JPH0282483A - Far infrared ray radiator for heating and heat radiation - Google Patents

Far infrared ray radiator for heating and heat radiation

Info

Publication number
JPH0282483A
JPH0282483A JP63234237A JP23423788A JPH0282483A JP H0282483 A JPH0282483 A JP H0282483A JP 63234237 A JP63234237 A JP 63234237A JP 23423788 A JP23423788 A JP 23423788A JP H0282483 A JPH0282483 A JP H0282483A
Authority
JP
Japan
Prior art keywords
far
test
base material
container
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63234237A
Other languages
Japanese (ja)
Other versions
JPH067508B2 (en
Inventor
Tsukasa Sakurada
司 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu Ceramics Co Ltd
Original Assignee
Shinshu Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu Ceramics Co Ltd filed Critical Shinshu Ceramics Co Ltd
Priority to JP63234237A priority Critical patent/JPH067508B2/en
Publication of JPH0282483A publication Critical patent/JPH0282483A/en
Publication of JPH067508B2 publication Critical patent/JPH067508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pipe Accessories (AREA)
  • Resistance Heating (AREA)

Abstract

PURPOSE:To enable heating effect and heat radiating effect to be greatly improved by covering both sides of obverse and reverse of a board with far infrared ray radiating materials. CONSTITUTION:Both sides of obverse and reverse of a base material are covered with far infrared ray radiating materials which radiate far infrared rays. In general, if any cover is formed at the surface of the base material, in case of considering the thermal conductivity of a substance, it is presupposed that the cover acts as heat insulating material, but in fact by providing the far infrared ray radiating materials on both sides of the base material, heat radiation property and heat dissipation property can be improved greatly. Further, as a far infrared ray radiating material to cover the base material, public various kinds of materials such as, for example, alumina, magnesia, zirconia, etc., can be used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は加熱・放熱用遠赤外線輻射体に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a far-infrared radiator for heating and heat radiation.

(背景技術) 遠赤外線の放射体は従来、多種の用途に用いられている
。その用途例としては、たとえば、室内の暖房や種々の
用品の乾燥に、食品の焼き上げなど調理用に、塗装の乾
燥や焼付に、また、健康増進の目的や医療用に用いるこ
となどを挙げることができる。
(Background Art) Far-infrared radiators have conventionally been used for various purposes. Examples of its uses include, for example, indoor heating and drying of various supplies, cooking such as baking food, drying and baking of paint, and use for health promotion purposes and medical purposes. Can be done.

これらの例のように、従来の遠赤外線放射体は暖房など
のように加温用として用いる例がほとんどである。しか
しながら、遠赤外線が熱放射体として有効であるという
ことは、いいかえれば放熱用としても有効であることを
意味している。そこで、遠赤外線の放射体を効果的な放
熱体として利用することが考えられる。
As shown in these examples, conventional far-infrared radiators are mostly used for heating purposes such as space heating. However, the fact that far infrared rays are effective as a heat radiator means that they are also effective for heat radiation. Therefore, it is conceivable to use a far-infrared radiator as an effective heat radiator.

最近は電子部品の高集積化にともない、電子部品から発
生する熱量が大きくなってきており、電子部品のパッケ
ージやケーシング等の熱放散性が問題となっている。ま
た、電気機器などではトランス等の電源部周辺での熱発
生量が大きいので、電源部周辺などでの放熱性を向上さ
せることが以前から求められている。
BACKGROUND ART Recently, as electronic components have become highly integrated, the amount of heat generated from electronic components has increased, and the heat dissipation properties of electronic component packages, casings, etc. have become a problem. Furthermore, in electrical equipment, etc., a large amount of heat is generated around a power supply unit such as a transformer, so there has long been a demand for improved heat dissipation around the power supply unit.

本発明は上記問題点に鑑み、遠赤外線の放射効率のよい
放射体を得るべく研究した結果達成されたもので、従来
の遠赤外線の放射体にくらべてさらに良好な加熱特性を
有するとともに、放熱体としても有効に作用する加熱・
放熱用遠赤外線輻射体を提供しようとするものである。
In view of the above-mentioned problems, the present invention was achieved as a result of research to obtain a radiator with high far-infrared radiation efficiency, which has better heating characteristics than conventional far-infrared radiators, and has heat dissipation. Heating that also works effectively on the body
The present invention aims to provide a far-infrared radiator for heat radiation.

(発明の概要) 従来の遠赤外線放射体の構造は、基材の片面を遠赤外線
の放射特性の良い素材(以下、遠赤外線放射材という)
で被覆したもので1通常は、加温される物体に面する側
の面を遠赤外線放射材によって被覆するようにしている
。たとえば 水を熱する容器では、容器の内側(水に接
触する側)を遠赤外線放射材で被覆する。このように、
基材の表面を遠赤外線放射材で被覆することで加温効果
が高められることが実際に確かめられる。
(Summary of the invention) The structure of a conventional far-infrared radiator is that one side of the base material is made of a material with good far-infrared radiation characteristics (hereinafter referred to as far-infrared radiator).
Usually, the surface facing the object to be heated is coated with a far-infrared radiation material. For example, in a container that heats water, the inside of the container (the side that comes into contact with the water) is coated with a far-infrared radiating material. in this way,
It has actually been confirmed that the heating effect can be enhanced by coating the surface of the base material with a far-infrared radiating material.

従来は、上記のように基材の片面のみを遠赤外線放射材
で被覆するようにしているが1本発明者は、基材表面に
種々の処理を施したサンプルを用いて試験を行った結果
、基材の表裏両面を遠赤外線放射材で被覆することによ
って、加熱効果および放熱効果を大きく向上させること
ができることを見出した。
Conventionally, only one side of the base material is coated with a far-infrared emitting material as described above, but the inventor of the present invention conducted tests using samples in which the surface of the base material was subjected to various treatments. discovered that heating effects and heat dissipation effects can be greatly improved by coating both the front and back surfaces of a base material with a far-infrared radiating material.

これは、基材を被覆した遠赤外線放射材が、受熱の目的
にも有効に作用することを示すものである。一般には、
基材表面に何らかの被膜を形成すると、物体の熱伝導率
を考えた場合、被膜が断熱材として作用することが予測
されるが、実際には、遠赤外線放射材を基材の両面に設
けることによっそ熱放射特性および熱放散性を大きく向
上させることができることが見出された。
This shows that the far-infrared radiating material covering the base material also works effectively for the purpose of receiving heat. In general,
When a film of some kind is formed on the surface of a base material, considering the thermal conductivity of the object, it is expected that the film will act as a heat insulator, but in reality, it is necessary to provide far-infrared emitting material on both sides of the base material. It has been found that the heat radiation properties and heat dissipation properties can be greatly improved.

なお、基材を被覆する遠赤外線放射材としては公知の、
たとえば、アルミナ系、マグネシア系、ジルコニア系な
どの種々の素材を使用することができる。
In addition, the far-infrared radiation material that covers the base material is known as
For example, various materials such as alumina, magnesia, and zirconia can be used.

