JPH0297488A - Formation of diamond pattern - Google Patents

Formation of diamond pattern

Info

Publication number
JPH0297488A
JPH0297488A JP25136288A JP25136288A JPH0297488A JP H0297488 A JPH0297488 A JP H0297488A JP 25136288 A JP25136288 A JP 25136288A JP 25136288 A JP25136288 A JP 25136288A JP H0297488 A JPH0297488 A JP H0297488A
Authority
JP
Japan
Prior art keywords
diamond
ion
substrate
irradiated
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25136288A
Other languages
Japanese (ja)
Inventor
Masaharu Noda
正治 野田
Kazuo Higuchi
和夫 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP25136288A priority Critical patent/JPH0297488A/en
Publication of JPH0297488A publication Critical patent/JPH0297488A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title high-purity diamond pattern of an optional shape by irradiating the specified region on the surface of a substrate with an ion, and then treating the part masked by ion irradiation by vapor growth. CONSTITUTION:A masking material 2 made of Cu is placed on a part on the surface of the silicon substrate 1, and the substrate 1 is irradiated by the N2 ion 3 (N<2+>) having accelerating energy of 100keV at about 2X10<16>units/cm<2>. The masking material 2 is then released, and diamond is deposited on the substrate 2 at about 1000Torr, the methane flow rate of about 1ml/min, the H2 flow rate of about 200ml/min, and the substrate temp. of about 800 deg.C for about 2hr by the filament CVD, etc. A diamond pattern of the continuous film 5 consisting of about 2mum-thick diamond is formed on the surface of the substrate 1 without forming diamond on the part irradiated by the ion 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、任意のダイヤモンドパターンを形成すること
ができる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method by which an arbitrary diamond pattern can be formed.

〔従来の技術〕[Conventional technology]

従来、ダイヤモンド薄膜のパターン形成としては、フォ
トレジストよりなるレジストパターンを形成した基体材
料上にイオンブレーティング法またはイオンビームスパ
ッタ法によりアモルファスカーボン薄膜を形成し、更に
そのアモルファスカーボン膜表面にダイヤモンド薄膜を
形成することにより行われている(特開昭62−241
898号)。このダイヤモンド薄膜の形成は、炭素含有
化合物と水素または酸素、水等を原料に用いる公知の熱
フイラメントCVD法、各種プラズマCvD法、イオン
ビーム蒸着法、レーザーCVD法、燃焼炎を用いる方法
等により行われている。
Conventionally, patterning of a diamond thin film involves forming an amorphous carbon thin film by ion blasting or ion beam sputtering on a base material on which a photoresist pattern has been formed, and then depositing a diamond thin film on the surface of the amorphous carbon film. (Japanese Patent Application Laid-Open No. 62-241
No. 898). This diamond thin film is formed by the known hot filament CVD method using a carbon-containing compound, hydrogen or oxygen, water, etc. as raw materials, various plasma CVD methods, ion beam evaporation method, laser CVD method, method using combustion flame, etc. It is being said.

しかしながら、従来技術によれば基体材料上に、−旦ア
モルフアスカーボン膜を形成する必要がある。該アモル
ファスカーボンは、水素、酸素、水等によりダイヤモン
ドよりエツチングされやすいため、これらエツチング作
用をもつ気体を炭素含有化合物と共に原料に用いる従来
のダイヤモンド形成方法では、アモルファスカーボン膜
上べのダイヤモンドの析出は困難である。更に、仮にダ
イヤモンド薄膜がアモルファスカーボン膜上に形成され
ても、パターンの精度に問題があり、また機械的、電気
的、光学的、熱的にも性質がダイヤモンドに劣るアモル
ファスカーボンを不純物として含むため、ダイヤモンド
薄膜の応用上問題が生じる。
However, according to the prior art, it is necessary to first form an amorphous carbon film on a base material. Amorphous carbon is more easily etched than diamond by hydrogen, oxygen, water, etc., so in conventional diamond forming methods that use these etching gases together with carbon-containing compounds as raw materials, diamond precipitation on the amorphous carbon film is difficult. Have difficulty. Furthermore, even if a diamond thin film were to be formed on an amorphous carbon film, there would be problems with pattern accuracy, and it would also contain amorphous carbon as an impurity, which has mechanical, electrical, optical, and thermal properties that are inferior to diamond. , problems arise in the application of diamond thin films.

