JPH0287006A - Apparatus and method of measuring shape of sample - Google Patents

Apparatus and method of measuring shape of sample

Info

Publication number
JPH0287006A
JPH0287006A JP23994588A JP23994588A JPH0287006A JP H0287006 A JPH0287006 A JP H0287006A JP 23994588 A JP23994588 A JP 23994588A JP 23994588 A JP23994588 A JP 23994588A JP H0287006 A JPH0287006 A JP H0287006A
Authority
JP
Japan
Prior art keywords
sample
reference plane
shape
interference fringes
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23994588A
Other languages
Japanese (ja)
Other versions
JP2631003B2 (en
Inventor
Koji Osawa
孝治 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP23994588A priority Critical patent/JP2631003B2/en
Publication of JPH0287006A publication Critical patent/JPH0287006A/en
Application granted granted Critical
Publication of JP2631003B2 publication Critical patent/JP2631003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To simply measure the surface unevenness quantity of a sample to a sample sucking reference plane with good accuracy by calculating the shape of a surface to be measured on the basis of detected interference fringe data. CONSTITUTION:The laser beam emitted from a beam source 6 is expanded in luminous flux by an expander 5 and becomes parallel luminous flux by a collimator lens 6 to be incident to a prism 7. A part of the beam incident to the prism is transmitted through the reference plane thereof to be reflected by the reference plane 2' of a sample sucking table 2 and again passes through the prism 7 to go toward a screen 8. The other beam is reflected from the reference plane 7' of the prism 7 to go toward the screen 8 and generates an interference phenomenon along with the beam reflected from the reference plane 2' to project an interference fringe on the screen 8. The projected interference fringe is formed into an image on the imaging surface of a television camera 10 through a lens 9 to be taken out as an image signal. An opera tional processing part 11 analyzes the surface shape of the sample and that of the reference plane from the detected interference fringe to store both of them and detects the positional relation of both of them from the shape of the reference plane common to both of them to operate the difference of the fine shape of the plane.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は干渉計を利用して試料の表面形状を測定する表
面形状測定装置及び測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a surface profile measuring device and a measuring method for measuring the surface profile of a sample using an interferometer.

[従来技術] 薄板状試料である半導体ウェーハは全体的反りや傾斜と
部分的な凹凸とを合せ持っており、ウェハの表面や裏面
はこれらが合成された形状をなしている。
[Prior Art] A semiconductor wafer, which is a thin sample, has a combination of overall warpage and inclination as well as local unevenness, and the front and back surfaces of the wafer have a shape that is a combination of these.

微細パターンの焼付けを行う半導体製造工程においては
、ウェーハを基準平面に吸着固定したときのウェーハ表
面の凹凸量が露光装置の焦点深度内にあることか必要で
あり、吸着基準平面に吸着されたウェーハ表面の凹凸量
の検査か重要となっている。
In the semiconductor manufacturing process where fine patterns are printed, it is necessary that the amount of unevenness on the wafer surface be within the depth of focus of the exposure equipment when the wafer is suctioned and fixed to the reference plane. It is important to inspect the amount of surface unevenness.

従来、干渉計を利用してこの検査を行う場合には、干渉
計の参照平面に対して、ウェーハ吸着基準面を予め既知
の位置関係とすることか必要であった。即ち、ウェーハ
表面の干渉縞状態のみからは、ウェーハを吸着固定して
いる基準平面の傾き状態が判らないので、吸着基準平面
に対するつ■凸表面の凹凸量を得るには、基準面の傾き
を調整する必要があった。
Conventionally, when performing this inspection using an interferometer, it has been necessary to set the wafer suction reference plane in a known positional relationship in advance with respect to the reference plane of the interferometer. In other words, the inclination of the reference plane on which the wafer is suctioned and fixed cannot be determined from only the state of the interference fringes on the wafer surface. Therefore, in order to obtain the amount of unevenness of the convex surface with respect to the suction reference plane, the inclination of the reference plane must be determined. I had to adjust.

この点を改善するために本願出願人は特願昭62−15
6212号において、参照平面と試料吸着基準面との位
置関係にかかわりなく測定できるよう、参照平面と基準
平面上に干渉縞を形成する手段を設け、両干渉縞情報に
基づき縞解析を行う技術を提案している。
In order to improve this point, the applicant of the present application filed a patent application in 1986-15.
In No. 6212, in order to be able to perform measurements regardless of the positional relationship between the reference plane and the sample adsorption reference plane, a technique was developed to provide a means for forming interference fringes on the reference plane and the standard plane, and to perform fringe analysis based on the information on both interference fringes. is suggesting.