また、基材の表面を遠赤外線放射材で被覆する方法はと
くに限定されるものではないが、たとえば遠赤外線放射
材を基材表面に塗布して被覆する方法、あるいは、遠赤
外線放射材の微粉体(粒径が5μm程度)を用いて低温
溶射する方法などが用いられる。
Furthermore, the method of coating the surface of the base material with the far-infrared emitting material is not particularly limited; A method such as low-temperature thermal spraying using particles (particle size of about 5 μm) is used.

以下、遠赤外線放射体として基材表面に種々の処理を施
したものについて、それぞれ特性を調べた結果について
説明する。
The following describes the results of investigating the characteristics of far-infrared radiators whose surfaces have been subjected to various treatments.

〈試験例1〉 平板状の基材表面に各種処理を施したものを試験体とし
て、放熱試験を行った。
<Test Example 1> A heat dissipation test was conducted using a test piece that had undergone various treatments on the surface of a flat base material.

第1図に試験装置の概略図を示す。図で10は断熱材を
用いて中空に形成した箱体である。箱体10の上部には
透孔12が1個9段され、箱体10の他の部分は密閉さ
れている。試験例の透孔は。
Figure 1 shows a schematic diagram of the test equipment. In the figure, 10 is a hollow box formed using a heat insulating material. One through hole 12 is formed in nine stages in the upper part of the box body 10, and the other part of the box body 10 is sealed. The through hole in the test example is.

40mm径の円形である。箱体10内部にはヒータ14
を配置する。試験例では1.2kwのヒータを用いた。
It is circular with a diameter of 40 mm. A heater 14 is installed inside the box body 10.
Place. In the test example, a 1.2 kW heater was used.

16は前記透孔12の上方に水平に置いた試験体である
。試験体16は透孔12の上面から35mm離して配置
した。
Reference numeral 16 denotes a test specimen placed horizontally above the through hole 12. The test specimen 16 was placed 35 mm apart from the top surface of the through hole 12.

放熱試験は、箱体の炉温度を一定にし、上記のように透
孔12の上方に各種の試験体16を置いて、試験体16
の上方および下方の所定位置に熱電対を配置して各部の
温度を時間経過にしたがって測定することで行った。
In the heat dissipation test, the temperature of the furnace of the box body is kept constant, and various test specimens 16 are placed above the through hole 12 as described above.
This was done by placing thermocouples at predetermined positions above and below and measuring the temperature of each part over time.

第1図でa、b、c、cl、e、fは熱電対をセラ]・
シた位置を示す。aは試験体上面から10mm1方に離
れた位置、bは試験体16の上面に接した位置、Cは試
験体の下面に接した位置、dは試験体の下面から10m
m下方に雌れた位置、eは透孔の上面に一致する位置、
fは透孔の下面に一致する位置である。
In Figure 1, a, b, c, cl, e, f are thermocouples]
Indicates the position. a is a position 10 mm away from the top surface of the test specimen, b is a position in contact with the top surface of the test specimen 16, C is a position in contact with the bottom surface of the test specimen, d is 10 m from the bottom surface of the test specimen
m is the downward position, e is the position that corresponds to the top surface of the through hole,
f is a position corresponding to the lower surface of the through hole.

この試験例では、亜3イ)引き鉄板を基材としこの基材
表面に各種処理を施したものを試験体として用いた。前
記基材のサイズは100mm X JOOmm 、 )
ブさ0.25mmである。試験では19種類の試験内容
について測定を行った。以下に、この試験内容を示す。
In this test example, the test specimen was made of a drawn iron plate (A3), which had been subjected to various treatments on the surface of the base material. The size of the base material is 100mm x JOOmm, )
The width is 0.25 mm. In the test, 19 types of test content were measured. The details of this test are shown below.

なお、試験体の熱源にたいする配置を示すため、基材の
」二面側をA側、基材の下面側(透孔に面する側の面〕
をB側ということにする。
In order to show the placement of the test specimen with respect to the heat source, the second side of the base material is A side, and the bottom side of the base material (the side facing the through hole).
is called the B side.

■ 亜鉛引き鉄板。両面無処理で使用。■ Galvanized iron plate. Used without any treatment on both sides.

■ 片面のみにNi−Crを溶射。溶射面をA側にして
配置する。
■ Ni-Cr sprayed on one side only. Place with the sprayed surface facing A side.

■ ■と同一サンプルで、溶射面をB側に。■ Same sample as ■, with the sprayed surface on the B side.

■ 片面のみに低温溶射法で遠赤外線放射体(黒色)の
50μmの被膜形成。被膜面をA側に。
■ A 50μm coating of far-infrared emitter (black) is formed on one side only using low-temperature spraying. Place the coating side on the A side.

■ ■と同一サンプルで、被膜面をB側に。■ Same sample as ■, with the coating side on the B side.

■ 片面のみに低温溶射法で遠赤外線放射体(灰色)の
50μmの被膜形成。被膜面をA側に。
■ A 50μm coating of far-infrared emitter (gray) is formed on one side only by low-temperature spraying. Place the coating side on the A side.

■ ■と同一サンプルで、被膜面をB側に。■ Same sample as ■, with the coating side on the B side.

■ 片面に遠赤外線放射体(黒色)の50μmの被膜形
成。被膜面をA側に。
■ A 50μm film of far-infrared emitter (black) is formed on one side. Place the coating side on the A side.

■ ■と同一サンプルで被膜面をB側に。■ Same sample as ■ with the coating side on the B side.

[株] ■と同−処ljサンプルで、1戻厚が100μ
mのもの。被膜面をA側に。
[Stocks] Same treatment lj sample as ■, 1 return thickness is 100μ
m's. Place the coating side on the A side.

■ [株]と同一サンプルで被膜面をB側に。■ Same sample as [Co.] with the coating side on the B side.

@ ■と同一処理サンプルで膜厚が150μmのもの。@ Same treated sample as ■ with a film thickness of 150 μm.

被膜面をA側に。Place the coating side on the A side.

■ oと同一サンプルで被膜面をB側に。■ The same sample as o, with the coating side on the B side.

0 片面に低融点金属として酎を溶射。溶射面をA側に
0 Sake is sprayed on one side as a low melting point metal. Place the sprayed surface on the A side.

■ 0と同一サンプルで溶射面をB側に。■ Same sample as 0, with the sprayed surface on the B side.

[相] 片面に低融点金属△【を溶射、他面に低温溶射
法で遠赤外線放射体(黒色)の50μmの被膜形成。金
属面をA側に。
[Phase] A low melting point metal △[ is thermally sprayed on one side, and a 50 μm film of far-infrared radiator (black) is formed on the other side using a low-temperature spraying method. Place the metal side on the A side.

0 サンプル[相]と同一サンプルで金属面をB側に。0 Same sample as sample [phase] with metal surface on side B.

■ 片面に高融点金属Ni−Crを溶射、他面に低温溶
射法で遠赤外線放射体(黒色)の50μmの被膜形成、
金属面をA側に。
■ Spraying high-melting point metal Ni-Cr on one side, forming a 50 μm coating of far-infrared emitter (black) on the other side using low-temperature spraying,
Place the metal side on the A side.