〔第1発明の説明〕 本第1発明(特許請求の範囲に記載の発明)は、上記従
来技術の問題点に鑑みなされたものであり、ダイヤモン
ド形成が不必要な部位へのダイヤモンドの形成を抑制し
、純粋なダイヤモンドからなる任意の形状のパターンを
形成する方法を堤供することを目的とする。
[Description of the first invention] The first invention (the invention described in the claims) has been made in view of the problems of the prior art described above, and is aimed at preventing the formation of diamonds in areas where diamond formation is unnecessary. The objective is to provide a method for forming patterns of arbitrary shapes made of pure diamond.

本第1発明は、基体材料表面にダイヤモンドパターンを
形成する方法であって、基体材料表面のダイヤモンドを
形成しない部分に予めイオンを照射し、その後、基体材
料表面のイオンを照射していない部分に気相法によりダ
イヤモンドを形成することを特徴とするダイヤモンドパ
ターンの形成方法である。
The first invention is a method for forming a diamond pattern on the surface of a base material, in which a portion of the surface of the base material where diamonds are not formed is irradiated with ions in advance, and then a portion of the surface of the base material that is not irradiated with ions is This is a diamond pattern forming method characterized by forming diamond by a vapor phase method.

本第1発明によれば、基体材料表面にイオンを照射する
とダイヤモンドの形成が著しく抑制されることを利用し
てパターンを形成する。そのため、従来のようにアモル
ファスカーボンを用いる必要はなく、高純度なダイヤモ
ンドからなるパターンを精度よく形成することができる
According to the first invention, a pattern is formed by utilizing the fact that diamond formation is significantly suppressed when the surface of a base material is irradiated with ions. Therefore, there is no need to use amorphous carbon as in the past, and a pattern made of highly pure diamond can be formed with high precision.

本第1発明のダイヤモンドパターンの形成方法は、ヒー
トシンク、電子回路、高硬度材料の必要部分のみのコー
ティング等のパターン形成に利用することができる。
The diamond pattern forming method of the first invention can be used to form patterns for heat sinks, electronic circuits, coating only necessary parts of high-hardness materials, and the like.

〔第2発明の説明〕 以下、本第1発明をより具体的にした発明(本第2発明
とする)を説明する。
[Description of the Second Invention] Hereinafter, an invention that is a more specific version of the first invention (referred to as the second invention) will be described.

本第2発明では、基体材料表面のダイヤモンドを形成し
ない部分にイオンを照射し、基体材料の表面を改質した
後、該基体材料表面のイオン未照射部のみにダイヤモン
ドを形成するものであり、イオン照射部分はダイヤモン
ド形成が抑制されている。
In the second invention, after modifying the surface of the base material by irradiating the surface of the base material with ions on the part where no diamond is formed, diamond is formed only on the non-ion irradiated part of the surface of the base material, Diamond formation is suppressed in the ion-irradiated area.

イオン照射した基体材料表面上でのダイヤモンド形成の
抑制は、イオン照射に伴う基体材料表面ないし表面近傍
領域に生じる非晶質化、欠陥の導入等の照射損傷あるい
はその再結晶化等による回復によって、ダイヤモンド核
形成サイトの減少、消滅によると考えられる。
Suppression of diamond formation on the surface of the substrate material irradiated with ions can be achieved by irradiation damage such as amorphization or introduction of defects that occurs on the surface of the substrate material or the region near the surface due to ion irradiation, or recovery by recrystallization, etc. This is thought to be due to the reduction or disappearance of diamond nucleation sites.

本第2発明において、基体材料としては、Si。In the second invention, the base material is Si.

Mo、Ta、W、Nb等の各種金属、あるいはその炭化
物、窒化物、酸化物、硼化物、合金等、あらゆるものが
挙げられ、それらのうちの1種でも2種以上組み合わせ
たものでもよい。それらの中でも、Si、SiC,Si
3 N4,5iOz、Zro、、 サファイア、Mo、
W、Ta、Nb、 ステンレスが望ましい。該基体材料
は、そのままの状態で本第2発明に使用してもよいが、
ダイヤモンド、アルミナ等の粉末で表面処理を行うとダ
イヤモンド形成時にダイヤモンドの核形成が容易となる
Examples include various metals such as Mo, Ta, W, and Nb, or their carbides, nitrides, oxides, borides, and alloys, and one or more of these may be used in combination. Among them, Si, SiC, Si
3 N4,5iOz, Zro,, Sapphire, Mo,
W, Ta, Nb, and stainless steel are preferable. The base material may be used as it is in the second invention, but
Surface treatment with powder of diamond, alumina, etc. facilitates diamond nucleation during diamond formation.