しかしながら、この技術もウェーハ吸着基準平面を完全
平面と仮定しているので、この仮定を保証できない場合
には十分な効果か期待できない。
However, since this technique also assumes that the wafer suction reference plane is a perfect plane, if this assumption cannot be guaranteed, sufficient effects cannot be expected.

また、現在におけるウェーハの大口径化、バタン線幅の
微細化は極めて高い精度の測定を要求する。
Furthermore, the current increase in diameter of wafers and miniaturization of batten line widths require extremely high precision measurement.

測定精度の高度化に応える技術として、縞走査干渉法(
rring Scanning Interferom
etry )が知られている。この方法は測定中に参照
光の光路長を変化ざぜ相対的に基準位相の異なる干渉縞
をコンピュータに読込み、参照用の基準位相を基に位相
分布を算出するものである。この方法によれば、1/1
00波長程度の精度が可能となる。
Fringe scanning interferometry (
rring Scanning Interferom
etry) is known. In this method, the optical path length of the reference light is changed during measurement, interference fringes with relatively different reference phases are read into a computer, and the phase distribution is calculated based on the reference reference phase. According to this method, 1/1
Accuracy on the order of 00 wavelengths is possible.

しかしながら、この精度も干渉計自体の精度誤差がそれ
以下でなければ意味が薄れる。
However, this accuracy becomes meaningless unless the accuracy error of the interferometer itself is less than this.

[発明の課題] 本発明の目的は上記従来技術の欠点に鑑み、干渉計の参
照平面と試料吸着基準面の位置関係、試料吸着基準平面
および干渉計の精度の影響を受けることなく、試料吸着
基準平面に対する試料表面の凹凸量を精度良く簡単に測
定できる装置と方法を提供することにある。
[Problems to be solved by the invention] In view of the above-mentioned drawbacks of the prior art, it is an object of the present invention to solve the problem of sample adsorption without being affected by the positional relationship between the reference plane of the interferometer and the sample adsorption reference plane, the accuracy of the sample adsorption reference plane, and the interferometer. It is an object of the present invention to provide an apparatus and a method that can easily and accurately measure the amount of unevenness on a sample surface with respect to a reference plane.

[発明の構成] 上記目的を達成するために、本発明は高精度に平面研磨
され測定試料より大きい面積の基準平面を有する試料吸
着手段と、試料吸着時には試料表面及び少なくとも試料
外周の基準平面の一部に。
[Structure of the Invention] In order to achieve the above object, the present invention provides a sample adsorption means having a reference plane that is polished with high precision and has a larger area than the measurement sample, and a reference plane on the sample surface and at least the outer periphery of the sample when adsorbing the sample. In part.

更には試料を載置していない時には試料載置時の試料裏
面及び前記試料の外周相当部の基準平面に干渉縞を形成
する手段と、干渉縞を検出する干渉縞検出手段と、検出
された各干渉縞情報に基づき被測定面の形状を算出する
干渉縞解析手段と、両者に共通する基準平面情報から両
者の位置関係を検出する手段と、前記の試料表面の表面
形状から試料裏面の基準平面の微細形状の差を演算する
手段とを有することを特徴としている。
Further, when the sample is not placed, means for forming interference fringes on the back surface of the sample when the sample is placed and a reference plane corresponding to the outer periphery of the sample, interference fringe detection means for detecting the interference fringes, An interference fringe analysis means for calculating the shape of the surface to be measured based on each piece of interference fringe information, a means for detecting the positional relationship between the two from reference plane information common to both, and a reference for the back surface of the sample from the surface shape of the front surface of the sample. The method is characterized by comprising means for calculating differences in fine shapes of planes.