■ サンプル[相]と同一サンプルで金属面をB側に6
第2図は、上記各試験内容についての測定結果を示す。
■ The same sample as the sample [phase] with the metal surface on the B side 6
FIG. 2 shows the measurement results for each of the above test contents.

グラフの縦軸が温度、横軸が経過時間を示す、a−fの
各熱電対による測定温度をドラ1〜で示す、この試験で
は経時変化をみる目的もかねて、サンプルをかえながら
順を追って測定した。
The vertical axis of the graph shows the temperature, and the horizontal axis shows the elapsed time.The temperatures measured by each thermocouple a to f are shown by the number 1.In this test, the purpose of this test was also to see the change over time, so the samples were changed in order. It was measured.

グラフにつけた(1)〜(25)の番号は81す定順を
示している。なお、(1)〜(9)までの測定と+ (
10)〜(25)までのHI3定は、日を変えて測定し
たものである。
The numbers (1) to (25) on the graph indicate the 81 fixed order. In addition, measurements (1) to (9) and + (
HI3 constants from 10) to (25) were measured on different days.

これらの測定結果から、次のように整理することができ
る。
These measurement results can be summarized as follows.

(1)試験順序No、 2.6.16、Z5に示ずデー
タは、再現性を見るために1表面処理をしていない無処
理の亜鉛引き鉄板■について測定したものである。測定
結果は経時により温度の挙動が一定であることを示し、
外部の変動要因がそれほど影響していないことを示して
いる。また、長時間の測定が不要であることを示す。
(1) Test order No. 2.6.16, data not shown in Z5 were measured on an untreated galvanized iron plate (1) without surface treatment in order to check reproducibility. The measurement results show that the temperature behavior is constant over time;
This shows that external fluctuation factors do not have much influence. It also shows that long-term measurements are not necessary.

(2)  基材表面に遠赤外線放射材の被膜を形成した
場合の断熱作用は、膜厚が50μm〜150μm程度で
は顕著な断熱作用がなく、逆に、遠赤外線放射体がB側
にあるもの■、■、■では膜厚が厚くなるにしたがい放
射特性が向上する傾向が見られる。
(2) When a film of a far-infrared ray emitting material is formed on the surface of a base material, there is no significant heat insulation effect when the film thickness is about 50 μm to 150 μm; For ①, ②, and ③, there is a tendency for the radiation characteristics to improve as the film thickness increases.

(3)遠赤外線放射材を施した面をA側にした場合とB
側にした場合では、遠赤外線放射材をA側にした場合の
ほうが放熱特性が優れている。
(3) When the side with far-infrared radiating material is placed on side A and B
In the case where the far-infrared radiation material is placed on the A side, the heat dissipation characteristics are better.

(4)基材に金属溶射したものと遠赤外線放射材で被覆
したものでは、いずれの場合も、改質した面をB側より
もA側にしたほうが放熱特性が良くなる。また、金属と
セラミックスなどの遠赤外線放射材とでは、遠赤外線放
射材を用いたもののほうが放熱に有効である。
(4) In both cases of base materials sprayed with metal and coated with far-infrared radiating material, the heat dissipation properties are better when the modified surface is on the A side rather than on the B side. Furthermore, between metals and far-infrared radiating materials such as ceramics, those using far-infrared radiating materials are more effective in dissipating heat.

(粉 低融点金属よりは高融点金属のほうが放熱特性に
は優れているようである。
(Powder) It seems that high melting point metals have better heat dissipation properties than low melting point metals.

(6)放射体表面の表面積は放射効率に大きく影響を及
ぼすが、測定結果からも明らかに有意差が認められる。
(6) The surface area of the radiator has a large effect on radiation efficiency, and the measurement results clearly show a significant difference.

ω A側に被膜をおいた場合は、被膜の黒度と放熱特性
とはあまり関わりがないようであるが。
ω When a film is placed on the A side, it seems that the blackness of the film has little relation to the heat dissipation characteristics.

B側においた場合は黒度が大きい被膜のほうが放熱特性
に劣るようである。
When placed on the B side, it appears that the film with higher blackness has inferior heat dissipation properties.

(8)  この試験では基材の両面に被膜を形成した場
合に、放熱効果がもっとも有効であった。これは、基材
両面による相乗効果によるものと考えられる。
(8) In this test, the heat dissipation effect was most effective when the coating was formed on both sides of the base material. This is thought to be due to the synergistic effect of both sides of the base material.

なお、本試験で用いた遠赤外線放射材はシリカ等のセラ
ミック系のものであるが、他の素材についても同様な傾
向が得られる。
Note that although the far-infrared ray emitting material used in this test was a ceramic-based material such as silica, similar trends can be obtained with other materials.

〈試験例2〉 容器の内外壁面を遠赤外線放射材で処理し、放熱試験を
行った。
<Test Example 2> The inner and outer walls of the container were treated with a far-infrared radiation material, and a heat radiation test was conducted.

第3図にその試験装置の概略図を示す。図で18は10
0■電源に接続されたスライダック、20が電圧計、2
2は容器内に挿入されたヒータである。
Figure 3 shows a schematic diagram of the test equipment. In the diagram, 18 is 10
0■Slidac connected to the power supply, 20 is the voltmeter, 2
2 is a heater inserted into the container.

ヒータは定格1oov −sowのものを使用した6容
器内の底部分には断熱材としてセラミックフエルト24
が詰められている。26は容器外表面の温度を測定する
ための熱電対で、熱電対の出力は記録計28に接続され
る。
The heater used was one with a rating of 1oov-sow. 6 Ceramic felt was placed at the bottom of the container as a heat insulator.
is packed. 26 is a thermocouple for measuring the temperature of the outer surface of the container, and the output of the thermocouple is connected to a recorder 28.

第3図(a>、(′b)に示す装置は、サンプルとして
使用する容器30a、30bが異なるだけで、その他の
構成はまったく同じである。第3図(a)では無処理の
容器を用い、第3図(b)では容器の内外壁に遠赤外線
処理を施したものを用いている。どちらも、容器の基材
としては厚さ0.2mmのアルミニウムを用い、容器サ
イズは外径25mm、高さ50mmで共通である。
The apparatuses shown in FIGS. 3(a> and ′b) have the same structure except for the containers 30a and 30b used as samples. In FIG. 3(a), the untreated container is used. In Fig. 3(b), the inner and outer walls of the container are treated with far infrared rays.In both cases, aluminum with a thickness of 0.2 mm is used as the base material of the container, and the container size is determined by the outer diameter. The common size is 25mm and the height is 50mm.

第4図および第5図に、上記試験装置を用いて容器30
a、30bの外表面温度を測定した結果を示す。なお、
測定は、無風の大気中に容器を開放状態にして置き、第
3図(a)、(ト))に示す試験装置で同時に測温した
。測定時の室温は22”Cである。
FIG. 4 and FIG. 5 show that the container 30 is
The results of measuring the outer surface temperatures of a and 30b are shown. In addition,
For the measurement, the container was placed in an open state in a windless atmosphere, and the temperature was measured simultaneously using the test apparatus shown in FIGS. 3(a) and (g)). The room temperature at the time of measurement was 22''C.