イオン照射は、公知のイオン注入機で行われ、照射イオ
ンには、イオン化可能な全元素及び全分子の中の任意の
1種ないしは2種以上の単原子イオンまたは分子・クラ
スターイオンが用いられる。
The ion irradiation is performed using a known ion implanter, and the irradiation ions are arbitrary one or more monatomic ions or molecular/cluster ions among all ionizable elements and molecules.

イオン源の取り扱い易さ、イオン電流密度、コスト等の
操作性、生産性の上からHe ”、 N”、 N2”。
From the viewpoint of ease of handling the ion source, ion current density, cost, etc., and productivity, we chose He", N", and N2".

Ne”、Ar″ Xe”、Kr”が特に有効である。照
射イオンのエネルギーは、イオンの平均射影飛程が、基
体材料の表面改質が有効に行われるように10人から1
μmになるように、イオン1重に合わせてIKeVから
IMeVの間に設定される。照射されるイオンの照射量
はイオン種と基体材料の組合せにより決まるが、通常基
体材料1 ci当たりlXl0”からlXl0”個のイ
オンを照射し、多くは十分な表面改質を生ぜしめる基体
材料1c+fl当たりlXl0”個から、作業時間の短
縮化のためlX1019個が適当である。イオン照射時
の基体材料の温度は、温度が低い方が表面改質には有利
であるが、室温以上でも表面改質は可能であり、通常−
196°Cから+500°Cに制御される。
Particularly effective are Ne", Ar"Xe", and Kr". The energy of the irradiated ions is set such that the average projected range of the ions ranges from 10 to 1 to effectively modify the surface of the base material.
It is set between IKeV and IMeV in accordance with a single ion so that the voltage is μm. The amount of ion irradiation is determined by the combination of the ion species and the substrate material, but usually 1X10" to 1X10" ions are irradiated per 1 ci of the substrate material, and in most cases, the substrate material 1c+fl produces sufficient surface modification. From 1X10'' to 1019 pieces per ion irradiation, it is appropriate to reduce the working time to 1X10. quality is possible and usually −
Controlled from 196°C to +500°C.