また、測定試料より大きい面積の基準平面を有する試料
吸着手段の基準平面上に干渉縞を形成するステップと、
該干渉縞を検出するステップと、検出した干渉縞より基
準平面の形状を解析し記憶するステップと、試料吸着手
段に試料を吸着するステップと、試料表面及び基準平面
上に干渉縞を形成するステップと、該干渉縞を検出する
ステップと、検出した干渉縞より試料表面及び基準平面
の形状を解析し記憶するステップと、両者に共通する基
準平面の形状から両者の位置関係を検出するステップと
、平面の微細形状の差を演拝するステップからなること
を特徴としている。
Further, forming interference fringes on a reference plane of the sample adsorption means having a reference plane having a larger area than the measurement sample;
a step of detecting the interference fringes, a step of analyzing and storing the shape of the reference plane from the detected interference fringes, a step of adsorbing the sample to the sample adsorption means, and a step of forming interference fringes on the sample surface and the reference plane. a step of detecting the interference fringes; a step of analyzing and storing the shapes of the sample surface and the reference plane from the detected interference fringes; and a step of detecting the positional relationship between the two from the shape of the reference plane common to both. It is characterized by a step that examines differences in minute shapes on a plane.

本発明の詳細な説明を行う。The present invention will be described in detail.

第2図は試料吸着台の断面形状が示されており、その表
面はやや凸状になっている。試料吸着台はもともと高精
度に仕上げられているので、試料吸着した時にその基準
平面の精度が問題となるのは極めて微細な平面誤差であ
る。。
FIG. 2 shows the cross-sectional shape of the sample suction table, and its surface is slightly convex. Since the sample suction table is originally finished with high precision, extremely minute plane errors can cause problems with the accuracy of the reference plane when the sample is suctioned. .

そこでまず、試料を基準平面に吸着しない状態(第2図
)で基準平面2″の表面形状の測定を行い、次に試料を
吸着した状態(第3図)で試料表面及び基準平面の表面
形状の測定を行う。その後、両者の共通部分の表面形状
に基づき、これを重ね合せ、試料表面と基準平面の差a
を得ることができる。この値は従来装置による測定値す
に対して、第5図に示すように試料を完全平面に吸着し
た場合の凹凸量G(第5図)に、より近似した値でおる
Therefore, first, we measured the surface shape of the reference plane 2'' with the sample not adsorbed to the reference plane (Fig. 2), and then measured the surface shape of the sample surface and the reference plane with the sample adsorbed (Fig. 3). Then, based on the surface shape of the common part of both, they are superimposed and the difference a between the sample surface and the reference plane is calculated.
can be obtained. This value is closer to the amount of unevenness G (FIG. 5) when the sample is adsorbed onto a completely flat surface, as shown in FIG. 5, compared to the value measured by the conventional device.

[発明の実施例] 以下、本発明の一実施例を図面に基づいて説明する。[Embodiments of the invention] Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明を斜入射干渉計に応用した場合の一光学
系の基本配置図である。
FIG. 1 is a basic layout diagram of an optical system when the present invention is applied to a grazing incidence interferometer.

1は試料で具体的にはウェーハである。2は試料1より
大きい面積の基準平面2−を有する試料吸着台、3はピ
エゾ素子で参照平面7−と被測定面との距離を変え参照
光の位相を変化させる。
1 is a sample, specifically a wafer. Reference numeral 2 denotes a sample suction table having a reference plane 2- having an area larger than that of the sample 1, and 3 a piezo element which changes the distance between the reference plane 7- and the surface to be measured to change the phase of the reference light.

4〜8は斜入射干渉法による干渉縞を形成する光学系で
ある。
4 to 8 are optical systems that form interference fringes by oblique incidence interference method.

4は参照光の光源で、)−1e−Neレーザ装置を用い
ている。光m4から射出された光束はイクスパンダ5に
よって必要な大きさの光束に拡げられ、前側焦点位置に
イクスパンダ5がくるように配置されたコリメータレン
ズ6により平行光束となる。
4 is a reference light source, which uses a )-1e-Ne laser device. The luminous flux emitted from the light m4 is expanded into a luminous flux of a necessary size by an expander 5, and is converted into a parallel luminous flux by a collimator lens 6 arranged so that the expander 5 is located at the front focal position.

7は被測定試料表面及び基準平面2′の干渉縞を発生さ
せる参照平面7′を有するプリズムであり、8は干渉縞
像が形成されるスクリーンである。
7 is a prism having a reference plane 7' that generates interference fringes of the surface of the sample to be measured and the reference plane 2', and 8 is a screen on which an image of the interference fringes is formed.

スクリーン8上の干渉縞はレンズ9を介しテレビカメラ
10撮像面上に結像される。なお、本実施例では干渉縞
をスクリーン8に一旦投影し、スクリーン像をテレビカ
メラにより搬像するという方法を用いているが、スクリ
ーン8を取り除き空中像を直接テレビカメラにより撮影
する方法でもよい。
The interference fringes on the screen 8 are imaged onto the imaging surface of the television camera 10 via the lens 9. Although this embodiment uses a method in which interference fringes are once projected onto the screen 8 and the screen image is conveyed by a television camera, a method may also be used in which the screen 8 is removed and an aerial image is directly photographed by a television camera.