グラフの縦軸が温度、横軸が測定経過時間を示す。The vertical axis of the graph shows temperature, and the horizontal axis shows elapsed measurement time.

第4図はヒータ22に加えた電圧が30Vの場合、第5
図はヒータに加えた電圧が40Vの場合である。
Figure 4 shows that when the voltage applied to the heater 22 is 30V, the fifth
The figure shows a case where the voltage applied to the heater is 40V.

第4図(a)、第5図(a)の測定結果は第3図(a)
に示す試験装置によるもの、第4図(1))、第5図(
b)は第3図(b)に示す試験装置によるものである。
The measurement results in Figures 4(a) and 5(a) are shown in Figure 3(a).
The test equipment shown in Figure 4 (1)) and Figure 5 (
b) is based on the test apparatus shown in FIG. 3(b).

第4図および第5図では、ヒータにかける電圧をかえて
いるため、容器温度に差異があるが、容器基材に遠赤外
線放射材をコーティングしたものは、無処理のものとく
らべて容器外表面温度が低くなるという傾向を示す。第
4図で、試験装置(a>のものは(b)にくらべて約2
2℃温度が上昇し、第5図で、試験装置(a)のものは
い)にくらべて約27℃温度が」二昇している。
In Figures 4 and 5, there is a difference in container temperature because the voltage applied to the heater is changed, but the container base material coated with far-infrared radiation material has a higher temperature outside the container than the untreated container. It shows a tendency for the surface temperature to become lower. In Figure 4, the test device (a>) is about 2 times smaller than (b).
The temperature has increased by 2°C, and in Fig. 5, the temperature has increased by about 27°C compared to the test device (a).

この測定結果は、容器に遠赤外線処理を施すことにより
、容器の放熱性を高めることができ、容器外表面温度を
下げることができる可能性を示す。
This measurement result indicates that by subjecting the container to far infrared rays treatment, the heat dissipation of the container can be improved and the outer surface temperature of the container can be lowered.

囚に、125℃においては遠赤外線処理を施すことによ
り、95℃までの24%の降温かでき、また93℃では
71℃までの24%の降温が可能であった。
By applying far infrared rays to the prisoners at 125°C, it was possible to lower the temperature by 24% to 95°C, and at 93°C, it was possible to reduce the temperature by 24% to 71°C.

第6図は、放熱試験に用いた他の試験装置例で、第7図
にこの試験装置による測定結果を示す。この試験装置の
構成は、上記第3図に示す装置と同じであるが、セラミ
ックフェルト24を容器の内部全体に詰めた点、および
容器内外の表面温度を測定するため、熱電対26a、2
6bを容器の外表面および内表面に接触させて設置した
点が異なっている。セラミックフェルトを容器内の全体
に詰めたのは、温度の変動要因を少なくするためである
。なお、試験方法は第3図の場合と同じである。
FIG. 6 shows another example of the test device used in the heat dissipation test, and FIG. 7 shows the measurement results using this test device. The configuration of this test device is the same as the device shown in FIG.
The difference is that 6b is placed in contact with the outer and inner surfaces of the container. The reason why the entire container was filled with ceramic felt was to reduce temperature fluctuations. Note that the test method is the same as in the case of Fig. 3.

第7図(a)は、第6図(a)の試験装置による測定結
果、第7図(b)は、第6図(b)の試験装置によるd
111定結果である。グラフでAは容器外表面の温度、
Bは容器内表面の温度を示す。第7図の測定結果を整理
すると以下のようになる。
Figure 7(a) shows the measurement results using the testing device shown in Figure 6(a), and Figure 7(b) shows the results of measurement using the testing equipment shown in Figure 6(b).
This is a 111 constant result. In the graph, A is the temperature of the outer surface of the container,
B indicates the temperature of the inner surface of the container. The measurement results shown in Figure 7 can be summarized as follows.

上表に示すように、温度条件にもよるが、基材表面を遠
赤外線放射材で被覆することにより、概略15%〜20
%の放熱特性の向上が得られる可能性のあることが判っ
た。
As shown in the table above, depending on the temperature conditions, by coating the surface of the base material with a far-infrared radiation material, the
It was found that it is possible to obtain a % improvement in heat dissipation characteristics.

上記の第3図および第6図に示す試験装置を用いた試験
は、容器内部から熱を供給している状態で放熱特性をみ
たもので、ある一定条件の平衡状態での特性をあられす
。これに対し、加熱物体の自然降温特性をみるため、第
8図に示す方法によって試験を行った。
The tests using the test equipment shown in Figures 3 and 6 above were conducted to look at the heat dissipation characteristics while supplying heat from inside the container, and to evaluate the characteristics in an equilibrium state under certain conditions. On the other hand, in order to examine the natural cooling characteristics of the heated object, a test was conducted using the method shown in FIG.

使用した容器は、上記試験例と同様なアルミニウムを基
材としたもので、以下に示す■〜■の5種のサンプル容
器を使用した。
The containers used were made of the same aluminum as in the above test example, and five types of sample containers (1 to 2) shown below were used.

■ニアルミニウム基材そのまま。無処理。■Nialium base material as is. No treatment.

■:内表面は無処理、外表面をブラスト処理。■: Inner surface is untreated, outer surface is blasted.

■:内外両表面に遠赤外処理。■: Far-infrared treatment on both inner and outer surfaces.

■二内表面を遠赤外処理、外表面無処理。■Inner surface treated with far infrared rays, outer surface untreated.

■:内表面は無処理、外表面遠赤外線処理。■: Inner surface is untreated, outer surface is far infrared treated.

容器内部の温度変動要因をできるだけ少なくするため、
一定温度に加熱して溶融したパラフィンをそれぞれの容
器内に入れ、容器内の温度変化を測定した。パラフィン
はそれぞれ18ccずつ容器内に入れ、熱電対26を容
器中央の底面からI Ommの距離にセラ1−シ、記録
計にて測温した。
In order to minimize the temperature fluctuation factors inside the container,
Paraffin heated to a constant temperature and melted was placed in each container, and the temperature change inside the container was measured. 18 cc of each paraffin was placed in a container, and the temperature was measured using a thermocouple 26 placed at a distance of 10 mm from the bottom of the center of the container, and a recorder.

第9図(1)〜(4)に測定結果を示す。測定は4回繰
り返して行った。グラフの縦軸が温度、横軸が経過時間
である。グラフで■は室温の測定値を示し、■〜■は上
記サンプル容器のデータのならびを示す。たとえば、第
9図(1)の結果では、容器温度がもっとも早く降温す
るのは■の容器であり、もっとも遅く降温するのは■の
容器であることを示している。なお、第9図(4)でC
の部分はパラフィンが硬化した温度である。
The measurement results are shown in FIGS. 9(1) to (4). The measurements were repeated four times. The vertical axis of the graph is temperature, and the horizontal axis is elapsed time. In the graph, ■ indicates the measured value of room temperature, and ■ to ■ indicate the sequence of data for the sample containers. For example, the results shown in FIG. 9(1) show that the container temperature decreases fastest in the container (■), and the container temperature decreases the slowest in the container (■). In addition, in Fig. 9 (4), C
The part indicated by is the temperature at which paraffin hardens.

