthermore, as for the deposition chamber, there is no need for leakage for loading and unloading the support, and it is possible to keep the deposition chamber always in a reduced pressure state, thereby improving the substantial utilization efficiency of the deposition chamber.

加えて、従来数サイクル毎に必要とされていた搬送室の
分解、清掃2組立作業を省略出来、堆積膜形成装置の稼
動率を大幅に向上させる事が可能となる。
In addition, the disassembly, cleaning and assembly operations of the transfer chamber, which were conventionally required every few cycles, can be omitted, making it possible to significantly improve the operating rate of the deposited film forming apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の堆積膜形成装置における搬送室を示す
模式的構成図であり、 第2図は従来の量産型堆積膜形成装置を示す模式的構成
図、 第3図はマイクロ波放電装置を設けた堆積室を示す模式
的構成図、 第4図はR,F、グロー放電装置を設けた堆積室を示す
模式的構成図である。 第1図において、 201・・・搬送室 202・・・搬送室のゲート・バルブ 203・・・支持具 204・・・基体 205・・・吊り具 206・−Cu F !ガスの導入管 207・・・真空ポンプ 210・・・昇降機 21 1 ・・・ し − フレ 第2図において、 101・・・投入室 102・・・投入室のゲート・・バルブ103・・・基
体や基体支持具投入用のゲート・バルブ 104・・・支持具 111・・・加熱室 112・・・加熱室のゲート・バルブ 121・・・堆積室 122・・・堆積室のゲート・バルブ 131・・・冷却室 132・・・冷却室のゲート・バルブ 133・・・基体や基体支持具取り出し用のゲート・バ
ルブ 141・・・搬送室 142・・・搬送室のゲート・バルブ 143・・・昇降機 144・・・レール 145−・・吊り具 第3図において、 301・・・堆積室 302・・・堆積室のゲート・バルブ 303・・・支持具 304・・・基体 305・・・導波管 306・・・マイクロ波導入窓 307・・・排気ポンプ 308・・・基体加熱用ヒーター 309・・・ガス導入管 第4図において、 401・・・堆積室 402・・・堆積室のゲート・バルブ 403・・・支持具 404・・・基体(内部電極) 405・・・外部電極 406・・・ガス導入管 407・・・ガス導入バルブ 408・・・排気ポンプ 409・・・基体加熱用ヒーター O・・・自転軸 2・・・モーター 3・・・マツチング・ボックス 4・・・高周波電源
FIG. 1 is a schematic block diagram showing a transfer chamber in the deposited film forming apparatus of the present invention, FIG. 2 is a schematic block diagram showing a conventional mass-produced deposited film forming apparatus, and FIG. 3 is a microwave discharge device. Fig. 4 is a schematic block diagram showing a deposition chamber equipped with R, F, and glow discharge devices. In FIG. 1, 201... Transfer chamber 202... Transfer chamber gate/valve 203... Support 204... Base 205... Hanging tool 206... -Cu F! Gas inlet pipe 207...Vacuum pump 210...Elevator 21 1... In Figure 2, 101...Charging chamber 102...Gate of charging chamber...Valve 103...Substrate Gate/valve 104 for inputting substrate support equipment...Support tool 111...Heating chamber 112...Heating chamber gate valve 121...Deposition chamber 122...Deposition chamber gate/valve 131...・・Cooling chamber 132 ・・Cooling chamber gate valve 133 ・・Gate/valve 141 for taking out the substrate or substrate support ・・Transfer chamber 142 ・・・・・Transfer chamber gate valve 143 ・・Elevator 144...Rail 145...Hanging device In Fig. 3, 301...Deposition chamber 302...Gate/valve of the deposition chamber 303...Support 304...Base 305...Waveguide 306...Microwave introduction window 307...Exhaust pump 308...Substrate heating heater 309...Gas introduction pipe In Fig. 4, 401...Deposition chamber 402...Gate valve of the deposition chamber 403... Support 404... Substrate (internal electrode) 405... External electrode 406... Gas introduction pipe 407... Gas introduction valve 408... Exhaust pump 409... Heater O for heating the substrate ... Rotation axis 2 ... Motor 3 ... Matching box 4 ... High frequency power supply

Claims (1)

【特許請求の範囲】[Claims] 基体上に堆積膜を形成する一連の工程を行なう為の複数
の室を備えた堆積膜形成装置において、前記複数の室間
での堆積膜形成用基体の移動を行なう為の移動可能な搬
送室を有し、且つ前記搬送室にClF_3ガスを導入す
るガス導入手段を設けた事を特徴とする堆積膜形成装置
In a deposited film forming apparatus equipped with a plurality of chambers for performing a series of steps of forming a deposited film on a substrate, a movable transfer chamber for moving the deposited film forming substrate between the plurality of chambers. A deposited film forming apparatus comprising: a gas introducing means for introducing ClF_3 gas into the transfer chamber.
JP24630688A 1988-09-30 1988-09-30 Device for forming deposited film Pending JPH0297679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24630688A JPH0297679A (en) 1988-09-30 1988-09-30 Device for forming deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24630688A JPH0297679A (en) 1988-09-30 1988-09-30 Device for forming deposited film

Publications (1)

Publication Number Publication Date
JPH0297679A true JPH0297679A (en) 1990-04-10

Family

ID=17146594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24630688A Pending JPH0297679A (en) 1988-09-30 1988-09-30 Device for forming deposited film

Country Status (1)

Country Link
JP (1) JPH0297679A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6536452B1 (en) * 1999-04-27 2003-03-25 Tokyo Electron Limited Processing apparatus and processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6536452B1 (en) * 1999-04-27 2003-03-25 Tokyo Electron Limited Processing apparatus and processing method
US6895979B2 (en) 1999-04-27 2005-05-24 Tokyo Electron Limited Processing apparatus and processing method

Similar Documents

Publication Publication Date Title
JPH01307229A (en) Deposition film forming method
US4995341A (en) Microwave plasma CVD apparatus for the formation of a large-area functional deposited film
JPS6389670A (en) Device for forming functional deposited film by microwave plasma cvd method
JP2994652B2 (en) Deposition film forming apparatus by microwave plasma CVD method
JPS61127121A (en) Formation of thin film
JPS6312138B2 (en)
JP3630831B2 (en) Method for forming deposited film
US4834023A (en) Apparatus for forming deposited film
JPH0297679A (en) Device for forming deposited film
JP3093504B2 (en) Photovoltaic element, method for forming the same, and apparatus for forming the same
JP2654433B2 (en) Silicon semiconductor fabrication method
JP2907404B2 (en) Deposition film forming equipment
JP2742799B2 (en) Method of forming semiconductor thin film
JPH062143A (en) Cleaning method of deposited film forming device
CN111129223B (en) Novel superlattice infrared detector preparation method
JP2654456B2 (en) Manufacturing method of high quality IGFET
US5098812A (en) Photosensitive device and manufacturing method for the same
WO2023112171A1 (en) Method for forming silicon boride film
JP2925291B2 (en) Deposition film forming equipment
JP2564754B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JPS62180074A (en) Formation of deposited film by plasma cvd method
JP2019147989A (en) Formation method of deposition film
JP2019189892A (en) Deposition film formation method
JPH03148123A (en) Formation of deposited film
JPH01730A (en) Method of forming multilayer thin film