11は演算処理部で、テレビカメラを介し画像データを
取り組み、処理して被測定面の解析を行う。
Reference numeral 11 denotes an arithmetic processing unit that processes image data via a television camera and analyzes the surface to be measured.

12はテレビカメラで撮影した像や解析結果を表示する
モニタである。また、]3は印字手段である。
12 is a monitor that displays images taken by a television camera and analysis results. Also, ]3 is a printing means.

以上のような実施例において、以下その動作を説明する
The operation of the above embodiment will be explained below.

試料吸着台2をその基準平面2−上に試料1を載せずに
、所定の測定位置に移動する。
The sample suction table 2 is moved to a predetermined measurement position without placing the sample 1 on the reference plane 2-.

光源4から出射されたレーザ光はイクスパンダ5により
光束を拡げられ、コリメータレンズ5により平行光束と
なり、プリズム7に入射する。プリズム7に入射した光
の一部はその参照平面を透過して、試料吸着台2の基準
平面2−で反射し、再度プリズム7を通り、スクリーン
8に向かう。
The laser beam emitted from the light source 4 is expanded by the expander 5, becomes a parallel beam by the collimator lens 5, and enters the prism 7. A portion of the light incident on the prism 7 passes through the reference plane, is reflected by the reference plane 2- of the sample suction table 2, passes through the prism 7 again, and heads toward the screen 8.

プリズム7に入射したその伯の光はその参照平面で反射
してスクリーン8に向かい、基準平面2−で反射した光
と干渉現象を引き起こし、スクリン8に投影される。ス
クリーン8に投影された干渉縞をレンズ9を介し、テレ
ビカメラ10の撮像面に結像させ、映像信号として取り
出す。その映像信号を演算処理部]1に送り、解析し記
憶する。
The light incident on the prism 7 is reflected by the reference plane and directed toward the screen 8, causes an interference phenomenon with the light reflected from the reference plane 2-, and is projected onto the screen 8. The interference fringes projected onto the screen 8 are imaged on the imaging surface of the television camera 10 via the lens 9 and taken out as a video signal. The video signal is sent to the arithmetic processing unit]1, where it is analyzed and stored.

この場合、振動や空気の揺ぎ等の影響を廃除するために
、異常な値をキャンセルしたり平均化する等公知の処理
方法を併用することは一層信頼度を高めることになる。
In this case, in order to eliminate the effects of vibrations, air fluctuations, etc., reliability can be further increased by using known processing methods such as canceling or averaging abnormal values.

なお、本実施例では、ピエゾ素子3に電圧を印加し参照
面の位相を変化させ、複数の映像データを得ることによ
り、高精度の干渉縞計測を行っているが、これ自体は多
くの文献に示されているものなので、その説明は省略す
る(例えば、AI)pl、Opt、、’13.P269
3 )。
In this example, high-precision interference fringe measurement is performed by applying a voltage to the piezo element 3 to change the phase of the reference plane and obtaining a plurality of image data, which is described in many documents. (For example, AI) pl, Opt, '13. P269
3).

その後、試料吸着台2は試料受渡位置まで図示なき駆動
手段にて移動し、試料吸着台の基準平面2−上に試料1
を載せ、真空強制吸着した後、再度無定位置に移動する
。移動後、同様にして干渉縞を解析して基準平面2−及
び試料表面の凹凸情報を得る。
Thereafter, the sample suction table 2 is moved to the sample delivery position by a drive means (not shown), and the sample 1 is placed on the reference plane 2- of the sample suction table.
, and after forced vacuum adsorption, move to an indeterminate position again. After the movement, the interference fringes are similarly analyzed to obtain information on the reference plane 2- and the irregularities on the sample surface.

このようにして得られた2種類の情報に共通する基準平
面の情報に基づいて、情報の位置合わせを行い、両者の
差をとることにより、試料表面の凹凸量を得る。
The information is aligned based on the reference plane information common to the two types of information obtained in this way, and the difference between the two is calculated to obtain the amount of unevenness on the sample surface.

この結果はモニタ12に表示され、印字手段13に印字
される。
This result is displayed on the monitor 12 and printed on the printing means 13.