第9図に示す試験結果から、基材の内外表面にともに遠
赤外処理を施した容器■がもっとも降温特性がよく、無
処理の容器■と比較して顕著な差があることがみられた
。また、基材の表面積を大きくした場合(ブラスト処理
を施す)も、無処理のものにくらべ若干放熱効果がよく
なることがシ、りめられた。
From the test results shown in Figure 9, it can be seen that the container ■ whose base material has been treated with far-infrared rays on both its inner and outer surfaces has the best temperature-lowering characteristics, and there is a noticeable difference compared to the untreated container ■. Ta. It was also found that when the surface area of the base material was increased (blasting), the heat dissipation effect was slightly better than that of the untreated base material.

以上の3試験より、基材に遠赤外線処理を施すことによ
り、放熱特性を15%〜20%程度向上させることがで
きることが判った。とくに、基材の両表面に遠赤外線処
理を施すことが有効である。
From the above three tests, it was found that heat dissipation characteristics can be improved by about 15% to 20% by subjecting the base material to far infrared rays treatment. In particular, it is effective to perform far-infrared treatment on both surfaces of the base material.

く試験例3〉 ステンレスを基材とする容器の内外表面に各種処理を施
し、この容器に水を入れて加熱し昇温試験を行った。
Test Example 3 Various treatments were applied to the inner and outer surfaces of a container made of stainless steel, and water was poured into the container and heated to perform a temperature increase test.

第10図はこの試験で用いた装置の概略を示す。FIG. 10 schematically shows the apparatus used in this test.

図で32はヒータ部であり、34はヒータ部に内蔵され
たニクロt1線である。試験例では600Wのニクロム
線を用いた。36はヒータ部上面に置いた網、38は容
8:+である。前記用36は容器をヒータ部32」二面
から離してセットするために用いたものである。試験例
では容器38の底面をヒータ部;32」二面から15m
mMしてセットした。40は容器内の水温を8111定
するための熱電対である。容器338には水をl00c
c入れて測定を行った。
In the figure, 32 is a heater section, and 34 is a Nichrome T1 wire built into the heater section. In the test example, a 600W nichrome wire was used. 36 is a net placed on the top surface of the heater part, and 38 is a capacity 8:+. The foregoing 36 is used to set the container away from the two sides of the heater section 32. In the test example, the bottom of the container 38 was placed at a distance of 15 m from the heater section;
It was set to mM. 40 is a thermocouple for determining the water temperature in the container. Container 338 is filled with 100c of water.
c and measurements were taken.

この昇温試験で使用したサンプル容器は以下の(a)〜
σ1)の8種である。
The sample containers used in this temperature increase test are as follows (a) ~
There are 8 types of σ1).

(a)  内面をNi−Cr溶射、外面を遠赤外線放射
材で被覆。
(a) The inner surface is coated with Ni-Cr thermal spraying and the outer surface is coated with far-infrared radiation material.

(b)  内外両面とも無処理。ステンレスの光沢面の
まま。
(b) No treatment on both the inside and outside. Leaves the shiny stainless steel surface intact.

(c)  内外両面とも遠赤外線放射材Δで被覆。(c) Both the inside and outside surfaces are coated with far-infrared radiation material Δ.

(d)  内外のステンレス面をプラス1〜処理。(d) Inside and outside stainless steel surfaces are treated with +1 or more.

(c)  内外両面とも低融点金属(AI)溶射。(c) Low melting point metal (AI) sprayed on both the inside and outside surfaces.

(f)  内外両面ともNi−Cr溶射。(f) Ni-Cr thermal spraying on both the inside and outside surfaces.

C)内外両面とも遠赤外放射材Bで被覆。C) Both the inside and outside are coated with far-infrared emitting material B.

Φ)内面をN+−Cr溶射、外面を遠赤外放射材Bで被
覆。
Φ) The inner surface is coated with N+-Cr thermal spraying and the outer surface is coated with far-infrared radiation material B.

第11図(])〜(4)に上記サンプル容器を用いた昇
温試験結果を示す。測定は時間をおいて4回行った。グ
ラフの横軸が時間、縦軸が水温で一水の昇温とともに降
温についても測定した。
FIGS. 11(]) to (4) show the results of a temperature increase test using the sample container described above. Measurements were performed four times at intervals. The horizontal axis of the graph is time and the vertical axis is water temperature, and both the temperature rise and the temperature drop of the water were measured.

以下、表1および表2に、昇温時間と降温時間の整理結
果を示す。
Tables 1 and 2 below show the results of the temperature rise time and temperature fall time.

表1 表2 表1および表2中での数値の単位は分である。Table 1 Table 2 The units of numerical values in Tables 1 and 2 are minutes.

上記試験結果から、以下のように評価することができる
From the above test results, the following evaluation can be made.

容器(b)(標準テスト容器)との対比でみて、金属溶
射を行った試験容器(e)は容器(b)とほぼ同等の結
果を示している。これは、少なくとも薄い金属被膜を設
けた程度では水温の昇降にはほとんど影響を及ぼさない
ことを示す。
In comparison with container (b) (standard test container), test container (e) in which metal spraying was applied shows almost the same results as container (b). This indicates that at least the provision of a thin metal coating has almost no effect on the rise or fall of water temperature.

また、上記試験容器(+1)を除いた試験容器では、1
00℃まで昇温するに要する時間が、容器(b)の場合
の約半分であり、顕著な差異が認められる。
In addition, for test containers other than the above test container (+1), 1
The time required to raise the temperature to 00° C. was approximately half that of container (b), which is a significant difference.

降温データからは特別顕著な差異は認められなし1゜ 〈試験例4〉 第12図に示す装置を用いて水の蒸発試験を行った。装
置は前記第10図に示したものと同様である。この試験
では、容器内に水を80cc入れて20分間加熱し、加
熱後の水の重量を測定して蒸発量を測定した。また、同
時に昇温時間についても測定した。
No particularly remarkable difference was observed from the temperature drop data1゜〈Test Example 4〉 A water evaporation test was conducted using the apparatus shown in Fig. 12. The apparatus is similar to that shown in FIG. 10 above. In this test, 80 cc of water was placed in a container, heated for 20 minutes, and the weight of the water after heating was measured to measure the amount of evaporation. At the same time, the temperature rise time was also measured.

容器は試験例3と同様にステンレス製で、このステンレ
スの表面に各種処理を施して試験容器とした。なお、試
験は室内温度20℃の条件下で行った。
The container was made of stainless steel as in Test Example 3, and the stainless steel surface was subjected to various treatments to form the test container. The test was conducted at an indoor temperature of 20°C.

蒸発試験結果を表3に示す。表中でNo、 9およびN
o、 10の内面遠赤外線放射体は塗装によるもの、N
o、11.12.13.14.15の遠赤外線放射体は
溶射によって被覆したものである。
The evaporation test results are shown in Table 3. No, 9 and N in the table
o, 10 inner far infrared radiator is painted, N
The far infrared ray emitters 11, 12, 13, 14, and 15 are coated by thermal spraying.

また1表で回数とあるのは、くり返し測定回数である。In Table 1, the number of times indicates the number of repeated measurements.

水蒸発量は、600Wヒータで20分加熱した後の容器
内の水の蒸発量をパーセントで示した。
The amount of water evaporation is the amount of water evaporated in the container after heating with a 600W heater for 20 minutes, expressed as a percentage.

昇温時間とは35℃から95℃まで昇温するに要した時
間である。
The heating time is the time required to raise the temperature from 35°C to 95°C.

表3 この試験結果から、次のように評価することができる。Table 3 From this test result, the following evaluation can be made.

(1)表3ではNo、 1の試験容器を除き、他はすべ
て基材表面に何らかの処理を施したものである。
(1) In Table 3, except for test container No. 1, all the others had some kind of treatment applied to the surface of the base material.

表3に示す結果からみると、No、]の試験容器とNo
、 1以外の試験容器では、水蒸発量および昇温時間に
ついて明らかに差が見られる。
According to the results shown in Table 3, the test containers No., ] and No.
In test containers other than 1, clear differences can be seen in the amount of water evaporation and heating time.

すなわち、表面に何らかの処理を施したものについては
、水蒸発量が大きくなり、昇温時間が短縮されている。
In other words, when the surface has been subjected to some kind of treatment, the amount of water evaporation is large and the heating time is shortened.

この結果は、一般に基材表面に形成した被膜は断熱作用
として働くことが予測されるが、実際には断熱作用以上
に表面積の増大及び遠赤外線放射材による加温効果が大
きいことを示している。
This result shows that, although it is generally expected that a film formed on the surface of a base material acts as a heat insulator, in reality, the increase in surface area and the heating effect of the far-infrared radiating material are greater than the heat insulating effect. .

(2)No、 3.4の試験容器のように、基材表面に
金属被膜を形成したものも有効である。金属被膜といっ
ても、ここで形成した被膜の膜厚は0.1mm程度と薄
いので、被膜は熱伝導率にはさほど影響を与えないと考
えられ、No、 Iの試験容器との差は基材の表面積と
黒度が加熱効果に有効に作用しているものと考えられる
(2) No. A container with a metal coating formed on the surface of the base material, such as the test container in 3.4, is also effective. Although it is called a metal coating, the thickness of the coating formed here is as thin as about 0.1 mm, so it is thought that the coating does not have much effect on thermal conductivity, and the difference from the No. and I test containers is It is thought that the surface area and blackness of the base material have an effective effect on the heating effect.

(3)  No、2の試験容器はステンレスの基材の内
外表面にプラス1〜処理を施して、表面積を大きくした
ものであるが、加熱効果には明瞭な差が見られる。この
場合、黒度の変化が若干影響してぃることも考えられる
(3) In test containers No. 2, the inner and outer surfaces of the stainless steel base material were subjected to +1 treatment to increase the surface area, but there was a clear difference in the heating effect. In this case, it is possible that changes in blackness may have some influence.

(4)試験容器での表面処理の形態には、容器の内面の
みに表面処理を施したもの、外面のみに施したもの、内
外面ともに施したものがある。これらの表面処理の形態
によって、水蒸発量および昇温時間についてのデータを
整理した結果は次の表4に示すとおりである。
(4) Types of surface treatment on test containers include those in which surface treatment is applied only to the inner surface of the container, those in which surface treatment is applied only to the outer surface, and those in which surface treatment is applied to both the inner and outer surfaces. Table 4 below shows the results of organizing the data regarding the amount of water evaporation and the heating time depending on the form of these surface treatments.

表4 表4で表面処理材料として用いた■および■の処理材料
はいずれも、低温溶射法によって基材表面を被覆したも
のであるが、無処理の容器と比較して、水蒸発量および
昇温時間には顕著な差がある。
Table 4 Both of the treated materials (■) and (■) used as surface treatment materials in Table 4 coated the surface of the base material by low-temperature spraying, but the amount of water evaporation and water rise were lower than that of untreated containers. There are significant differences in temperature time.

表面処理形態についてみると、内外両面に表面処理を施
したものが最も効果があり、次いで外面のみに施したも
の、次いで内面のみに施したものの順で効果がある。遠
赤外線の物体にたいする深達特性を考慮すると、容器内
面における被膜形成は不可欠であるので、内外両面に表
面処理を施すことが最も適当であると考えられる。
Looking at the form of surface treatment, the most effective is when surface treatment is applied to both the inner and outer surfaces, followed by those applied only to the outer surface, and then those applied only to the inner surface. Considering the deep penetration characteristics of far-infrared rays into objects, it is essential to form a film on the inner surface of the container, so it is considered most appropriate to perform surface treatment on both the inner and outer surfaces.

内外両面を処理したものは、無処理のものと比較して倍
程度の加熱効果があるので、物体を加熱する際の基礎技
術として種々の用途が期待できる。また、加熱と同様に
放熱体としての効果が期待できる。
Products that have been treated on both the inside and outside have twice the heating effect as those that are untreated, so they can be expected to have a variety of uses as a basic technology for heating objects. In addition, it can be expected to be effective as a heat dissipation body in the same way as heating.

(5)表面に被膜を形成する方法のうち、低温溶射によ
る方法と、塗装による方法とで比較整理すると次の表5
のようになる。
(5) Among the methods of forming a film on the surface, the following table 5 compares and organizes the method by low-temperature spraying and the method by painting.
become that way.

表5 合もありうる。Table 5 It is also possible.

以上は容器内の水の量が80ccの場合であるが、水の
量を600CCとしてスケールアップした条件で同様に
試験を行った。表6にその試験結果を示す。
The above is a case where the amount of water in the container is 80 cc, but the test was similarly conducted under conditions where the amount of water was scaled up to 600 cc. Table 6 shows the test results.

試験容器としては無処理SO5容器と、基材の内外両面
を遠赤外線放射材で被覆したものを用いた。
The test containers used were an untreated SO5 container and a base material whose inner and outer surfaces were coated with a far-infrared radiating material.

試験容器は試験例3で使用したものより・も大型である
The test container is larger than the one used in Test Example 3.

表6 表5かられかるように、溶射タイプと塗装タイプで加熱
効果には、それほど大ぎな差がみられない。したがって
、両者とも遜色のない効果が得られるものと考えられる
Table 6 As can be seen from Table 5, there is not a huge difference in the heating effect between the thermal spray type and the painted type. Therefore, it is thought that comparable effects can be obtained with both methods.

なお、500℃以上の耐高温特性、耐経時変化、耐剥離
性、耐摩耗性、耐溶出性が要求されるような場合は溶射
タイプが好適であるが、物体との接触がなく比較的低温
領域で使用する場合や製造コストを重視する場合は塗装
タイプでも十分である。場合によっては、両者を併用す
る場なお、表6中で示す水の蒸発量は600Wヒータを
用いて30分間加熱した後の蒸発量を示したものである
。また、昇温時間は35℃〜95℃まで昇温するに要し
た時間を示す。回数は繰り返し実験回数である。
Thermal spray type is preferable when high temperature resistance of 500℃ or higher, resistance to aging, peeling resistance, abrasion resistance, and elution resistance are required; Painted types are sufficient when used in areas or when manufacturing costs are important. In some cases, both may be used in combination. Note that the evaporation amount of water shown in Table 6 is the evaporation amount after heating for 30 minutes using a 600W heater. Moreover, the temperature increase time indicates the time required to raise the temperature from 35°C to 95°C. The number of times is the number of repeated experiments.

この表6に示す試験結果は表4で示した結果と同様な傾
向を示しており、基材の内外面を処理することによって
、顕著な加温効果があることを示している。
The test results shown in Table 6 show the same tendency as the results shown in Table 4, indicating that a significant warming effect can be obtained by treating the inner and outer surfaces of the base material.

以上、試験例1においては遠赤外線放射体の放熱特性に
ついて、試験例2および3においては遠赤外線放射体の
加熱特性について調べた結果について説明した。
Above, the results of examining the heat dissipation characteristics of the far-infrared radiator in Test Example 1 and the heating characteristics of the far-infrared radiator in Test Examples 2 and 3 have been described.

これらの試験結果は、基材の表裏両面を遠赤外線放射体
によって被覆することにより、顕著な加熱効果をあられ
すことを示している。また、試験例1の結果から大きな
放熱効果を有することも確かめられた。
These test results show that a remarkable heating effect can be obtained by coating both the front and back surfaces of the base material with a far-infrared radiator. Furthermore, it was confirmed from the results of Test Example 1 that it had a large heat dissipation effect.

このように良好な加熱特性および放熱特性を有する遠赤
外線放射体は、ボイラーなどの熱交換器類をはじめ、パ
ッケージ、ケーシング類などの、有効な加熱あるいは放
熱を目的とした物品にたいして好適に用いることができ
る。
Far-infrared radiators having such good heating and heat dissipation properties can be suitably used in heat exchangers such as boilers, packages, casings, and other items intended for effective heating or heat dissipation. Can be done.

上記試験例においては、基材表面を遠赤外線放射体で被
覆する例として、遠赤外線放射材を溶射する方法と塗装
する方法とを挙げたが、被覆方法はとくに限定されるも
のではない。
In the above test examples, as examples of coating the surface of the substrate with a far-infrared radiator, a method of thermally spraying a far-infrared ray radiator and a method of painting were cited, but the coating method is not particularly limited.

ボイラーなどの熱交換器類、配管類などの場合は、基材
表面に被膜を設ける作業性および経済性の点から塗装に
よる方法が実用的である。場合によっては、塗装と溶射
を併用することも考えられる。このように、ボイラーな
どでは遠赤外線放射材を塗装するという簡単な操作で加
熱特性を大きく改善できるので、遠赤外線放射体による
効果を有効に発揮することができる6 なお、上記各試験例で示したように、基材が金属箔のよ
うにきわめて薄い金属板(高温弱体)であって、この基
材にたいしてアルミナ系、マグネシア系、ジルコニア系
等の高融点を有する遠赤外線放射材を被覆するような場
合は、低温溶射法が好適に用いられる。この低温溶射法
は溶射に用いる溶射材として遠赤外線放射材の微粉体(
粒径5μm程度)を用いたもので、溶射材として微粉体
を用いることで低温での溶射を可能にし、それによって
表面粗度のよいものを得ることができる。
In the case of heat exchangers such as boilers, piping, etc., a coating method is practical from the viewpoint of workability and economy in providing a film on the surface of the base material. In some cases, it may be possible to use both painting and thermal spraying. In this way, the heating characteristics of boilers and the like can be greatly improved by the simple operation of coating with far-infrared radiating material, so the effects of far-infrared radiating materials can be effectively demonstrated6. As mentioned above, the base material is an extremely thin metal plate (weak at high temperatures) like metal foil, and this base material is coated with a far-infrared emitting material with a high melting point such as alumina, magnesia, or zirconia. In such cases, low-temperature spraying is preferably used. This low-temperature thermal spraying method uses fine powder of far-infrared radiation material (
By using fine powder as the thermal spraying material, thermal spraying can be performed at low temperatures, thereby making it possible to obtain a surface with good surface roughness.

こうして形成された金属箔を基材とする遠赤外線放射体
は、他のものにはない次のような特徴を有する。
The far-infrared radiator having the metal foil as a base material thus formed has the following characteristics not found in other products.

(1)  熱容量が小さいので、温度の立ち上がりが良
い。
(1) Since the heat capacity is small, the temperature rises quickly.

閃 フレキシブルであるので施工が容易であり、既設の
部分にも容易に取り付けられる。
Since it is flexible, it is easy to install and can be easily installed on existing parts.

(3)  はさみなどで簡甲、に裁断でき、使用する際
の自由度が大きい。
(3) It can be easily cut into pieces using scissors, allowing for greater flexibility in use.

(4)軽量であるので運送コス1への点で有利である。(4) Since it is lightweight, it is advantageous in terms of transportation costs.

また、プラントの軽量化、取り付は施工などの点で有利
である。
In addition, the weight of the plant is reduced and installation is advantageous in terms of construction.

(5)塗装によって被)Wするものと異なり、経時変化
にだいする耐久性が高く、また、高温領域での耐久性が
高い。
(5) Unlike those coated with W by painting, it has high durability against changes over time and also has high durability in high temperature ranges.

(6)塗装タイプと異なり溶出しにくく、また耐摩耗性
が高いため、食品関係の器材として好適に使用可能であ
る。
(6) Unlike painted types, it is difficult to elute and has high wear resistance, so it can be suitably used as food-related equipment.

(発明の効果) 本発明によれば、上述したように、基材の表裏両面を遠
赤外放射材で被覆することにより、加熱効果および放熱
効果を大きく向−ヒさせた遠赤外輻射体を得ることがで
きる。
(Effects of the Invention) According to the present invention, as described above, a far-infrared radiator whose heating effect and heat dissipation effect are greatly improved by coating both the front and back surfaces of the base material with a far-infrared radiating material. can be obtained.

そして、この遠赤外線輻射体は種々の機器類に応用利用
が可能であり、たとえばボイラー等の熱交換器などに利
用すれば、従来にくらべてその熱効率を大きく向上させ
ることができ、また、電気機器類の電源部あるいはケー
シング等に用いることにより、良好な放熱体として用い
ることができる等の著効を奏する。
This far-infrared radiator can be applied to various types of equipment. For example, if used in heat exchangers such as boilers, the thermal efficiency can be greatly improved compared to conventional ones, and it can also be used in electricity. By using it in the power supply section or casing of equipment, it can be used as a good heat radiator, and other remarkable effects can be achieved.