このイオン照射する部分は、ダイヤモンドを形成しない
部分のみであり、ダイヤモンド形成の箇所は、イオン照
射時にマスキング材によりマスクをしておく。このマス
キング材は、イオン飛程距乱取上の厚さがあれば材質は
問わず、公知の方法によるフォトレジストからなるレジ
ストパターンは勿論、金属やプラスチック製のパターン
シールド、あるいは種々の蒸着膜ないしはスパッタ膜で
もかまわない。ダイヤモンド以外の炭素と水素からなる
マスキング材でパターンを形成しておくと、ダイヤモン
ド形成時に該マスキング材はエツチングされ、マスキン
グ材除去作業は省略できる。更に、集束イオン源を用い
マスクを用いることなくパターン状にイオン注入した基
体も用いることができる。一部の領域にイオンを照射さ
れた該基体材料上へのダイヤモンドの形成は、公知の熱
フイラメントCVD法、各種プラズマCVD法、イオン
ビーム蒸着法、レーザーCVD法等の気相法により行う
。原料のガスとしては、炭素源として、メタン、エタン
、プロパン、ブタン、ペンタン、ヘキサン、エチレン、
アセチレン、ベンゼン等の炭化水素、メタノール、エタ
ノール、プロパツール、ブタノール等のアルコールまた
はアセトン、ジエチルケトン、エチルメチルケトン等の
ケトンまたはメチルエーテル、エチルエーテル、メチル
エチルエーテル等のエーテルに代表される酸素を含む炭
化水素、トリメチルアミン、トリエチルアミン等に代表
される窒素を含む炭化水素、−酸化炭素のうちの1種な
いしは2種以上の混合ガスを水素、酸素のうちのいずれ
かまたは双方の混合ガスで希釈して用い、更にこれに水
蒸気ないしはアルゴン等の希ガスを加えたもの等を用い
る。ダイヤモンドを半導体化する場合には、ジボラン、
硼酸等硼素を含む化合物、またはホスフィン等リンを含
む化合物ないしはアルシン等砒素を含む化合物を原料ガ
ス中に混入させることにより可能となる。ダイヤモンド
形成時の圧力は10−2To r rから大気圧に制御
されるが、0.1〜300To rrが好適である。ダ
イヤモンド形成時の基体材料の温度は500〜1200
°Cが好適である。また、形成するダイヤモンドの形状
は、膜状、層状等いかなるものでもよく、その厚さもい
かなる大きさでもよい。
The portions to be irradiated with ions are only the portions where diamonds are not formed, and the portions where diamonds are to be formed are masked with a masking material during ion irradiation. This masking material can be made of any material as long as it has a thickness sufficient to measure the ion range, and may include a resist pattern made of photoresist by a known method, a pattern shield made of metal or plastic, or various vapor deposited films or A sputtered film may also be used. If a pattern is formed using a masking material made of carbon and hydrogen other than diamond, the masking material will be etched during diamond formation, and the work of removing the masking material can be omitted. Furthermore, a substrate in which ions are implanted in a pattern using a focused ion source without using a mask can also be used. Diamond is formed on the base material, which has been irradiated with ions in a partial region, by a known vapor phase method such as a thermal filament CVD method, various plasma CVD methods, an ion beam evaporation method, or a laser CVD method. Raw material gases include methane, ethane, propane, butane, pentane, hexane, ethylene,
Hydrocarbons such as acetylene and benzene, alcohols such as methanol, ethanol, propatool and butanol, ketones such as acetone, diethyl ketone and ethyl methyl ketone, and oxygen such as ethers such as methyl ether, ethyl ether and methyl ethyl ether. Diluting one or more mixed gases of nitrogen-containing hydrocarbons such as trimethylamine and triethylamine, and -carbon oxide with a mixed gas of hydrogen, oxygen, or both. and water vapor or a rare gas such as argon is added thereto. When converting diamond into a semiconductor, diborane,
This is possible by mixing a boron-containing compound such as boric acid, a phosphorus-containing compound such as phosphine, or an arsenic-containing compound such as arsine into the raw material gas. The pressure during diamond formation is controlled from 10-2 Torr to atmospheric pressure, but preferably 0.1 to 300 Torr. The temperature of the base material during diamond formation is 500-1200
°C is preferred. Further, the diamond to be formed may have any shape such as a film or a layer, and may have any thickness.

しかして、上記ダイヤモンド形成処理により、イオン照
射部にはダイヤモンドはほとんど析出せずに、未照射部
のみにダイヤモンドが形成され、ダイヤモンドによるパ
ターンが形成される。また、イオン照射による基体材料
の損傷は、ダイヤモンド形成時の熱処理効果により回復
し、基体材料の性質を損なうことはない。
As a result of the above-mentioned diamond forming process, diamond is hardly deposited in the ion irradiated area, and diamond is formed only in the non-irradiated area, thereby forming a diamond pattern. Further, damage to the base material caused by ion irradiation is recovered by the heat treatment effect during diamond formation, and the properties of the base material are not impaired.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 第1図に、本実施例にかかるダイヤモンドパターンの形
成方法を説明するための概念図を示す。
Example 1 FIG. 1 shows a conceptual diagram for explaining the method of forming a diamond pattern according to this example.

シリコン基体材料1の(100)面上の一部を、銅板の
マスキング材2を重ねてマスクしく第1図中の(A))
、加速して100KeVのエネルギーを持つ窒素イオン
(Nz”)3を室温で該基体材料1に1d当たり2X1
0”個照射した(同図中の(B))。更に銅板を外した
後(同図中の(C)>=S基体に熱フイラメントCVD
法で圧力100To r r、メタン流量1mff1/
min、水素流ff1200m1t/m i n、、基
体温度800°Cで2時間ダイヤモンドを析出させた。
A part of the (100) plane of the silicon base material 1 is masked by overlapping a copper plate masking material 2 ((A) in FIG. 1).
, nitrogen ions (Nz") 3 having an energy of 100 KeV are applied to the substrate material 1 at room temperature at a rate of 2X1 per d.
0" was irradiated ((B) in the same figure). After removing the copper plate ((C) in the same figure)
The pressure is 100Torr, the methane flow rate is 1mff1/
Diamond was deposited for 2 hours at a hydrogen flow rate of 1200 ml t/min and a substrate temperature of 800°C.