[発明の効果] 以上説明したように、本発明によれば、試料吸着基準平
面の平面測定を行った後に、基準面に吸着された試料表
面の凹凸測定を行い、試料の表面形状から吸着基準面の
形状を除去するため、吸着基準平面の微細な平面誤差の
影響を受けることなく、精度の高い測定を行うことがで
きる。
[Effects of the Invention] As explained above, according to the present invention, after the planar measurement of the sample adsorption reference plane is performed, the unevenness of the surface of the sample adsorbed to the reference surface is measured, and the adsorption reference is determined from the surface shape of the sample. Since the shape of the surface is removed, highly accurate measurement can be performed without being affected by minute plane errors of the suction reference plane.

同様にして、干渉計固有の誤差も除去されることになる
Similarly, errors inherent in the interferometer will also be removed.

また、装置を使用する環境の温度変化による装置の熱変
形や長年の使用による吸着基準平面の摩耗の影響も受け
ることなく、精度の高い測定を安定的に行うことができ
る。
Furthermore, highly accurate measurements can be stably performed without being affected by thermal deformation of the device due to temperature changes in the environment in which the device is used or wear of the suction reference plane due to long-term use.

更に、試料より大きい面積の試料基準平面を使用し試料
外周部の測定結果を得ることにより、干渉計の参照基準
面に対する試料基準面の正確な傾斜量が解るので、測定
の都度高精度の平面合せをする必要が無くなる。
Furthermore, by using a sample reference plane with a larger area than the sample and obtaining measurement results for the outer circumference of the sample, the exact amount of inclination of the sample reference plane with respect to the reference plane of the interferometer can be determined. There is no need to match.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を斜入射干渉計に応用した場合の光学系
の一基本配置図、第2図〜第4図は本発明の詳細な説明
する図である。 1・・・・・・試料     2・・・・・・試料吸着
台2′・・・・・・基準平面  3・・・・・・ピエゾ
素子4・・・・・・)−1e−Neレーザ
FIG. 1 is a basic layout diagram of an optical system when the present invention is applied to a grazing incidence interferometer, and FIGS. 2 to 4 are diagrams illustrating the present invention in detail. 1...Sample 2...Sample suction table 2'...Reference plane 3...Piezo element 4...)-1e-Ne laser

Claims (5)

【特許請求の範囲】[Claims] (1)高精度に平面研磨され測定試料より大きい面積の
基準平面を有する試料吸着手段と、 試料吸着時には試料表面及び少なくとも試料外周の基準
平面の一部に、更には試料を載置していない時には試料
載置時の試料裏面及び前記試料の外周相当部の基準平面
に干渉縞を形成する手段と、干渉縞を検出する干渉縞検
出手段と、 検出された各干渉縞情報に基づき被測定面の形状を算出
する干渉縞解析手段と、 両者に共通する基準平面情報から両者の位置関係を検出
する手段と、 前記の試料表面の表面形状から試料裏面の基準平面の微
細形状の差を演算する手段とを有することを特徴とする
試料形状測定装置。
(1) A sample adsorption means having a reference plane that is polished with high precision and has a larger area than the measurement sample, and when the sample is adsorbed, no sample is placed on the sample surface or at least a part of the reference plane around the sample periphery. Sometimes, means for forming interference fringes on the back surface of the sample when the sample is placed and a reference plane corresponding to the outer periphery of the sample; interference fringe detection means for detecting the interference fringes; an interference fringe analysis means for calculating the shape of the sample, a means for detecting the positional relationship between the two from reference plane information common to both, and a means for calculating the difference in the fine shape of the reference plane on the back surface of the sample from the surface shape of the sample surface. A sample shape measuring device comprising: means.
(2)第1項の干渉縞を検出する干渉縞検出手段とは二
次元イメージセンサであることを特徴とする試料形状測
定装置。
(2) A sample shape measuring device characterized in that the interference fringe detection means for detecting interference fringes in the first term is a two-dimensional image sensor.
(3)第1項の干渉縞解析手段とは縞走査干渉法に基づ
くものであることを特徴とする試料形状測定装置。
(3) A sample shape measuring device characterized in that the interference fringe analysis means in item 1 is based on fringe scanning interferometry.
(4)測定試料より大きい面積の基準平面を有する試料
吸着手段の基準平面上に干渉縞を形成するステップと、 該干渉縞を検出するステップと、 検出した干渉縞より基準平面の形状を解析し記憶するス
テップと、 試料吸着手段に試料を吸着するステップと、試料表面及
び基準平面上に干渉縞を形成するステップと、 該干渉縞を検出するステップと、 検出した干渉縞より試料表面及び基準平面の形状を解析
し記憶するステップと、 両者に共通する基準平面の形状から両者の位置関係を検
出するステップと、 前記の試料表面の表面形状から試料裏面の基準平面の微
細形状の差を演算するステップからなることを特徴とす
る試料形状測定方法。
(4) forming interference fringes on the reference plane of the sample adsorption means having a reference plane with a larger area than the measurement sample; detecting the interference fringes; and analyzing the shape of the reference plane from the detected interference fringes. storing the sample, adsorbing the sample to the sample adsorption means, forming interference fringes on the sample surface and the reference plane, detecting the interference fringes, and detecting the sample surface and the reference plane from the detected interference fringes. a step of analyzing and storing the shape of the sample, a step of detecting the positional relationship between the two from the shape of a reference plane common to both, and a step of calculating the difference in the fine shape of the reference plane on the back side of the sample from the surface shape of the sample front surface. A sample shape measurement method characterized by comprising steps.
(5)第4項の干渉縞より形状を解析するステップとは
縞走査干渉法に基づくものであることを特徴とする試料
形状測定方法。
(5) A sample shape measuring method, characterized in that the step of analyzing the shape from interference fringes in item 4 is based on fringe scanning interferometry.
JP23994588A 1988-09-26 1988-09-26 Sample shape measuring apparatus and its measuring method Expired - Fee Related JP2631003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23994588A JP2631003B2 (en) 1988-09-26 1988-09-26 Sample shape measuring apparatus and its measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23994588A JP2631003B2 (en) 1988-09-26 1988-09-26 Sample shape measuring apparatus and its measuring method