以上、本発明について種々説明したが、本発明はこれら
に限定されるものではなく、発明の精神を逸脱しない範
囲内で多くの改変を施し得るのはもちろんのことである
Although the present invention has been variously explained above, the present invention is not limited to these, and it goes without saying that many modifications can be made without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試験例1の放熱試験装置を示す説明図。 第2図は測定結果を示すグラフ、第3図、第6図、第8
図は試験例2の放熱試験装置を示す説明図、第4図およ
び第5図、第7図、第9図は、それぞれ、第3図、第6
図、第8図の試験装置による測定結果を示すグラフ、第
10図は試験例3の昇温試験装置を示す説明図、第11
図は測定結果を示すグラフ、第12図は試験例4の蒸発
試験装置を示す説明図である。 14・・・ヒータ、16・・・試験体、18・・・スラ
イダック、  20・・・電圧計、22・・・ヒータ、
  24・・・セラミックスエ/L/l−126,26
a、26b−−・熱電対、28・・・記録計、 30a
、30b・・・容器、32・・・ヒータ部、  36・
・・網、40・・・熱電対。
FIG. 1 is an explanatory diagram showing the heat dissipation test apparatus of Test Example 1. Figure 2 is a graph showing the measurement results, Figures 3, 6, and 8.
The figure is an explanatory diagram showing the heat dissipation test apparatus of Test Example 2.
Figure 8 is a graph showing the measurement results using the test apparatus, Figure 10 is an explanatory diagram showing the temperature increase test apparatus of Test Example 3,
The figure is a graph showing the measurement results, and FIG. 12 is an explanatory diagram showing the evaporation test apparatus of Test Example 4. 14... Heater, 16... Test object, 18... Slydac, 20... Voltmeter, 22... Heater,
24...Ceramicsue/L/l-126,26
a, 26b--Thermocouple, 28... Recorder, 30a
, 30b... Container, 32... Heater section, 36.
...Net, 40...Thermocouple.

Claims (1)

【特許請求の範囲】 1、基材の表裏両面が遠赤外線を放射する遠赤外線放射
材によって被覆されたことを特徴とする加熱・放熱用遠
赤外線輻射体。 2、表面側の遠赤外線放射材が塗装により被覆されてい
ることを特徴とする請求項1記載の加熱・放熱用遠赤外
線輻射体。 3、基材が金属箔で形成され、この基材表面に遠赤外線
放射材が低温溶射されたことを特徴とする請求項1記載
の加熱・放熱用遠赤外線輻射体。
[Scope of Claims] 1. A far-infrared radiator for heating and heat radiation, characterized in that both the front and back surfaces of a base material are coated with a far-infrared radiating material that emits far-infrared rays. 2. The far-infrared radiator for heating and heat radiation according to claim 1, wherein the far-infrared ray radiating material on the surface side is coated with paint. 3. The far-infrared radiator for heating and heat radiation according to claim 1, wherein the base material is formed of metal foil, and a far-infrared ray radiating material is low-temperature sprayed onto the surface of the base material.
JP63234237A 1988-09-19 1988-09-19 Far-infrared radiator for heating and heat dissipation Expired - Lifetime JPH067508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63234237A JPH067508B2 (en) 1988-09-19 1988-09-19 Far-infrared radiator for heating and heat dissipation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63234237A JPH067508B2 (en) 1988-09-19 1988-09-19 Far-infrared radiator for heating and heat dissipation

Publications (2)

Publication Number Publication Date
JPH0282483A true JPH0282483A (en) 1990-03-23
JPH067508B2 JPH067508B2 (en) 1994-01-26

Family

ID=16967833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63234237A Expired - Lifetime JPH067508B2 (en) 1988-09-19 1988-09-19 Far-infrared radiator for heating and heat dissipation

Country Status (1)

Country Link
JP (1) JPH067508B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050279A1 (en) * 1996-06-25 1997-12-31 Takehiko Hitomi Heating device, regenerative heat generating body and protective sheet for same
US6054692A (en) * 1997-06-25 2000-04-25 Takehiko Hitomi Heating device, heat storing type heat generating body and protective sheet for the heating device
JP2003103476A (en) * 2001-09-27 2003-04-08 Max Co Ltd Nail magazine for nailing machine
WO2007066434A1 (en) * 2005-12-07 2007-06-14 Kenichi Bamen Steam generating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050279A1 (en) * 1996-06-25 1997-12-31 Takehiko Hitomi Heating device, regenerative heat generating body and protective sheet for same
US6054692A (en) * 1997-06-25 2000-04-25 Takehiko Hitomi Heating device, heat storing type heat generating body and protective sheet for the heating device
JP2003103476A (en) * 2001-09-27 2003-04-08 Max Co Ltd Nail magazine for nailing machine
WO2007066434A1 (en) * 2005-12-07 2007-06-14 Kenichi Bamen Steam generating device
JP2007151959A (en) * 2005-12-07 2007-06-21 Kenichi Bamen Steam generator

Also Published As

Publication number Publication date
JPH067508B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
Dutta et al. Thermal properties of gram
Zarr A history of testing heat insulators at the national institute of standards and technology
Cincotti et al. Modeling of SPS apparatus: Temperature, current and strain distribution with no powders
GB833181A (en) Method and apparatus for coating metal articles
Bala et al. Effective thermal conductivity of copper powders
Hatfield et al. A new heat-flow meter
Gomi et al. Resistivity, Seebeck coefficient, and thermal conductivity of platinum at high pressure and temperature
US20050078732A1 (en) Device and method for measuring absorbed heat flux in a fire test apparatus
JPH0282483A (en) Far infrared ray radiator for heating and heat radiation
Greywall Thermal-conductivity measurements in liquid He 4 below 0.7 K
Dong et al. Analysis of several test methods about heat insulation capabilities of ceramic thermal barrier coatings
CN104076065B (en) A kind of ultrasonic pretreatment causes the on-line measuring device of melt structure change
Lee et al. Sample holder design for effective thermal conductivity measurement of pebble-bed using laser flash method
Swenson Specific heat (Cp) of Apiezon N grease (1 to 108 K) and calorimetry: Cp of copper below 30 K
EP2237007A1 (en) Device and adiabatic method for measuring the specific absorption rate of a material subjected to an alternating magnetic field
Tian et al. Oxidation Resistance of Al PO 4 Bonded Ceramic Coating Formed on Titanium Alloy for High‐Temperature Applications
Tiller et al. Infrared radiant heating
CN106686771A (en) Thick film element with covering layer with high heat conduction capability
Frolec et al. Low temperature thermal radiative properties of gold coated metals
Zawilski et al. Dynamic measurement access, a new technique for fast thermal conductivity measurement
RU2688911C1 (en) Method of measuring integral coefficient of surface radiation of solid material
Litovsky et al. Measurement of the thermal conductivity of cold gas dynamically sprayed alumina-reinforced aluminum coatings between− 150 C and+ 200 C. New test method and experimental results
Picard et al. Measurement of the specific heat capacity of graphite
Purohit et al. Determination of dielectric properties and predictive modeling for designing radio-frequency heating of ground beef
Choi et al. Thermal conductivity of powder insulations for cryogenic storage vessels

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 15