その結果、イオン未照射部には厚さ2μmのダイヤモン
ドからなる連続膜5が形成されたが、照射部にはダイヤ
モンドは殆ど見出されず、基体材料のイオン照射損傷領
域4の損傷も回復した(同図中の(D))。
As a result, a continuous film 5 made of diamond with a thickness of 2 μm was formed in the non-ion irradiated area, but almost no diamond was found in the irradiated area, and the damage in the ion irradiation-damaged area 4 of the base material was also recovered (same as above). (D) in the figure).

実施例2 イオン照射時の照射イオンのエネルギーを60KeVと
した以外は、実施例1と同様にしてダイヤモンド膜のパ
ターン形成処理を行った。その結果、イオン未照射部に
は、厚さ2μmのダイヤモンドから成る連続膜が形成さ
れたが、照射部にはダイヤモンドは殆ど見出されず、基
体材料の照射損傷も回復した。
Example 2 A diamond film pattern formation process was performed in the same manner as in Example 1, except that the energy of irradiated ions during ion irradiation was set to 60 KeV. As a result, a continuous film of diamond with a thickness of 2 μm was formed in the non-ion irradiated area, but almost no diamond was found in the irradiated area, and the irradiation damage to the base material was also recovered.

実施例3 イオン照射時の照射イオンのエネルギーを60KeV、
照射量を1CIII当たり2X10”個とした以外は、
実施例1と同様にしてダイヤモンド膜のパターン形成処
理を行った。その結果、イオン未照射部には厚さ2μm
のダイヤモンドから成る連続膜が形成されたのに対し、
照射部にはグイヤモンドは殆ど見出されず、基体材料の
照射損傷も回復した。
Example 3 The energy of irradiated ions during ion irradiation was set to 60 KeV,
Except that the irradiation dose was 2X10” per CIII,
A diamond film pattern formation process was performed in the same manner as in Example 1. As a result, a thickness of 2 μm was found in the non-ion irradiated area.
A continuous film of diamond was formed, whereas
Almost no guyarmond was found in the irradiated area, and the irradiation damage to the base material was also recovered.

実施例4 炭化ケイ素焼結体から成る基体材料上の一部に60Ke
Vのエネルギーを持つ窒素イオン(N、°)を室温で1
 c++!当たり2X10′6個照射した後、該基体に
熱フイラメントCVD法で圧力50Tor「、メタン流
量1ml/min、水素流量200 ml/min、基
体温度800″Cで2時間ダイヤモンドを析出させた。
Example 4 60Ke on a part of the base material made of silicon carbide sintered body
Nitrogen ion (N, °) with energy V is 1 at room temperature.
c++! After irradiating 2 x 10'6 pieces per diamond, diamond was deposited on the substrate by hot filament CVD at a pressure of 50 Tor'', a methane flow rate of 1 ml/min, a hydrogen flow rate of 200 ml/min, and a substrate temperature of 800''C for 2 hours.

その結果イオン未照射部にはダイヤモンドからなる厚さ
2μmの連続膜が形成されたが、照射部にはシリコン基
体と同様にダイヤモンドは殆ど見出されず、基体材料の
損傷も回復した。
As a result, a continuous film of diamond with a thickness of 2 μm was formed in the non-ion irradiated area, but almost no diamond was found in the irradiated area, similar to the silicon substrate, and the damage to the substrate material was also recovered.

実施例5 液体窒素で冷却したシリコン基体の一部に280KeV
のエネルギーを持つアルゴンイオン(Ar”)を1cボ
当たりlXl016個照射した後、該基体に実施例4と
同様なダイヤモンド析出条件でダイヤモンドを析出させ
た。その結果、イオン未照射部では、ダイヤモンド核生
成密度が1 cl、当たりlXl0”個でダイヤモンド
の連続膜が形成したのに対し、イオン照射部の核生成密
度は1 cTM当たり5X10’個と極めて少な(、勿
論ダイヤモンド薄膜の形成は不可能であった。本実施例
で得られたダイヤモンド薄膜の走査型電子顕微鏡写真(
倍率2700倍)を第2図に示す。図中(a)部分がイ
オン未照射部に生成したダイヤモンド薄膜、(b)部分
がイオン照射部の基体材料である。
Example 5 280 KeV applied to a part of a silicon substrate cooled with liquid nitrogen
After irradiating lXl016 argon ions (Ar") with an energy of Whereas a continuous diamond film was formed with a nucleation density of 1X10'' per 1 cl, the nucleation density in the ion irradiation area was extremely low at 5X10'' per 1 cTM (of course, it was impossible to form a thin diamond film). A scanning electron micrograph of the diamond thin film obtained in this example (
(magnification: 2700 times) is shown in FIG. In the figure, part (a) shows the diamond thin film formed in the non-ion irradiated area, and part (b) shows the base material of the ion irradiated part.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1にかかるダイヤモンドのパターン形
成方法を説明するための概念図、第2図は、実施例4に
おいて形成したダイヤモンド薄膜の粒子構造を示す走査
型電子顕微鏡写真である。 ■・・・基体材料、 2・・・マスキング材3・・・照
射イオン、4・・・イオン照射損傷領域5・・・ダイヤ
モンド薄膜
FIG. 1 is a conceptual diagram for explaining the diamond pattern forming method according to Example 1, and FIG. 2 is a scanning electron micrograph showing the grain structure of the diamond thin film formed in Example 4. ■...Base material, 2...Masking material 3...Irradiation ions, 4...Ion irradiation damage area 5...Diamond thin film

Claims (1)

【特許請求の範囲】[Claims] 基体材料表面にダイヤモンドのパターンを形成する方法
であって、基体材料表面のダイヤモンドを形成しない部
分に予めイオンを照射し、その後、基体材料表面のイオ
ンを照射していない部分に気相法によりダイヤモンドを
形成することを特徴とするダイヤモンドパターンの形成
方法。
A method of forming a diamond pattern on the surface of a base material, in which ions are irradiated on the surface of the base material where diamonds are not formed, and then diamond is applied to the areas on the surface of the base material that are not irradiated with ions using a vapor phase method. A method for forming a diamond pattern, characterized by forming a diamond pattern.
JP25136288A 1988-10-05 1988-10-05 Formation of diamond pattern Pending JPH0297488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25136288A JPH0297488A (en) 1988-10-05 1988-10-05 Formation of diamond pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25136288A JPH0297488A (en) 1988-10-05 1988-10-05 Formation of diamond pattern

Publications (1)

Publication Number Publication Date
JPH0297488A true JPH0297488A (en) 1990-04-10

Family

ID=17221700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25136288A Pending JPH0297488A (en) 1988-10-05 1988-10-05 Formation of diamond pattern

Country Status (1)

Country Link
JP (1) JPH0297488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492661A (en) * 2011-07-14 2013-01-09 Element Six Ltd Single crystal diamond substrates for synthesis of single crystal diamond material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492661A (en) * 2011-07-14 2013-01-09 Element Six Ltd Single crystal diamond substrates for synthesis of single crystal diamond material
GB2492661B (en) * 2011-07-14 2014-05-21 Element Six Ltd Single crystal diamond substrates for synthesis of single crystal diamond material

Similar Documents

Publication Publication Date Title
CN103035513B (en) The forming method of amorphous carbon film
EP0304201A1 (en) Process for making diamond doped diamond and diamond-cubic boron nitride composite films
JPH02217469A (en) Formation of thin film and forming device
WO1991000377A1 (en) Process for making diamond, doped diamond, diamond-cubic boron nitride composite films at low temperature
US20040009115A1 (en) Selective area growth of aligned carbon nanotubes on a modified catalytic surface
JP2005023358A (en) Masking material for reactive ion etching, mask and dry etching method
Catherine Preparation techniques for diamond-like carbon
Ishihara et al. Laser-assisted chemical vapor deposition of titanium nitride films
JP2007507602A (en) Electron beam enhanced large area deposition system
JPH0230697A (en) Formation of vapor-phase synthesized diamond crystal and base material having diamond crystal
JPH0297488A (en) Formation of diamond pattern
JP2634183B2 (en) Method of forming diamond crystal
Vempaire et al. Plasma-based ion implantation: a valuable technology for the elaboration of innovative materials and nanostructured thin films
JPH01104763A (en) Production of thin metal compound film
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JP3176086B2 (en) Diamond crystal and substrate for diamond formation
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
Werbowy et al. RF plasma selective etching of boron nitride films
JPS62171995A (en) Production of diamond
McGinnis et al. Use of oxygen-stabilized C60 films for selective chemical vapor deposition
JPS61221371A (en) Method for synthesizing diamond
JPS60127299A (en) Gas-phase synthesis of diamond
JPH0397847A (en) Formation of boron nitride film