Publications (2)

Publication Number Publication Date
JPH0287006A true JPH0287006A (en) 1990-03-27
JP2631003B2 JP2631003B2 (en) 1997-07-16

Family

ID=17052161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23994588A Expired - Fee Related JP2631003B2 (en) 1988-09-26 1988-09-26 Sample shape measuring apparatus and its measuring method

Country Status (1)

Country Link
JP (1) JP2631003B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275883A (en) * 2005-03-30 2006-10-12 Mitsutoyo Corp Dimension measuring method, and both-end face interferometer
US7190448B2 (en) 2002-10-25 2007-03-13 Nidek Co., Ltd. Surface inspecting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190448B2 (en) 2002-10-25 2007-03-13 Nidek Co., Ltd. Surface inspecting apparatus
JP2006275883A (en) * 2005-03-30 2006-10-12 Mitsutoyo Corp Dimension measuring method, and both-end face interferometer

Also Published As

Publication number Publication date
JP2631003B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
KR101782336B1 (en) Inspection apparatus and inspection method
JP2963890B2 (en) Wafer optical shape measuring instrument
JPS6127682B2 (en)
JP2000121324A (en) Thickness measuring apparatus
KR102583096B1 (en) Interference roll-off measurements using static fringe patterns
WO2021135044A1 (en) Defect inspection apparatus and method
JP4968720B2 (en) Electronic device substrate shape inspection apparatus, electronic device substrate shape inspection method, and mask blank glass substrate manufacturing method
KR20140078621A (en) Measuring form changes of a substrate
JPH0758172B2 (en) Shape measuring method and apparatus
WO2016107573A1 (en) Pre-alignment measuring device and method
JP2008513750A (en) Interferometer with mirror device for measuring objects
JPH0287006A (en) Apparatus and method of measuring shape of sample
JP2693791B2 (en) Defect inspection equipment
JP4100663B2 (en) Absolute thickness measuring device
JP4011205B2 (en) Sample inspection equipment
JP6190168B2 (en) Focusing method, focusing apparatus, exposure method, and device manufacturing method
JP3254704B2 (en) Exposure apparatus and exposure method
US20210356252A1 (en) Laser triangulation apparatus and calibration method
JP2557650B2 (en) Sample shape measuring device
JP3391030B2 (en) Electronic device manufacturing method and pattern exposure method
US11822233B2 (en) Image pickup apparatus and focus adjustment method using bending correction to adjust focusing
JP2000171241A (en) Method for measuring flatness
JP3966800B2 (en) Surface inspection device
JP2003254729A (en) Device for surface inspection
JP3441408B2 (en) Sample inspection device and sample inspection method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees